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Cech-Stone Compactification

The Cech-Stone compactification of a Tychonoff space X is a compact
Hausdorff space X containing X as a dense subspace so that each continuous
map f: X — Y to a compact Hausdorff space Y extends to a continuous map

F:BX =Y,
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Cech-Stone Compactification

The Cech-Stone compactification of a Tychonoff space X is a compact
Hausdorff space X containing X as a dense subspace so that each continuous
map f: X — Y to a compact Hausdorff space Y extends to a continuous map

f: BX — Y, ie., the following diagram commutes

x5 gx

VA

Y

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Cech-Stone Compactification

The Cech-Stone compactification of a Tychonoff space X is a compact
Hausdorff space X containing X as a dense subspace so that each continuous
map f: X — Y to a compact Hausdorff space Y extends to a continuous map
f: BX =Y, ie., the following diagram commutes

x5 gx

VA

Y

Every continuous map f: X — Y of Tychonoff spaces X and Y extends to the
unique continuous map Bf: BX — BY:

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Cech-Stone Compactification

The Cech-Stone compactification of a Tychonoff space X is a compact
Hausdorff space X containing X as a dense subspace so that each continuous
map f: X — Y to a compact Hausdorff space Y extends to a continuous map
f: BX =Y, ie., the following diagram commutes

x5 gx

VA

Y

Every continuous map f: X — Y of Tychonoff spaces X and Y extends to the
unique continuous map Bf: BX — BY:

x—t oy
B B

BX 0 BY
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The Glicksberg Theorem

The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map
f: X XY — Z extends to a continuous map f: X x Y — [Z if and only if
the product X X Y is pseudocompact.
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The Glicksberg Theorem

The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map
f: X XY — Z extends to a continuous map f: X x Y — [Z if and only if
the product X X Y is pseudocompact.

v

A Tychonoff topological spaces X is called pseudocompact if every continuous
map f: X — R is bounded.
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The Glicksberg Theorem

The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map
f: X XY — Z extends to a continuous map f: X x Y — [Z if and only if
the product X X Y is pseudocompact.

v

A Tychonoff topological spaces X is called pseudocompact if every continuous
map f: X — R is bounded.

| A\

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map
f: X XY — Z be a continuous map. If X are Y pseudocompact then f
extends to a separately continuous map f: BX x Y — BZ.

\
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A Grothendieck pair

Definition

Let X and Y are Tychonoff topological spaces. We shall say that (X,Y) is a
Grothendieck pair if every continuous image of X in C,(Y') has the compact
closure in Cp(Y).
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A Grothendieck pair

Definition

Let X and Y are Tychonoff topological spaces. We shall say that (X,Y) is a
Grothendieck pair if every continuous image of X in C,(Y') has the compact
closure in Cp(Y).

Arkhangel'skii, 1984
If (X,Y) is a Grothendieck pair then X is pseudocompact.
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A Grothendieck pair

Definition

Let X and Y are Tychonoff topological spaces. We shall say that (X,Y) is a
Grothendieck pair if every continuous image of X in C,(Y') has the compact
closure in Cp(Y).

Arkhangel'skii, 1984
If (X,Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X,Y) is a
Grothendieck pair if and only if (Y, X) is a Grothendieck pair.
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A Grothendieck pair

Definition

Let X and Y are Tychonoff topological spaces. We shall say that (X,Y) is a
Grothendieck pair if every continuous image of X in C,(Y') has the compact
closure in Cp(Y).

Arkhangel'skii, 1984
If (X,Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X,Y) is a
Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

| A

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following
conditions: (7) X is countably compact; (i¢) X has countable tightness;

(#91) X is separable; (iv) X is a k-space, then (X,Y) is a Grothendieck pair for
every Tychonoff pseudocompact space Y.

A\
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Extensions of maps

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces such that (X,Y) is a
Grothendieck pair. Then every separately continuous map f: X XY — Z can
be extended to a separately continuous map Bf: X x BY — BZ.
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Extensions of maps

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces such that (X,Y) is a
Grothendieck pair. Then every separately continuous map f: X XY — Z can
be extended to a separately continuous map Bf: X x BY — BZ.

