

Introduction to Transfinite Chomp

Yusuke Hayashi

Graduate School of System Informatics, Kobe University

WS 2026, Feb 3rd, 2026

1 What is Chomp?

2 Classical results about Chomp

3 Transfinite Chomp

1 What is Chomp?

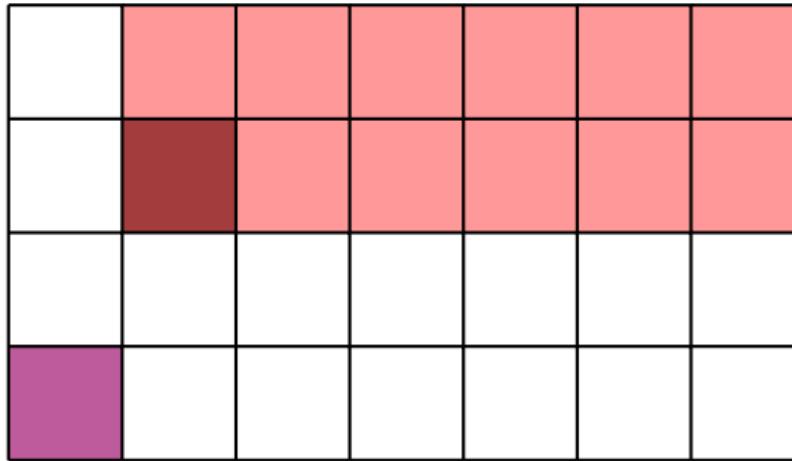
2 Classical results about Chomp

3 Transfinite Chomp

Before...

$m \times n$ -chomp

Let $m, n \geq 1$. The $m \times n$ -chomp is a two-player game on an $m \times n$ chocolate bar played as follows:



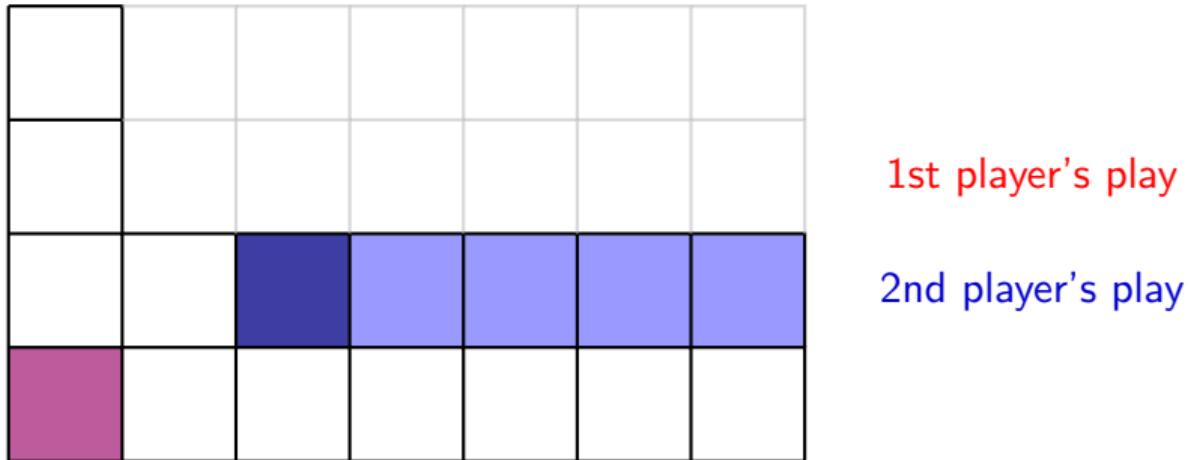
1st player's play

2nd player's play

The win condition is to force the play to eat the poisoned cell $((0,0))$.

