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Introduction

This presentation will survey Todorčević’s article
"Biorthogonal systems and quotient spaces via Baire category
methods".
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Motivation

The classical definition of a Schauder basis is as follows:

Definition 1: Schauder basis

A sequence (xn)n∈ω in a Banach space X is a Schauder
basis if for every x ∈ X there exists a unique sequence
of scalars (αn)n∈ω such that

x =
∑
n∈ω

αnxn.

We know that the existence of this type of basis is restricted
to separable spaces. Furthermore, not all separable spaces
have it.
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Motivation

Fortunately we can go to closed subspaces or to quotient
spaces.

Theorem 1: Mazur

Every infinite-dimensional Banach space X contains a
basic sequence.

Theorem 2: Johnson–Rosenthal

Every separable Banach space X has a subspace Y such
that X/Y has a Schauder basis.

But what about non-separable spaces?
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(Long) Schauder bases

A possible generalization of Schauder bases to non-separable
spaces is the following:

Definition 2: (Long) Schauder basis

Let X be a Banach space and Γ be an ordinal. A sequence
(xα)α<Γ in X is a (long) Schauder basis if for every x ∈ X

there exists a unique sequence (αβ)β<Γ ⊆ K such that

x =
∑
β<Γ

αβxβ.
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The question

Does every non-separable Banach space X have a subspace Y

such that X/Y has an uncountable basis?

Todorčević proved that this is true under PID when d(X) < m.
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An important lemma

Lemma 1: Todorčević

For a given Banach space X , there is a bounded lin-
ear operator H : X −→ c0(ω1) whose range is non-
separable if and only if there is a normalized sequence
(fγ)γ∈ω1 of bounded linear functionals on X such that∣∣∣⋃β∈ω1

supp(fγ)
∣∣∣ ≥ ω1 and {fγ(x) : γ ∈ ω1} ∈ c0(ω1) for

all x ∈ X .
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The main ideas

The core argument lies in the following theorem:

Theorem 3: Todorčević

Suppose X is a Banach space of density < m admitting a
bounded linear operator H : X −→ c0(ω1) with nonsep-
arable range. Then X admits a quotient with a basis of
length ω1.

Along its proof, Baire category arguments are used twice.
Once to prove that the following space is norm-dense in X :

Y =

{
x ∈ X :

∑
α<ω1

|fα(x)| < ∞

}
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The forcing poset

...and again to find an uncountable subsequence of
S = (fα)α∈Γ such that there is a quotient map from X onto
spanS.

The forcing poset we use here is the set of the p = (Dp,Γp, εp)

such that:

• Dp is a finite subset of Y ;

• Γp is a finite subset of ω1;
• εp is a rational number in (0, 1);
• For every f∗ ∈ (span{fγ : γ ∈ Γp})∗ with ∥f∗∥ = 1, there is

an x ∈ Dp with ∥x∥ = 1 such that

|f∗(e)− e(x)| ≤ εp
3
∥e∥

for all e ∈ span{fγ : γ ∈ Γp}.
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The forcing poset

We order the poset by letting p ≤ q if explicitly:

• Dp ⊆ Dq, Γp ⊆ Γq and εp ≥ εq;

• The following separation condition holds:

(∀x ∈ Dp) Γεp/3(x) ∩ (Γq \ Γp) = ∅.

where Γε(x) is a finite set such that
∑

α/∈Γε(x)
|fα(x)| < ε.
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Why is it ccc?

Theorem 4: Lindenstrauss–Rosenthal

Let X be a Banach space. For every finite-dimensional
space E of X∗∗, finite-dimensional subspace F of X∗

and ε > 0 there exists a linear isomorphism T : E −→
T (E) ⊆ X such that ||T || · ||T−1|| ≤ 1 + ε, x∗(Tx∗∗) =

x∗∗(x∗) for all x∗∗ ∈ E and x∗ ∈ F and T is the identity
on E ∩X .
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The dense subsets

Let Y0 be a dense subset of Y of size < m. We now define the
dense subsets of our poset:

• For every x ∈ spanQ Y0, the set Dx = {p ∈ P : x ∈ Dp} is
dense;

• For every γ < ω1, the set Eγ = {p ∈ P : (∃α ∈ Γp) α ≥ γ}
is dense;

• For every rational ε ∈ (0, 1), the set Fε = {p ∈ P : εp ≤ ε}
is dense.
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What about the operator?

Theorem 5: Todorčević

Let X be a Banach space of density < m whose dual
ball equipped with the weak∗ topology is countably de-
termined. Then there is a bounded linear operator with
non-separable range H : X −→ c0(ω1).

Theorem 6: Todorčević

Let X be a Banach space whose dual ball equipped with
the weak∗ topology is not countably determined. Then,
under PID there is a bounded linear operator with non-
separable range H : X −→ c0(ω1).
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Final remarks

• Is it true that every Banach space has a quotient space
with a Schauder basis of the same length as its density?
Unfortunately, no. One example is the space l∞(2ℵ0).

• This question is equivalent to the one about the existence
of bounded fundamental biorthogonal systems (Plichko).
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Thank you!

Obrigado!

Děkuji!
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