

Algebraic characterisation of pseudo-elementary and second-order classes

János Balázs Ivanyos

Supervisor: Gábor Sági

2026. February 1.

Axiomatizability

The question of axiomatizability: when can a class of structures be defined in a given logical language?

Axiomatizability

The question of axiomatizability: when can a class of structures be defined in a given logical language?

- ➊ If $|\{\text{formulas}\}| = \kappa$, then there are at most 2^κ axiomatizable classes.

Axiomatizability

The question of axiomatizability: when can a class of structures be defined in a given logical language?

- ➊ If $|\{\text{formulas}\}| = \kappa$, then there are at most 2^κ axiomatizable classes.
- ➋ We want a characterization that is NOT semantic, but depends on the internal structure of the models and their relations to each other.

Axiomatizability

The question of axiomatizability: when can a class of structures be defined in a given logical language?

- ➊ If $|\{\text{formulas}\}| = \kappa$, then there are at most 2^κ axiomatizable classes.
- ➋ We want a characterization that is NOT semantic, but depends on the internal structure of the models and their relations to each other.
- ➌ Let us find closure conditions \rightsquigarrow algebraic characterization.

Axiomatizability

The question of axiomatizability: when can a class of structures be defined in a given logical language?

- If $|\{\text{formulas}\}| = \kappa$, then there are at most 2^κ axiomatizable classes.
- We want a characterization that is NOT semantic, but depends on the internal structure of the models and their relations to each other.
- Let us find closure conditions \rightsquigarrow algebraic characterization.

HSP Theorem (Birkhoff '35)

A class of algebraic structures is axiomatizable by equations if and only if it is closed under **H**, **S**, and **P**.

Axiomatizability in first-order logic

Theorem (Keisler-Shelah '71)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{FO} \mathcal{B}$;
- \mathcal{A} and \mathcal{B} have isomorphic ultrapowers.

Axiomatizability in first-order logic

Theorem (Keisler-Shelah '71)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{FO} \mathcal{B}$;
- \mathcal{A} and \mathcal{B} have isomorphic ultrapowers.

Theorem

- (1) K is axiomatizable by first-order formulas iff K is closed under ultraproducts and ultraroots.

Axiomatizability in first-order logic

Theorem (Keisler-Shelah '71)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{FO} \mathcal{B}$;
- \mathcal{A} and \mathcal{B} have isomorphic ultrapowers.

Theorem

- (1) K is axiomatizable by first-order formulas iff K is closed under ultraproducts and ultraroots.
- (2) K is axiomatizable by a **finite** set of first-order formulas iff K and its complement are both closed under ultraproducts.

Axiomatizability in first-order logic

Theorem (Keisler-Shelah '71)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{FO} \mathcal{B}$;
- \mathcal{A} and \mathcal{B} have isomorphic ultrapowers.

Theorem

- (1) K is axiomatizable by first-order formulas iff K is closed under ultraproducts and ultraroots.
- (2) K is axiomatizable by a **finite** set of first-order formulas iff K and its complement are both closed under ultraproducts.

Corollary

The class of all finite τ -structures is not definable in first-order logic.

Problem I: In second-order logic?

- Second-order logic has greater expressive power than first-order logic.

Problem I: In second-order logic?

- Second-order logic has greater expressive power than first-order logic.
- Second-order formulas: given a signature τ , there are individual variables **and second-order variables** (function and relation variables). Formulas are built like in first-order logic, except quantifiers may also range over second-order variables (e.g. $\forall R$, $\exists f$).

Problem I: In second-order logic?

- Second-order logic has greater expressive power than first-order logic.
- Second-order formulas: given a signature τ , there are individual variables **and second-order variables** (function and relation variables). Formulas are built like in first-order logic, except quantifiers may also range over second-order variables (e.g. $\forall R$, $\exists f$).

$$\exists R(\forall y \neg Ryy \wedge \forall y \forall z \forall w(Ryz \wedge Rzw \implies Ryw) \wedge \forall y \forall z(Ryz \vee Rzy \vee y = z) \wedge \forall y \exists z Ryz)$$

Problem I: In second-order logic?