Reznichenko, 1994

Let X, Y and Z be Tychonoff Pseudocompact topological spaces. Then every
continuous map f: X XY — Z can be extended to a separately continuous
map Bf: BX x BY — BZ.

| A
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A topological space
@ equipped with a continuous group operation and continuous inversion is
called a topological group;
@ equipped with a continuous group operation is called a paratopological
group;
@ equipped with a separately continuous group operation and continuous
inversion is called a quasitopological group;

o equipped with a separately continuous group operation is called a
semitopological group.




Some Definitions

A topological space

@ equipped with a continuous group operation and continuous inversion is
called a topological group;

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Some Definitions

A topological space

@ equipped with a continuous group operation and continuous inversion is
called a topological group;

@ equipped with a continuous group operation is called a paratopological
group;

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Some Definitions

A topological space

@ equipped with a continuous group operation and continuous inversion is
called a topological group;

@ equipped with a continuous group operation is called a paratopological
group;

@ equipped with a separately continuous group operation and continuous
inversion is called a quasitopological group;

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Some Definitions

A topological space
@ equipped with a continuous group operation and continuous inversion is
called a topological group;
@ equipped with a continuous group operation is called a paratopological
group;
@ equipped with a separately continuous group operation and continuous
inversion is called a quasitopological group;

@ equipped with a separately continuous group operation is called a
semitopological group.
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A semigroup is a non-empty set with associative binary operation. J




Some Definitions

A semigroup is a non-empty set with associative binary operation.

A semigroup S

(*]

is called inverse if for every x € S there exists unique y € S such that
zyx = x and yzy = y, and in this case y is called inverse of = in S and

denoted by 2~ (for an inverse semigroup S the map ¢: S — S: z +— 2!
is called );

is a if it is a commutative semigroup of idempotents;

is simple if S does not contain proper ideals;

is if S does not contains no proper ideals distinct from {0};

is completely simple if S is simple and contains minimal left and right
ideals;

is if S is O-simple and contains minimal left and right

ideals distinct from {0}.




Some Definitions

A semigroup is a non-empty set with associative binary operation. J

A semigroup S
o is called inverse if for every x € S there exists unique y € S such that
xyx = x and yzy = y, and in this case y is called inverse of = in S and
denoted by 2~! (for an inverse semigroup S the map ¢t: S — S: x> &~
is called inversion);

1
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Some Definitions

A semigroup is a non-empty set with associative binary operation. J

A semigroup S

o is called inverse if for every x € S there exists unique y € S such that
xyx = x and yzy = y, and in this case y is called inverse of = in S and
denoted by 2~! (for an inverse semigroup S the map ¢t: S — S: x> &~
is called inversion);

1

@ is a semilattice if it is a commutative semigroup of idempotents;
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Some Definitions

A semigroup is a non-empty set with associative binary operation. J

A semigroup S

o is called inverse if for every x € S there exists unique y € S such that
xyx = x and yzy = y, and in this case y is called inverse of = in S and
denoted by 2~! (for an inverse semigroup S the map ¢t: S — S: x> &~
is called inversion);

1

@ is a semilattice if it is a commutative semigroup of idempotents;
@ is simple if S does not contain proper ideals;

@ is 0-simple if S does not contains no proper ideals distinct from {0};
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Some Definitions

A semigroup is a non-empty set with associative binary operation. J

A semigroup S

o is called inverse if for every x € S there exists unique y € S such that
xyx = x and yzy = y, and in this case y is called inverse of = in S and
denoted by 2~! (for an inverse semigroup S the map ¢t: S — S: x> &~
is called inversion);

1

is a semilattice if it is a commutative semigroup of idempotents;
is simple if S does not contain proper ideals;

is 0-simple if S does not contains no proper ideals distinct from {0};

is completely simple if S is simple and contains minimal left and right
ideals;
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Some Definitions