$m \times n$ -chomp

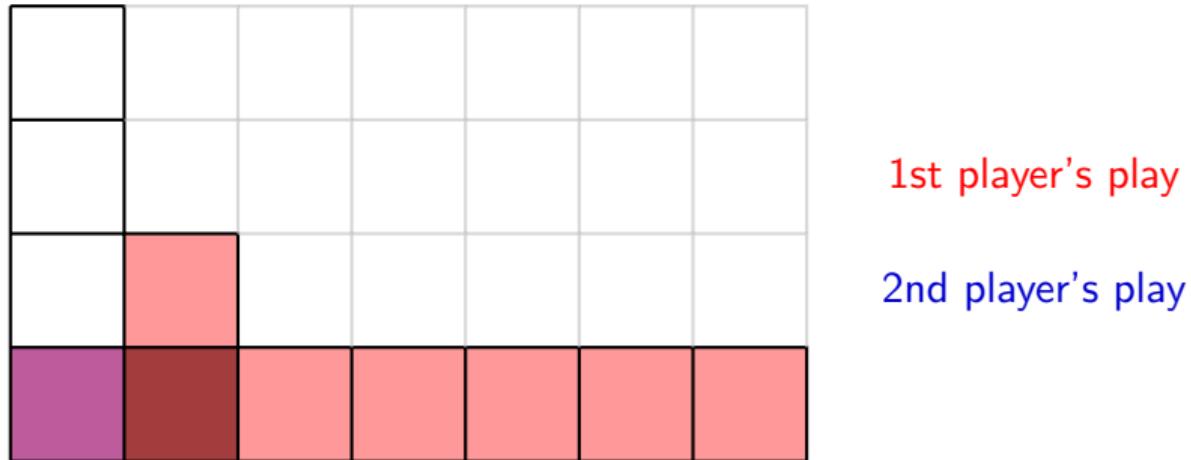
Let $m, n \geq 1$. The $m \times n$ -chomp is a two-player game on an $m \times n$ chocolate bar played as follows:



The win condition is to force the play to eat the poisoned cell $((0, 0))$.

$m \times n$ -chomp

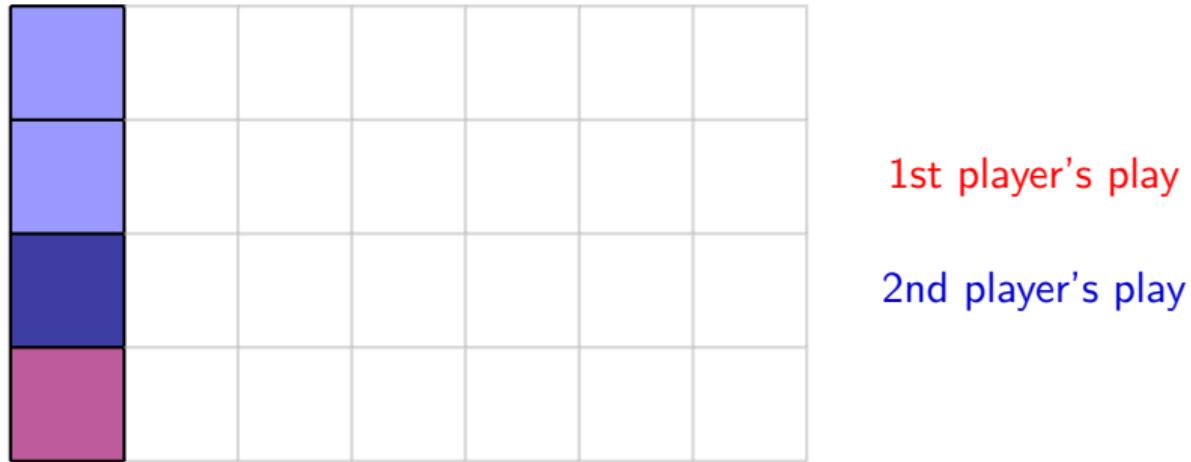
Let $m, n \geq 1$. The $m \times n$ -chomp is a two-player game on an $m \times n$ chocolate bar played as follows:



The win condition is to force the play to eat the poisoned cell $((0,0))$.