- Second-order logic has greater expressive power than first-order logic.
- Second-order formulas: given a signature τ , there are individual variables **and second-order variables** (function and relation variables). Formulas are built like in first-order logic, except quantifiers may also range over second-order variables (e.g. $\forall R$, $\exists f$).

$$\exists R(\forall y \neg Ryy \wedge \forall y \forall z \forall w(Ryz \wedge Rzw \implies Ryw) \wedge \forall y \forall z(Ryz \vee Rzy \vee y = z) \wedge \forall y \exists z Ryz)$$

- Second-order classes: finite τ -structures, graphs that are 3-colorable.

Problem I: In second-order logic?

- Second-order logic has greater expressive power than first-order logic.
- Second-order formulas: given a signature τ , there are individual variables **and second-order variables** (function and relation variables). Formulas are built like in first-order logic, except quantifiers may also range over second-order variables (e.g. $\forall R$, $\exists f$).

$$\exists R(\forall y \neg Ryy \wedge \forall y \forall z \forall w(Ryz \wedge Rzw \implies Ryw) \wedge \forall y \forall z(Ryz \vee Rzy \vee y = z) \wedge \forall y \exists z Ryz)$$

- Second-order classes: finite τ -structures, graphs that are 3-colorable.
- First-order tools do not work: ultraproducts do not preserve the truth of second-order formulas, so Łoś' lemma does not hold in second-order logic; moreover, the compactness theorem also fails.

New results in second-order logic

Theorem (Ivanyos)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{SO} \mathcal{B}$;
- $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ are completely inseparable from each other.

New results in second-order logic

Theorem (Ivanyos)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{SO} \mathcal{B}$;
- $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ are completely inseparable from each other.

Inseparability \approx "there is a nice isomorphism between their ultrapowers".

Inseparability baby version

- Fix an ultraproduct $\mathcal{C} = \prod_{i \in I} \mathcal{C}_i / \mathcal{H}$. Then for $0 < k$ a relation $R \subseteq {}^k \mathcal{C}$ is defined to be decomposable in the ultraproduct, iff for every $i \in I$ there exists a relation $R_i \subseteq {}^k \mathcal{C}_i$ such that $R = \prod_{i \in I} R_i / \mathcal{H}$.

Inseparability baby version

- Fix an ultraproduct $\mathcal{C} = \prod_{i \in I} \mathcal{C}_i / \mathcal{H}$. Then for $0 < k$ a relation $R \subseteq {}^k \mathcal{C}$ is defined to be decomposable in the ultraproduct, iff for every $i \in I$ there exists a relation $R_i \subseteq {}^k \mathcal{C}_i$ such that $R = \prod_{i \in I} R_i / \mathcal{H}$.

Inseparability baby version

- Fix an ultraproduct $\mathcal{C} = \prod_{i \in I} \mathcal{C}_i / \mathcal{H}$. Then for $0 < k$ a relation $R \subseteq {}^k \mathcal{C}$ is defined to be decomposable in the ultraproduct, iff for every $i \in I$ there exists a relation $R_i \subseteq {}^k \mathcal{C}_i$ such that $R = \prod_{i \in I} R_i / \mathcal{H}$.
- $\{\mathcal{B}\}$ is defined to be *inseparable* from $\{\mathcal{A}\}$, if there exist ultrapowers $\mathcal{A}' = {}^J \mathcal{A} / \mathcal{F}$, $\mathcal{B}' = {}^L \mathcal{B} / \mathcal{G}$ and an isomorphism

$$f : \mathcal{A}' \rightarrow \mathcal{B}'$$

such that, if R is a relation of \mathcal{A} , and $S = {}^J R / \mathcal{F}$, then $f^*(S)$ is decomposable in \mathcal{B}' .

New results in second-order logic

Theorem (Ivanyos)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{SO} \mathcal{B}$;
- $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ are completely inseparable from each other.

Inseparability \approx "there is a nice isomorphism between their ultrapowers".

New results in second-order logic

Theorem (Ivanyos)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{SO} \mathcal{B}$;
- $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ are completely inseparable from each other.