A semigroup is a non-empty set with associative binary operation. )

A semigroup S

o is called inverse if for every x € S there exists unique y € S such that
xyx = x and yzy = y, and in this case y is called inverse of = in S and
denoted by 2~! (for an inverse semigroup S the map ¢t: S — S: x> &~
is called inversion);

1

is a semilattice if it is a commutative semigroup of idempotents;
is simple if S does not contain proper ideals;

is 0-simple if S does not contains no proper ideals distinct from {0};

is completely simple if S is simple and contains minimal left and right
ideals;

e is completely 0-simple if S is O-simple and contains minimal left and right
ideals distinct from {0}.
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A subset idempotents E(S) of a semigroup S admits a natural partial order g:J

e<f if and only if ef = fe=e, e, f € E(5).




Some Definitions

A subset idempotents E(S) of a semigroup S admits a natural partial order <:
e<f if and only if ef = fe=e, e, f € E(Y).

An idempotent e of a semigroup S is primitive if it minimal in E(S) \ {0}. J
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Some Definitions

A subset idempotents E(S) of a semigroup S admits a natural partial order <:
e<f if and only if ef = fe=e, e, f € E(Y). J

An idempotent e of a semigroup S is primitive if it minimal in E(S) \ {0}. J

A topological space S
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Some Definitions

A subset idempotents E(S) of a semigroup S admits a natural partial order <:

e<f if and only if ef = fe=e, e, f € E(Y).

An idempotent e of a semigroup S is primitive if it minimal in E(S) \ {0}. )

A topological space S

@ equipped with a continuous semigroup operation and continuous inversion
is called a topological inverse semigroup;
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e<f if and only if ef = fe=e, e, f € E(Y).
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A topological space S
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is called a topological inverse semigroup;
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semigroup;
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Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Some Definitions

A subset idempotents E(S) of a semigroup S admits a natural partial order <:

e<f if and only if ef = fe=e, e, f € E(Y).

An idempotent e of a semigroup S is primitive if it minimal in E(S) \ {0}. )

A topological space S

@ equipped with a continuous semigroup operation and continuous inversion
is called a topological inverse semigroup;

@ equipped with a continuous semigroup operation is called a topological
semigroup;

@ with separately a continuous semigroup operation is called a
semitopological semigroup.

Later we shall assume that all spaces are Hausdorff. )
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Semigroup compactifications

Let € be a class of compact Hausdorff semitopological semigroups. By a

& -compactification of a semitopological semigroup S we understand a pair
(¢(S),n) consisting of a compact semitopological semigroup %(S) € € and a
continuous homomorphism 7 : S — €(S) (called the canonic homomorphism)
such that for each continuous homomorphism h : S — K to a semitopological
semigroup K € % there is a unique continuous homomorphism h : €(S) — K
such that h = hon.
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Semigroup compactifications

Let € be a class of compact Hausdorff semitopological semigroups. By a

& -compactification of a semitopological semigroup S we understand a pair
(€(S),n) consisting of a compact semitopological semigroup ¢(S) € ¢ and a
continuous homomorphism 7 : S — €(S) (called the canonic homomorphism)
such that for each continuous homomorphism h : S — K to a semitopological
semigroup K € % there is a unique continuous homomorphism h : €(S) — K
such that h = hon.

We shall be interested in %-compactifications for the following classes of
semigroups:

o WP of compact semitopological semigroups;
o /P of compact topological semigroups.

The corresponding %-compactifications of a semitopological semigroup S will
be denoted by #.&72(S) and «7Z(S). The notation came from the
abbreviations for weakly almost periodic, almost periodic, and strongly almost
periodic function rings that determine those compactifications.
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Semigroup compactifications

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the
semigroup operation of S extends to a separately continuous semigroup
operation on S, which implies that S coincides with the

W o/ P-compactification of S.
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Semigroup compactifications

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the
semigroup operation of S extends to a separately continuous semigroup
operation on 8S, which implies that 55 coincides with the

W o/ P-compactification of S.