$m \times n$ -chomp

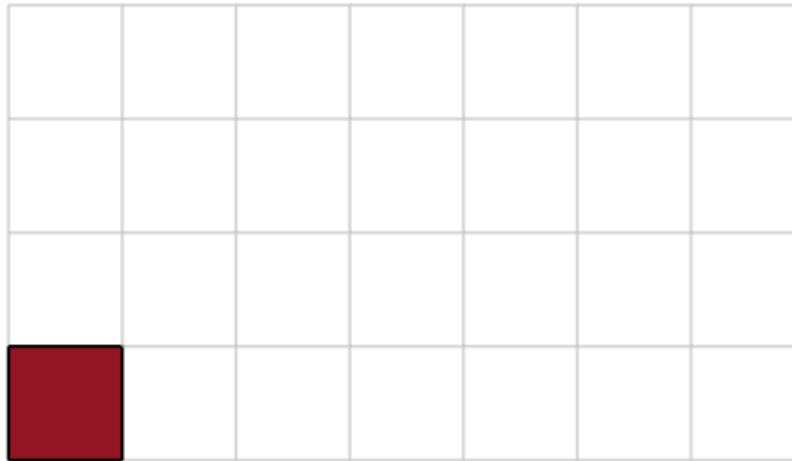
Let $m, n \geq 1$. The $m \times n$ -chomp is a two-player game on an $m \times n$ chocolate bar played as follows:



The win condition is to force the play to eat the poisoned cell $((0, 0))$.

$m \times n$ -chomp

Let $m, n \geq 1$. The $m \times n$ -chomp is a two-player game on an $m \times n$ chocolate bar played as follows:



1st player's play

2nd player's play

The win condition is to force the play to eat the poisoned cell $((0, 0))$.

Winning strategy

Chomp is determined. In general, every finite two-player zero-sum game with perfect information is determined.

Winning strategy

Chomp is determined. In general, every finite two-player zero-sum game with perfect information is determined.

- For which m, n is it a 1st player win?

Winning strategy

Chomp is determined. In general, every finite two-player zero-sum game with perfect information is determined.

- For which m, n is it a 1st player win?
- And what is an explicit winning strategy?

1 What is Chomp?

2 Classical results about Chomp

3 Transfinite Chomp

The strategy-stealing argument

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

Proof.

\implies : Prove the contrapositive. It suffices to show that 1×1 -chomp is a 2nd player win.

The strategy-stealing argument

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

Proof.

\implies : Prove the contrapositive. It suffices to show that 1×1 -chomp is a 2nd player win.

This is clearly a 2nd player win.

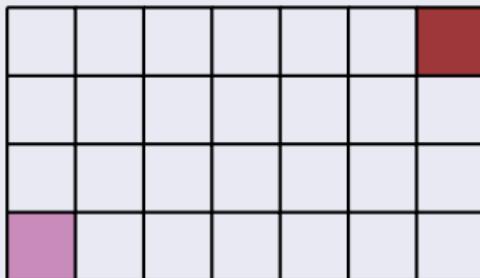
The strategy-stealing argument

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

Proof (continued).

\Leftarrow : By contradiction. Assume $(m, n) \neq (1, 1)$ and that the 1st player does not have a winning strategy. Then $m \times n$ -chomp must be a 2nd player win.



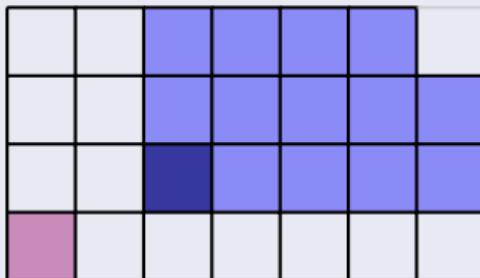
The strategy-stealing argument

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

Proof (continued).

\iff : By contradiction. Assume $(m, n) \neq (1, 1)$ and that the 1st player does not have a winning strategy. Then $m \times n$ -chomp must be a 2nd player win.