Inseparability \approx "there is a nice isomorphism between their ultrapowers".

Theorem (Ivanyos)

- (1) A class K of structures is axiomatizable by second-order formulas iff K is closed under semi-complete inseparability.

New results in second-order logic

Theorem (Ivanyos)

Let \mathcal{A} and \mathcal{B} be two τ -structures. Then the following are equivalent:

- $\mathcal{A} \equiv_{SO} \mathcal{B}$;
- $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ are completely inseparable from each other.

Inseparability \approx "there is a nice isomorphism between their ultrapowers".

Theorem (Ivanyos)

- (1) A class K of structures is axiomatizable by second-order formulas iff K is closed under semi-complete inseparability.
- (2) K is axiomatizable by a **finite** set of second-order formulas iff K is closed under complete inseparability.

Problem II: pseudo-elementary classes

- These are important and much-studied classes in model theory.

Problem II: pseudo-elementary classes

- These are important and much-studied classes in model theory.

Definition

A class K of τ -structures is basic pseudo-elementary ($K \in PC$) if there exists $\tau' \supseteq \tau$ and a formula $\phi \in FO(\tau')$ such that K is the τ -reduct of $\text{Mod}(\phi)$.

Problem II: pseudo-elementary classes

- These are important and much-studied classes in model theory.

Definition

A class K of τ -structures is basic pseudo-elementary ($K \in PC$) if there exists $\tau' \supseteq \tau$ and a formula $\phi \in FO(\tau')$ such that K is the τ -reduct of $\text{Mod}(\phi)$.

- That is, one can add functions and relations to members of K so that they satisfy ϕ , but not to members of K^c .

Problem II: pseudo-elementary classes

- These are important and much-studied classes in model theory.

Definition

A class K of τ -structures is basic pseudo-elementary ($K \in PC$) if there exists $\tau' \supseteq \tau$ and a formula $\phi \in FO(\tau')$ such that K is the τ -reduct of $\text{Mod}(\phi)$.

- That is, one can add functions and relations to members of K so that they satisfy ϕ , but not to members of K^c .

Definition

K is pseudo-elementary ($K \in PC_\Delta$) if there exists $\tau' \supseteq \tau$ and a theory $\Gamma \subseteq FO(\tau')$ such that K is the τ -reduct of $\text{Mod}(\Gamma)$.

Problem II: pseudo-elementary classes

- These are important and much-studied classes in model theory.

Definition

A class K of τ -structures is basic pseudo-elementary ($K \in PC$) if there exists $\tau' \supseteq \tau$ and a formula $\phi \in FO(\tau')$ such that K is the τ -reduct of $\text{Mod}(\phi)$.

- That is, one can add functions and relations to members of K so that they satisfy ϕ , but not to members of K^c .

Definition

K is pseudo-elementary ($K \in PC_\Delta$) if there exists $\tau' \supseteq \tau$ and a theory $\Gamma \subseteq FO(\tau')$ such that K is the τ -reduct of $\text{Mod}(\Gamma)$.

- Since the 1960s it was an open problem to give a purely algebraic characterization.

PC classes

- $K \in PC$ iff there exists a $\psi \in \Sigma_1^1$ ($\psi \equiv \exists R_0, \dots, R_{n-1} \phi$ where ϕ is first-order) formula such that $K = \text{Mod}(\psi)$.

PC classes

- $K \in PC$ iff there exists a $\psi \in \Sigma_1^1$ ($\psi \equiv \exists R_0, \dots, R_{n-1} \phi$ where ϕ is first-order) formula such that $K = \text{Mod}(\psi)$.

Theorem (Sági '02)

K is axiomatizable by Σ_1^1 -formulas iff it is closed under semi-inseparability.

PC classes

- $K \in PC$ iff there exists a $\psi \in \Sigma_1^1$ ($\psi \equiv \exists R_0, \dots, R_{n-1} \phi$ where ϕ is first-order) formula such that $K = \text{Mod}(\psi)$.

Theorem (Sági '02)

K is axiomatizable by Σ_1^1 -formulas iff it is closed under semi-inseparability.

- But he left open the question of finite axiomatizability.