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup
operation of S extends to a separately continuous semigroup operation 3.,
which implies that 8S coincides with the #.&/%?-compactification of S.

| A
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Semigroup compactifications

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the
semigroup operation of S extends to a separately continuous semigroup
operation on 8S, which implies that 55 coincides with the

W o/ P-compactification of S.

| A

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup
operation of S extends to a separately continuous semigroup operation 3.,
which implies that 8S coincides with the #.&/%?-compactification of S.

Banakh, Dimitrova, 2010

For any Tychonoff topological semigroup S with pseudocompact square S x S
the semigroup operation of S extends to a continuous semigroup operation on
BS, which implies that 8S coincides with the &Z%?-compactification of S.
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The Comfort-Ross Theorem

Comfort & Ross, 1966

The Tychonoff product of any non-empty family of pseudocompact topological
groups is a pseudocompact space.
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The Comfort-Ross Theorem

Comfort & Ross, 1966

The Tychonoff product of any non-empty family of pseudocompact topological
groups is a pseudocompact space.

| \

Comfort & Ross, 1966

The Cech-Stone compactification SG of a pseudocompact topological group is
a topological group and the group operation of SG is an extension of the group
operation of G.

v
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The Tychonoff product of any non-empty family of pseudocompact topological
groups is a pseudocompact space.

| A

Comfort & Ross, 1966

The Cech-Stone compactification SG of a pseudocompact topological group is
a topological group and the group operation of SG is an extension of the group
operation of G.

| \

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a
paratopological group.

\
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The Comfort-Ross Theorem

Comfort & Ross, 1966

The Tychonoff product of any non-empty family of pseudocompact topological
groups is a pseudocompact space.

| A

Comfort & Ross, 1966

The Cech-Stone compactification SG of a pseudocompact topological group is
a topological group and the group operation of SG is an extension of the group
operation of G.

| \

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a
paratopological group.

\

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H
such that the product G x H is not pseudocompact.
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Pseudocompactness

For a Tychonoff space X the following conditions are equivalent:

() X is pseudocompact;
(i1) every locally finite family of non-empty open subsets of X is finite;

(7i7) every locally finite open cover of X has a finite subcover.
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Comfort-Ross like Theorem

The Tychonoff product of any non-empty family of pseudocompact
paratopological groups is a pseudocompact space.
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Comfort-Ross like Theorem

Ravsky, 2012

The Tychonoff product of any non-empty family of pseudocompact
paratopological groups is a pseudocompact space.

|

G & Repovs, 2007

Let .S be a 0-simple countable compact topological inverse semigroup. Then
the Stone-Cech compactification of S admits a structure of 0-simple
topological inverse semigroup with respect to which the inclusion mapping of S
into 8S is a topological isomorphism.

o
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Comfort-Ross like Theorem

Ravsky, 2012

The Tychonoff product of any non-empty family of pseudocompact
paratopological groups is a pseudocompact space.

G & Repovs, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then
the Stone-Cech compactification of S admits a structure of O-simple
topological inverse semigroup with respect to which the inclusion mapping of S
into 8S is a topological isomorphism.

|

G & Pavlyk, 2013

Let {Si: ¢ € #} be a non-empty family of primitive Hausdorff pseudocompact
topological inverse semigroups. Then the direct product Hjej S; with the
Tychonoff topology is a pseudocompact topological inverse semigroup.

A\
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Comfort-Ross like Theorem

Ravsky, 2012

The Tychonoff product of any non-empty family of pseudocompact
paratopological groups is a pseudocompact space.

G & Repovs, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then
the Stone-Cech compactification of S admits a structure of O-simple
topological inverse semigroup with respect to which the inclusion mapping of S
into 8S is a topological isomorphism.

G & Pavlyk, 2013

Let {Si: ¢ € #} be a non-empty family of primitive Hausdorff pseudocompact
topological inverse semigroups. Then the direct product Hjej S; with the
Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

Let S be a primitive pseudocompact topological inverse semigroup. Then the
Stone-Cech compactification of S admits a structure of primitive topological
inverse semigroup with respect to which the inclusion mapping of S into 8S is
a topological isomorphism.