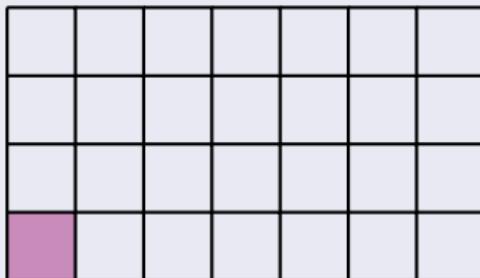
The strategy-stealing argument

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

Proof (continued).

\iff : By contradiction. Assume $(m, n) \neq (1, 1)$ and that the 1st player does not have a winning strategy. Then $m \times n$ -chomp must be a 2nd player win.



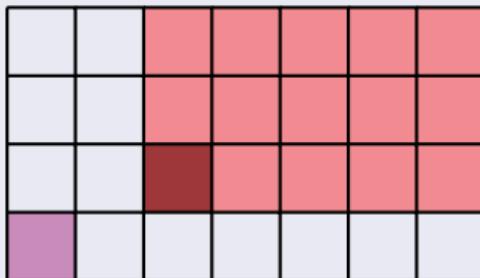
The strategy-stealing argument

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

Proof (continued).

\iff : By contradiction. Assume $(m, n) \neq (1, 1)$ and that the 1st player does not have a winning strategy. Then $m \times n$ -chomp must be a 2nd player win.



This contradicts that it was a 2nd player win. □

On explicit winning strategies

Theorem

$m \times n$ -chomp is a 1st player win $\iff (m, n) \neq (1, 1)$.

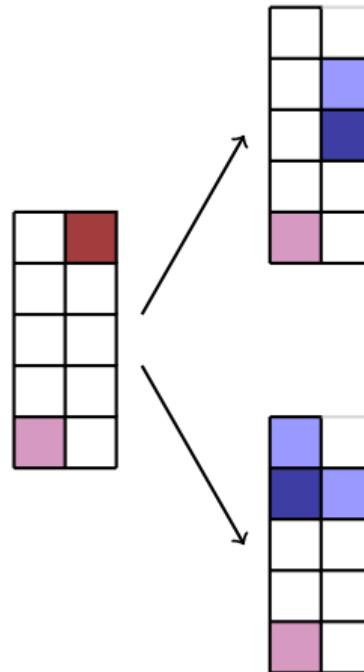
When $(m, n) \neq (1, 1)$, an explicit 1st player winning strategy for $m \times n$ -chomp is generally unknown.

However, we can construct explicit winning strategies for particular cases.

Example: $2 \times n$ -chomp

Key idea:

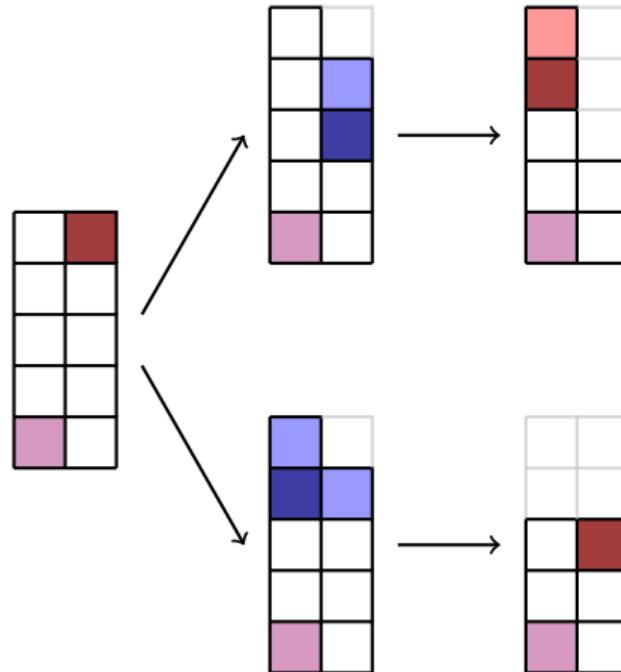
- The 1st player can always leave a *staircase-like board state*.



