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There is a strictly positive measure on a Boolean algebra 2l iff
there is a strictly positive measure on the Stone space ult(2).




Growths of @

Trivial examples
Any separable compact space is a growth of ®.




Growths of @

Trivial examples
Any separable compact space is a growth of ®.

A Boolean algebra 2 can be embedded in Z(w)/fin
iff ult(2A) is a growth of .




Growths of @

Trivial examples
Any separable compact space is a growth of ®.

A Boolean algebra 2 can be embedded in Z(w)/fin
iff ult(2A) is a growth of .

Parovi¢enko Theorem: Any Boolean algebra of size < w; can be
embedded into Z(w)/fin.



Growths of @

Trivial examples
Any separable compact space is a growth of ®.

A Boolean algebra 2 can be embedded in Z(w)/fin
iff ult(2A) is a growth of .

Parovi¢enko Theorem: Any Boolean algebra of size < w; can be
embedded into Z(w)/fin.

Lebesgue measure algebra

Let B = Bor[0,1]/.#", where .#"={AC[0,1] : A(A) =0}.




Growths of @

Trivial examples
Any separable compact space is a growth of ®.

A Boolean algebra 2 can be embedded in Z(w)/fin
iff ult(2A) is a growth of .

Parovi¢enko Theorem: Any Boolean algebra of size < w; can be
embedded into Z(w)/fin.

Lebesgue measure algebra

Let B = Bor[0,1]/.#", where .#"={AC[0,1] : A(A) =0}.
It has nonseparable ult(B) and the measure A transfers to a
strictly positive measure on ult(*8).




Growths of @

Trivial examples
Any separable compact space is a growth of ®.

A Boolean algebra 2 can be embedded in Z(w)/fin
iff ult(2A) is a growth of .

Parovi¢enko Theorem: Any Boolean algebra of size < w; can be
embedded into Z(w)/fin.

Lebesgue measure algebra

Let B = Bor[0,1]/.#", where .#"={AC[0,1] : A(A) =0}.

It has nonseparable ult(B) and the measure A transfers to a
strictly positive measure on ult(8). Assuming CH, by Parovitenko
ult(*B) embeds into Z(w)/fin, so it is a growth of w.
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Dow & Hart: Under Open Coloring Axiom the measure algebra
does not embed into Z(w)/fin.

Question

| 5\

Is there a ZFC example of nonseparable growth of @ which
supports a strictly positive measure?

Equivalently: is there a ZFC example of a Boolean algebra with
nonseparable Stone space that supports a strictly positive measure
and can be embedded into Z(w)/fin?
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nonseparable growth of @ supporting a strictly positive
measure




Asymptotic density

Asymptotic density

: A
d(A) = fim LM <n:mEAH]
n—soo n
if the limit exists for AC w. As d(A) =0 for finite A, we can
define also asymptotic density on Z(w)/fin.




Asymptotic density
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: A
d(A) = fim LM <n:mEAH]
n—soo n
if the limit exists for AC w. As d(A) =0 for finite A, we can
define also asymptotic density on Z(w)/fin.

Measure algebra, continued

Frankiewicz & Gutek: Under CH, there is an embedding
¢ : B — P(w)/fin such that A(b) = d(®(b)) for any b € B.




Main result

There exists a Boolean algebra 2 with the following properties:

@ ult(2A) is not separable
@ there exists a strictly positive measure 1t on 2

@ there exists an embedding W : A — Z(w)/fin such that
u(a) =d(V(a)) for any a2l
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Construction

{Py: o0 < c} =[29]=°
{Bgy : &t < c}- an almost disjoint family in Z(w).

| \

Definition of generators
Py ={t¥:new} C2°
Be={mf:ico}Cw

o o o o o o
P =15 l{mg.me}s PT = U [{mg.mgmg}s 92 = 8 |[{mg mg.memg}, etC.

We define Uy = Ujcel®/]-

\

Definition of algebra

A = alg (Clop(2“’) U{Uq:a < c}>
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Sketch of the proof of main result

@ A is a strictly positive measure on 2

@ ult(2A) is not separable

@ there exists a Boolean embedding Wy : Clop(2?) — £ (®)/fin
transferring measure to asymptotic density

e we define for any a < ¢ such Wo(Uy) that
A(Uq) = d(Wo(Uy)) and we can extend Vg to a
homomorphism ¥ : A — Z(w)/fin

o V:2— Z(w)/fin also transfers the Lebesgue measure to the
asymptotic density

@ the homomorphism W is an embedding, which is an easy
corollary from transferring the measure to density
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There is a Boolean algebra T C #?(w)/Fin such that
@ ‘T is not o-centered,

o IFg "< is o-centered”.

Theorem (Kamburelis, 80")

If € is a Boolean algebra and IFg “Cis o-centered”’, then €
supports a strictly positive measure.