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Some Semigroup Constructions

Clifford, 1951

Let S be a group and A be a cardinal > 1. On the set
Bx(S) = (A x S x X\) U {0} we define the semigroup operation as follows

0, if B#7,

and (a,a,B8)-0=0"(a,a,8) =0-0=0, for all o, B,7,0 € XA and a,b € S.
The semigroup BA(S) is called the Brandt semigroup. Every completely
0-simple inverse semigroup is isomorphic to Brandt semigroup for some cardinal
A and group S.

(avaaﬁ) . (7’67 6) = {

’
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Some Semigroup Constructions

Clifford, 1951

Let S be a group and A be a cardinal > 1. On the set
Bx(S) = (A x S x X\) U {0} we define the semigroup operation as follows

0, if B#7,

and (a,a,B8)-0=0"(a,a,8) =0-0=0, for all o, B,7,0 € XA and a,b € S.
The semigroup BA(S) is called the Brandt semigroup. Every completely
0-simple inverse semigroup is isomorphic to Brandt semigroup for some cardinal
A and group S.

(avaaﬁ) . (7’67 6) = {

’

For all a, B € A we denote Sq,3 = {(, s,8): s € S}. )

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Some Semigroup Constructions

Let {S.: ¢ € £} be a disjoint family of semigroups with zero such that 0, is
zero in S, forany ¢t € .Z. We put S = {0} UlJ{S. \{0.}: ¢ € £}, where
0¢U{S.\{0.}: € .7}, and define a semigroup operation on S in the
following way

st, if st € S, \{0,} for some . € .7;
s-t= .
0, otherwise.

The semigroup S with such defined operation is called the orthogonal sum of
of the family of semigroups {S.: ¢ € .#} and in this case we shall write

S = ZLEJ S
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Some Semigroup Constructions

Let {S.: ¢ € £} be a disjoint family of semigroups with zero such that 0, is
zero in S, for any ¢t € .#. We put S = {0} UU{S. \ {0.}: ¢ € .}, where
0¢U{S.\{0.}: € .7}, and define a semigroup operation on S in the
following way

st, if st € S, \{0,} for some . € .7;
s-t= .
0, otherwise.

The semigroup S with such defined operation is called the orthogonal sum of
of the family of semigroups {S.: ¢ € .#} and in this case we shall write

S = ZLE] S

Petrich, 1984

A semigroup S is a primitive inverse semigroup if and only if S is the
orthogonal sum of a non-empty family of Brandt semigroups.

| A
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Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let S be a Hausdorff primitive inverse countably compact semitopological
semigroup and S be an orthogonal sum of the family {B.,(G;): i € .#} of
semitopological Brandt semigroups with zeros. Suppose that for every i € .
there exists a maximal non-zero subgroup (Gi)a;,a;. @i € Ai, such that at least
the one of the following conditions holds:

(1) the group (Gi)a;,q, is left precompact;

(2) (Gi)a;,a; is a pseudocompact paratopological group;

(3) the group (Gi)a;,q; is left w-precompact pseudocompact;

(4) the subsemigroup Sa;.,a; = (Gi)a;,a; U {0} is a topological semigroup.
Then S admits the unique topology which turns S into a semitopological
semigroup.

We recall that a group G endowed with a topology is left (w-)precompact, if
for each neighborhood U of the unit of G there exists a (countable) finite
subset F' of G such that FU = G.
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Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let S be a semiregular primitive inverse pseudocompact semitopological
semigroup and S be an orthogonal sum of the family {B»,(G;): i € .7} of
semitopological Brandt semigroups with zeros. Let for every ¢ € .# there exists
a maximal non-zero subgroup (Gi)a;,a;, @i € Ai, such that at least the one of
the following conditions holds:

(1) the group (Gi)a;,a; is left precompact;

(2) (Gi)a;,a; is a pseudocompact paratopological group;