Example: $2 \times n$ -chomp

Key idea:

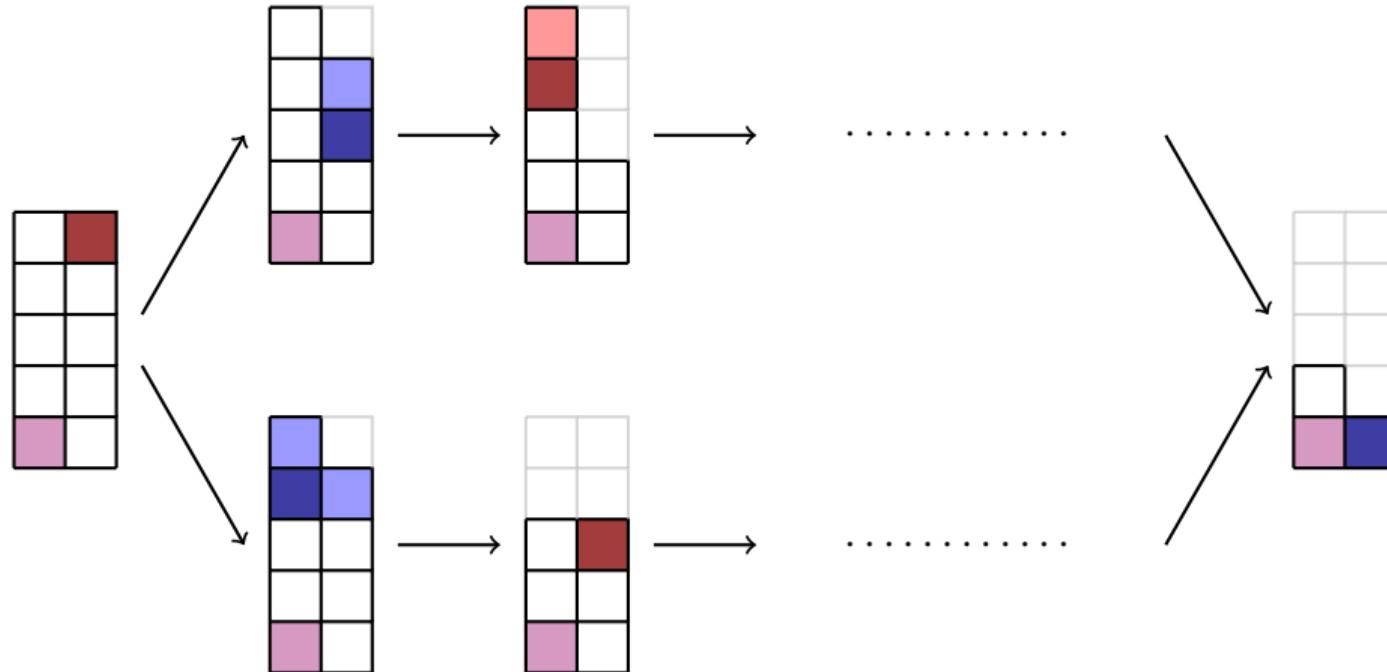
- The 1st player can always leave a *staircase-like board state*.



Example: $2 \times n$ -chomp

Key idea:

- The 1st player can always leave a *staircase-like board state*.