PC classes

- $K \in PC$ iff there exists a $\psi \in \Sigma_1^1$ ($\psi \equiv \exists R_0, \dots, R_{n-1} \phi$ where ϕ is first-order) formula such that $K = \text{Mod}(\psi)$.

Theorem (Sági '02)

K is axiomatizable by Σ_1^1 -formulas iff it is closed under semi-inseparability.

- But he left open the question of finite axiomatizability.

Theorem (Ivanyos)

The following are equivalent:

- (1) $K \in PC$;
- (2) K is axiomatizable by a finite set of existential second-order formulas;
- (3) K is strongly closed under inseparability;
- (4) K is closed under ultraproducts and inseparability.

Connection to NP

Theorem (Fagin '74)

The class K of finite structures is in NP exactly when there exists a $\phi \in \Sigma_1^1$ formula such that $K = \text{Mod}_{<\omega}(\phi)$.

Connection to NP

Theorem (Fagin '74)

The class K of finite structures is in NP exactly when there exists a $\phi \in \Sigma_1^1$ formula such that $K = \text{Mod}_{<\omega}(\phi)$.

- Applying Fagin's theorem together with the characterization of PC classes, we obtain a new purely closure-based characterization of NP classes.

Connection to NP

Theorem (Fagin '74)

The class K of finite structures is in NP exactly when there exists a $\phi \in \Sigma_1^1$ formula such that $K = \text{Mod}_{<\omega}(\phi)$.

- Applying Fagin's theorem together with the characterization of PC classes, we obtain a new purely closure-based characterization of NP classes.

Theorem (Ivanyos)

Let K be a class of finite τ -structures. Then the following are equivalent:

- (1) $K \in \text{NP}$;
- (2) For every $\{\mathcal{A}_i : i \in I\} \subseteq K$, if $\{\mathcal{B}_j : j \in J\}$ is a set of finite τ -structures that is inseparable from \mathcal{A} , then $K \cap \{\mathcal{B}_j : j \in J\} \neq \emptyset$.

Spaces of formulas I.

- Fix a signature τ and let $\Gamma \subseteq SO$ be a fragment of second- order formulas, which is closed under Boolean operations , and suppose $|\Gamma| = \kappa$.

Spaces of formulas I.

- Fix a signature τ and let $\Gamma \subseteq SO$ be a fragment of second- order formulas, which is closed under Boolean operations , and suppose $|\Gamma| = \kappa$.
- Fix a well-ordering $\Gamma = \{\gamma_i : i \in \kappa\}$, and let

$$C(\Gamma) = \left\{ x \in 2^\kappa : \begin{array}{l} \text{there is a model } \mathcal{A}, \text{ such that} \\ \gamma_i \in Th_\Gamma(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

Spaces of formulas I.

- Fix a signature τ and let $\Gamma \subseteq SO$ be a fragment of second- order formulas, which is closed under Boolean operations , and suppose $|\Gamma| = \kappa$.
- Fix a well-ordering $\Gamma = \{\gamma_i : i \in \kappa\}$, and let

$$C(\Gamma) = \left\{ x \in 2^\kappa : \begin{array}{l} \text{there is a model } \mathcal{A}, \text{ such that} \\ \gamma_i \in Th_\Gamma(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

- Every $x \in C(\Gamma)$ is the characteristic function of $Th_\Gamma(\mathcal{A})$, for some \mathcal{A} τ -structure.

Spaces of formulas I.

- Fix a signature τ and let $\Gamma \subseteq SO$ be a fragment of second- order formulas, which is closed under Boolean operations , and suppose $|\Gamma| = \kappa$.
- Fix a well-ordering $\Gamma = \{\gamma_i : i \in \kappa\}$, and let

$$C(\Gamma) = \left\{ x \in 2^\kappa : \begin{array}{l} \text{there is a model } \mathcal{A}, \text{ such that} \\ \gamma_i \in Th_\Gamma(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

- Every $x \in C(\Gamma)$ is the characteristic function of $Th_\Gamma(\mathcal{A})$, for some \mathcal{A} τ -structure.
- Consider the subspace topology on $C(\Gamma)$ inherited from the κ -Cantor set 2^κ .