(3) the group (Gi)a;,q; is left w-precompact pseudocompact;

(4) the subsemigroup Sa;,a; = (Gi)a;,a; U {0} is a topological semigroup.
Then S admits the unique topology which turns S into a semitopological
semigroup.
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Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let S be a Hausdorff primitive inverse pseudocompact topological semigroup and S be
an orthogonal sum of the family {Bj,(G;): ¢ € .} of topological Brandt semigroups
with zeros. Then the following assertions hold:

(@) every cardinal A; is finite;

(74) every maximal subgroup of S is open-and-closed subset of S and hence is
pseudocompact;

(71i) for every i € ¥ the maximal Brandt semigroup B, (G;) is a pseudocompact;
(1) if B(a;,e;,q;) 15 @ base of the topology at the unity (s, e;, a;) of a maximal
non-zero subgroup (G;)a;,a; of S, i € .#, such that U C (G;)q;,a; for any
U € #(a;,e;,a;): then the family
B3, zv:) = 1Bir®r05) U - (@iy€5,7%): U € Bla; e5,00) }
is a base of the topology at the point (8;,x,7vi) € (Gi)g,,~; € Ba,(G:), for all
Bisvi € i
if in addition the topological space S is semiregular then
(v) the family
Bo = {S\((Gir)asy 8, U " U(Giy)ay, 18, ) 11550k € I 0y, Biy, € Ny,
k eN, {(ail 9 Bh)v coog (aik’ﬂik)} is finite}

is a base of the topology at zero of S.
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Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let {S;: j € Z} be a non-empty family of primitive semitopological inverse
semigroups such that for each j € _# the semigroup S; is either semiregular
pseudocompact or Hausdorff countably compact, and moreover each maximal
subgroup of S; a pseudocompact paratopological group. Then the direct
product Hjej S; with the Tychonoff topology is a pseudocompact
semitopological inverse semigroup.

Oleg Gutik Pseudocompact inverse primitive (semi)topological semigroups



Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let {S;: j € Z} be a non-empty family of primitive semitopological inverse
semigroups such that for each j € _# the semigroup S; is either semiregular
pseudocompact or Hausdorff countably compact, and moreover each maximal
subgroup of S; a pseudocompact paratopological group. Then the direct
product Hjej S; with the Tychonoff topology is a pseudocompact
semitopological inverse semigroup.

G & Ravsky, 2013

Let {Si: i € #} be a non-empty family of primitive inverse semiregular
pseudocompact (Hausdorff countably) topological semigroups. Then the direct
product Hje/ S; with the Tychonoff topology is a pseudocompact inverse
topological semigroup.

| A
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Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let S be a primitive inverse pseudocompact quasi-regular topological
semigroup. Then the Stone-Cech compactification of S admits a structure of
primitive topological inverse semigroup with respect to which the inclusion
mapping of S into 35S is a topological isomorphism.
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Pseudocompact inverse primitive (semi)topological semigroups

G & Ravsky, 2013

Let S be a primitive inverse pseudocompact quasi-regular topological
semigroup. Then the Stone-Cech compactification of S admits a structure of
primitive topological inverse semigroup with respect to which the inclusion
mapping of S into 35S is a topological isomorphism.

G & Ravsky, 2013

Let S be a regular primitive inverse countably compact semitopological
semigroup and S be an orthogonal sum of the family {B,(G;): i € .#} of
semitopological Brandt semigroups with zeros. Suppose that for every i € .#
there exists s maximal non-zero subgroup (Gi)a;,a;, @ € Ai, such that at least
the one of the following conditions holds:

(1) the group (Gi)a,,q, is left precompact;
(2) the group (Gi)a;,q; is left w-precompact pseudocompact;
(3) the subsemigroup Sa;,a; = (Gi)a;,a; U {0} is a topological semigroup.

Then the Stone-Cech compactification of S admits a structure of primitive
inverse semitopological semigroup with continuous inversion with respect to
which the inclusion mapping of S into 8.S is a topological isomorphism.
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Thank You for Your attention!