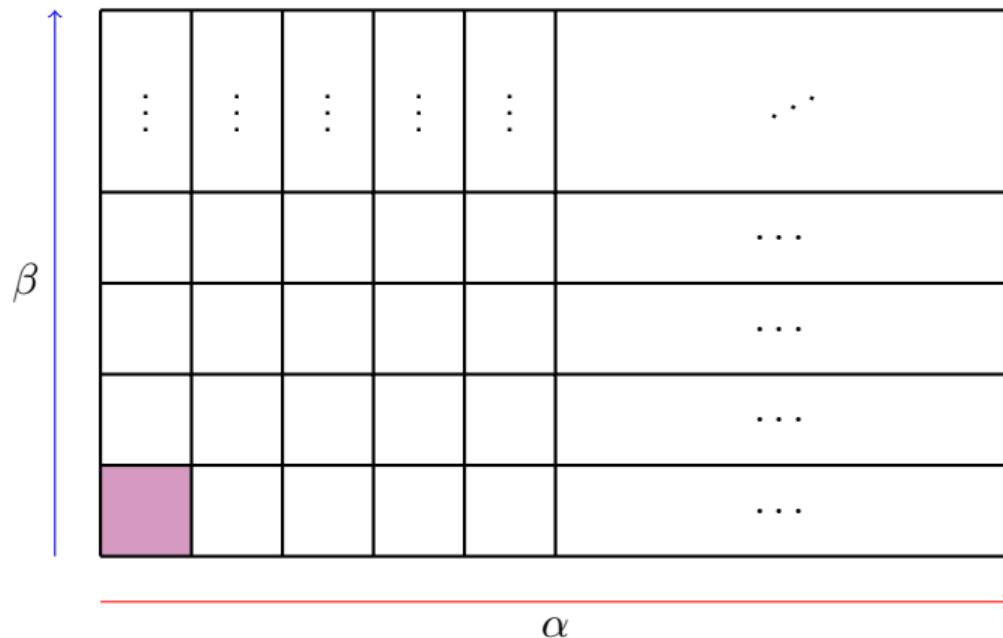
1 What is Chomp?

2 Classical results about Chomp

3 Transfinite Chomp

$\alpha \times \beta$ -chomp

For ordinals $\alpha, \beta \geq 1$, the $\alpha \times \beta$ -chomp is chomp played from the following board:



Finiteness of Transfinite Chomp

Proposition

Transfinite chomp always ends after finitely many moves. In particular, either a 1st player or a 2nd player has a winning strategy.

Of course, constructing explicit winning strategies is very very hard.

Finiteness of Transfinite Chomp

Proposition

Transfinite chomp always ends after finitely many moves. In particular, either a 1st player or a 2nd player has a winning strategy.

Of course, constructing explicit winning strategies is very very hard.

Also, in general, the strategy-stealing argument does not work well on $\alpha \times \beta$ -chomp, since the upper right corner cell does not exist if α or β limit.

Finiteness of Transfinite Chomp

Proposition

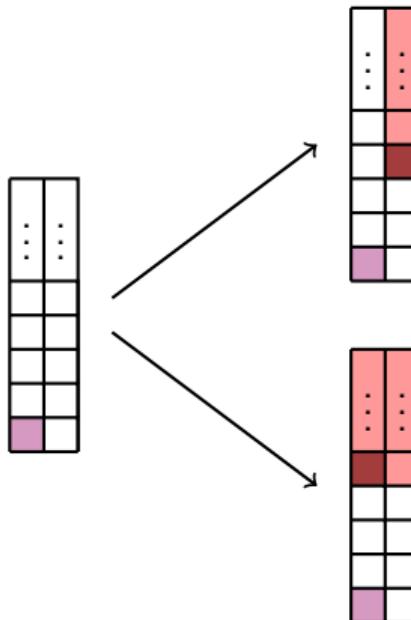
Transfinite chomp always ends after finitely many moves. In particular, either a 1st player or a 2nd player has a winning strategy.

Of course, constructing explicit winning strategies is very very hard.

Also, in general, the strategy-stealing argument does not work well on $\alpha \times \beta$ -chomp, since the upper right corner cell does not exist if α or β limit. *Actually...*