Spaces of formulas II.

- Let K is a class of τ -structures, then

$$T_K = \left\{ x \in C(\Gamma) : \begin{array}{l} \text{there is a model } \mathcal{A} \in K, \text{ such that} \\ \gamma_i \in Th_{\Gamma}(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

Spaces of formulas II.

- Let K is a class of τ -structures, then

$$T_K = \left\{ x \in C(\Gamma) : \begin{array}{l} \text{there is a model } \mathcal{A} \in K, \text{ such that} \\ \gamma_i \in Th_{\Gamma}(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

Proposition.

- (1.) A class K of τ -structures is axiomatizable by a set of Γ -formulas if and only if the set T_K is a closed subset of $C(\Gamma)$, and K is closed under Γ -equivalence.

Spaces of formulas II.

- Let K is a class of τ -structures, then

$$T_K = \left\{ x \in C(\Gamma) : \begin{array}{l} \text{there is a model } \mathcal{A} \in K, \text{ such that} \\ \gamma_i \in Th_{\Gamma}(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

Proposition.

- (1.) A class K of τ -structures is axiomatizable by a set of Γ -formulas if and only if the set T_K is a closed subset of $C(\Gamma)$, and K is closed under Γ -equivalence.
- (2.) A class K of τ -structures is axiomatizable by a *finite* set of Γ -formulas if and only if the set T_K is a clopen subset of $C(\Gamma)$, and K is closed under Γ -equivalence.

Spaces of formulas II.

- Let K is a class of τ -structures, then

$$T_K = \left\{ x \in C(\Gamma) : \begin{array}{l} \text{there is a model } \mathcal{A} \in K, \text{ such that} \\ \gamma_i \in Th_{\Gamma}(\mathcal{A}) \text{ if and only if } x(i) = 1 \end{array} \right\}.$$

Proposition.

- (1.) A class K of τ -structures is axiomatizable by a set of Γ -formulas if and only if the set T_K is a closed subset of $C(\Gamma)$, and K is closed under Γ -equivalence.
- (2.) A class K of τ -structures is axiomatizable by a *finite* set of Γ -formulas if and only if the set T_K is a clopen subset of $C(\Gamma)$, and K is closed under Γ -equivalence.

- Hence, in order to characterize the Γ -definable classes, we have to understand the topology of the space $C(\Gamma)$.

Spaces of formulas III.

- Fun fact: $C(\Gamma)$ is compact precisely if the compactness theorem holds for the Γ -formulas.

Spaces of formulas III.

- Fun fact: $C(\Gamma)$ is compact precisely if the compactness theorem holds for the Γ -formulas.
- If $\Gamma \subseteq FO$, and K is a class of structures, then

$$T_{\text{Ult}(K)} = \overline{T_K}.$$

Hence the ultraproduct induces a closure operation on the space $C(FO)$.

Spaces of formulas III.

- Fun fact: $C(\Gamma)$ is compact precisely if the compactness theorem holds for the Γ -formulas.
- If $\Gamma \subseteq FO$, and K is a class of structures, then

$$T_{\text{Ult}(K)} = \overline{T_K}.$$

Hence the ultraproduct induces a closure operation on the space $C(FO)$.

- In the case that $\Gamma \not\subseteq FO$, the space $C(\Gamma)$ is more complicated.

Spaces of formulas III.

- Fun fact: $C(\Gamma)$ is compact precisely if the compactness theorem holds for the Γ -formulas.
- If $\Gamma \subseteq FO$, and K is a class of structures, then

$$T_{\text{Ult}(K)} = \overline{T_K}.$$

Hence the ultraproduct induces a closure operation on the space $C(FO)$.

- In the case that $\Gamma \not\subseteq FO$, the space $C(\Gamma)$ is more complicated.
- So, if $\Gamma \not\subseteq FO$ we need to find an operation that induces a closure operation on the space $C(\Gamma)$.

Spaces of formulas III.

- Fun fact: $C(\Gamma)$ is compact precisely if the compactness theorem holds for the Γ -formulas.
- If $\Gamma \subseteq FO$, and K is a class of structures, then

$$T_{\text{Ult}(K)} = \overline{T_K}.$$

Hence the ultraproduct induces a closure operation on the space $C(FO)$.

- In the case that $\Gamma \not\subseteq FO$, the space $C(\Gamma)$ is more complicated.
- So, if $\Gamma \not\subseteq FO$ we need to find an operation that induces a closure operation on the space $C(\Gamma)$.
- In second-order, this operation will be the inseparability (its variants).

PC $_{\Delta}$ classes

- $PC_{\Delta} \approx$ classes definable in an expanded language, possibly with infinitely many formulas.

PC $_{\Delta}$ classes

- $PC_{\Delta} \approx$ classes definable in an expanded language, possibly with infinitely many formulas.
- $K \in PC_{\Delta}$ iff there exists a formula $\phi \equiv \exists \overrightarrow{X_{\Delta}} \Lambda_{\gamma \in \Gamma} \gamma$ such that $K = \text{Mod}(\phi)$.

PC $_{\Delta}$ classes

- $PC_{\Delta} \approx$ classes definable in an expanded language, possibly with infinitely many formulas.
- $K \in PC_{\Delta}$ iff there exists a formula $\phi \equiv \exists \overrightarrow{X_{\Delta}} \Lambda_{\gamma \in \Gamma} \gamma$ such that $K = \text{Mod}(\phi)$.
- The question of axiomatizability in this case is much harder, because ϕ can be of infinite length.

PC $_{\Delta}$ classes

- $PC_{\Delta} \approx$ classes definable in an expanded language, possibly with infinitely many formulas.
- $K \in PC_{\Delta}$ iff there exists a formula $\phi \equiv \exists \overrightarrow{X_{\Delta}} \Lambda_{\gamma \in \Gamma} \gamma$ such that $K = \text{Mod}(\phi)$.
- The question of axiomatizability in this case is much harder, because ϕ can be of infinite length.
- Large cardinality conditions \rightsquigarrow infinite formulas can be handled similarly to finite ones, but we want a ZFC result.

PC $_{\Delta}$ classes

- $PC_{\Delta} \approx$ classes definable in an expanded language, possibly with infinitely many formulas.
- $K \in PC_{\Delta}$ iff there exists a formula $\phi \equiv \exists \overrightarrow{X_{\Delta}} \Lambda_{\gamma \in \Gamma} \gamma$ such that $K = \text{Mod}(\phi)$.
- The question of axiomatizability in this case is much harder, because ϕ can be of infinite length.
- Large cardinality conditions \rightsquigarrow infinite formulas can be handled similarly to finite ones, but we want a ZFC result.

Theorem ZFC (Ivanyos)

Let K be a class of τ -structures. Then the following are equivalent:

- (1) $K \in PC_{\Delta}$;
- (2) K^c has property (A) and K has property (B).

Summary

Summary

- We generalized the Keisler–Shelah isomorphism theorem to second-order formulas.

Summary

- We generalized the Keisler–Shelah isomorphism theorem to second-order formulas.
- We provided algebraic characterizations in second-order classes, and for those classes which can be finitely axiomatized in the second order logic.

Summary

- We generalized the Keisler–Shelah isomorphism theorem to second-order formulas.
- We provided algebraic characterizations in second-order classes, and for those classes which can be finitely axiomatized in the second order logic.
- We characterized the PC classes, and using this gave a purely algebraic description of NP problems.

Summary

- We generalized the Keisler–Shelah isomorphism theorem to second-order formulas.
- We provided algebraic characterizations in second-order classes, and for those classes which can be finitely axiomatized in the second order logic.
- We characterized the PC classes, and using this gave a purely algebraic description of NP problems.
- We characterized the PC_Δ classes in ZFC.

Summary

- We generalized the Keisler–Shelah isomorphism theorem to second-order formulas.
- We provided algebraic characterizations in second-order classes, and for those classes which can be finitely axiomatized in the second order logic.
- We characterized the PC classes, and using this gave a purely algebraic description of NP problems.
- We characterized the PC_Δ classes in ZFC.

Thank you for your attention!