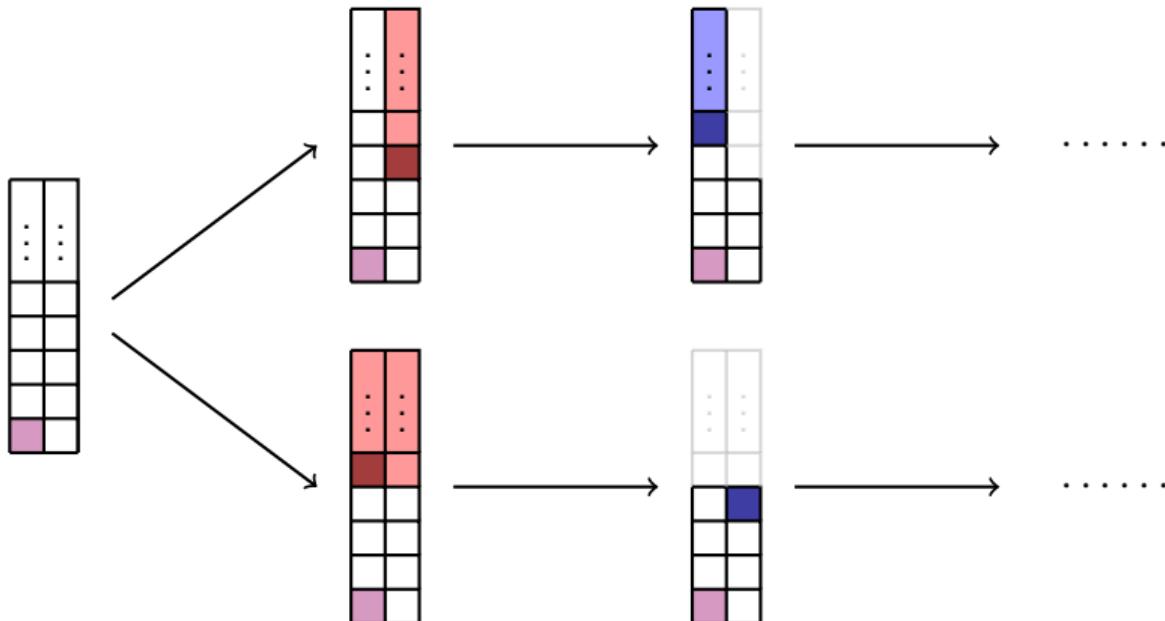
Example: $2 \times \omega$ -chomp

$2 \times \omega$ -chomp is a [2nd player win](#). The strategy is as follows:



Example: $2 \times \omega$ -chomp

$2 \times \omega$ -chomp is a [2nd player win](#). The strategy is as follows:



Class function f

Theorem(S. Huddleston, J. Shurman [1], Michal R. Przybylek [2] (partially), T. Goto simplified.)

For every ordinal $\alpha \geq 1$ there exists a **unique** $\beta \geq 1$ such that $\alpha \times \beta$ -chomp is a 2nd player win.

e.g., ω is the unique ordinal δ such that $2 \times \delta$ is a 2nd player win.

Class function f

Theorem(S. Huddleston, J. Shurman [1], Michal R. Przybylek [2] (partially), T. Goto simplified.)

For every ordinal $\alpha \geq 1$ there exists a **unique $\beta \geq 1$** such that $\alpha \times \beta$ -chomp is a 2nd player win.

e.g., ω is the unique ordinal δ such that $2 \times \delta$ is a 2nd player win.

This defines a class function f from ordinals to ordinals by:

$$f(\alpha) = \beta \iff \alpha \times \beta \text{ is a 2nd player win.}$$

It is easy to show that $f(\alpha) = \beta \iff f(\beta) = \alpha$.

Local behavior of f

The following are known:

$$f(1) = 1$$

$$f(2) = \omega$$

$$f(3) = \omega^\omega \quad (\text{S. Huddleston, J. Shurman[1]})$$

⋮

$$f(\omega) = 2$$

⋮

$$f(\omega^\omega) = 3$$

⋮

Global behavior of f

Proposition (H.)

For any uncountable cardinal κ , the restriction of f to κ is a bijection on κ .

Global behavior of f

Proposition (H.)

For any uncountable cardinal κ , the restriction of f to κ is a bijection on κ .

Proposition (H.)

Let $\text{Suc}_{\omega_1} = \{\alpha < \omega_1 \mid \alpha \text{ is a successor ordinal}\}$ and $\text{Lim}_{\omega_1} = \{\alpha < \omega_1 \mid \alpha \text{ is a limit ordinal}\}$. Then exactly one of $f^{-1}(\text{Suc}_{\omega_1})$ or $f^{-1}(\text{Lim}_{\omega_1})$ contains a club subset of ω_1 , and

$$f^{-1}(\text{Suc}_{\omega_1}) \text{ contains a club} \iff f(\omega_1) \text{ is a successor ordinal.}$$

Reflection

Proposition (H.)

Let $\text{Suc}_{\omega_1} = \{\alpha < \omega_1 \mid \alpha \text{ is a successor ordinal}\}$ and $\text{Lim}_{\omega_1} = \{\alpha < \omega_1 \mid \alpha \text{ is a limit ordinal}\}$. Then exactly one of $f^{-1}(\text{Suc}_{\omega_1})$ or $f^{-1}(\text{Lim}_{\omega_1})$ contains a club subset of ω_1 , and

$$f^{-1}(\text{Suc}_{\omega_1}) \text{ contains a club} \iff f(\omega_1) \text{ is a successor ordinal.}$$

That is, the property “ $f(\alpha)$ is successor” reflects to ω_1 .

Future works

- I would like to determine the value of $f(\omega_1)$.
 - At least, I would like to know whether $f(\omega_1)$ is a successor or a limit ordinal.
 - By our second proposition, if we can compute $f(\alpha)$ for many $\alpha < \omega_1$, we can answer this.

Future works

- I would like to determine the value of $f(\omega_1)$.
 - At least, I would like to know whether $f(\omega_1)$ is a successor or a limit ordinal.
 - By our second proposition, if we can compute $f(\alpha)$ for many $\alpha < \omega_1$, we can answer this.
 - But that is too difficult for me (maybe for humans).

Future works

- I would like to determine the value of $f(\omega_1)$.
 - At least, I would like to know whether $f(\omega_1)$ is a successor or a limit ordinal.
 - By our second proposition, if we can compute $f(\alpha)$ for many $\alpha < \omega_1$, we can answer this.
 - But that is too difficult for me (maybe for humans).
- If we can compute $f(\kappa)$ for some large cardinal κ , we can obtain a consistency result by collapsing κ to ω_1 .
 - But that is also difficult for me.

Future works

- I would like to determine the value of $f(\omega_1)$.
 - At least, I would like to know whether $f(\omega_1)$ is a successor or a limit ordinal.
 - By our second proposition, if we can compute $f(\alpha)$ for many $\alpha < \omega_1$, we can answer this.
 - But that is too difficult for me (maybe for humans).
- If we can compute $f(\kappa)$ for some large cardinal κ , we can obtain a consistency result by collapsing κ to ω_1 .
 - But that is also difficult for me.
- ...???

Future works

- I would like to determine the value of $f(\omega_1)$.
 - At least, I would like to know whether $f(\omega_1)$ is a successor or a limit ordinal.
 - By our second proposition, if we can compute $f(\alpha)$ for many $\alpha < \omega_1$, we can answer this.
 - But that is too difficult for me (maybe for humans).
- If we can compute $f(\kappa)$ for some large cardinal κ , we can obtain a consistency result by collapsing κ to ω_1 .
 - But that is also difficult for me.
- ...???

Summary

Future works

- I would like to determine the value of $f(\omega_1)$.
 - At least, I would like to know whether $f(\omega_1)$ is a successor or a limit ordinal.
 - By our second proposition, if we can compute $f(\alpha)$ for many $\alpha < \omega_1$, we can answer this.
 - But that is too difficult for me (maybe for humans).
- If we can compute $f(\kappa)$ for some large cardinal κ , we can obtain a consistency result by collapsing κ to ω_1 .
 - But that is also difficult for me.
- ...???

Summary
PLEASE HELP ME!!!

Thank you for your attention!

References I

- [1] Scott Huddleston and Jerry Shurman.
Transfinite chomp.
In *More Games of No Chance, Proc. MSRI Workshop on Combinatorial Games*, pp. 183–212, 2000.
- [2] Michał R. Przybylek.
Infinite chocolate.
2019.