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Introduction

This presentation will survey Todorcevic's article
"Biorthogonal systems and quotient spaces via Baire category
methods".

Math. Ann, 335. Mathematische Annalen

DOI: 10.10( W0208-006-0762-7

Biorthogonal systems and quotient spaces via baire
category methods

Stevo Todorcevic
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Motivation

The classical definition of a Schauder basis is as follows:

Definition 1: Schauder basis

A sequence (z,)ne. in @ Banach space X is a Schauder
basis if for every z € X there exists a unique sequence
of scalars (ay, )new Such that

T = E Qp T, -

new
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The classical definition of a Schauder basis is as follows:

Definition 1: Schauder basis

A sequence (z,)ne. in @ Banach space X is a Schauder
basis if for every z € X there exists a unique sequence
of scalars (ay, )new Such that

T = E Qp T, -

new

We know that the existence of this type of basis is restricted
to separable spaces. Furthermore, not all separable spaces
have it.
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Motivation
Fortunately we can go to closed subspaces or to quotient
spaces.

Theorem 1: Mazur

Every infinite-dimensional Banach space X contains a

basic sequence.
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Motivation

Fortunately we can go to closed subspaces or to quotient
spaces.

Theorem 1: Mazur

Every infinite-dimensional Banach space X contains a

basic sequence.

Theorem 2: Johnson-Rosenthal

Every separable Banach space X has a subspace Y such

that X/Y has a Schauder basis.

But what about non-separable spaces?
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(Long) Schauder bases

A possible generalization of Schauder bases to non-separable
spaces is the following:

Definition 2: (Long) Schauder basis

Let X be a Banach space and I" be an ordinal. A sequence
(%o )a<r in X is a (long) Schauder basis if for every z € X
there exists a unique sequence (ag)s<r C K such that

B = g QBIg.

Bs<T
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The question

Does every non-separable Banach space X have a subspace Y
such that X/Y has an uncountable basis?
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The question

Does every non-separable Banach space X have a subspace Y
such that X/Y has an uncountable basis?

Todorcevic proved that this is true under PID when d(X) < m.
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An important lemma

Lemma 1: Todorcevic

For a given Banach space X, there is a bounded lin-
ear operator H : X — c¢op(w;) whose range is non-
separable if and only if there is a normalized sequence

(fy)yew, Of bounded linear functionals on X such that

Usew, supp(fy)| = w1 and {f(x) : v € w1} € cowr) for
all z € X.
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The main ideas

The core argument lies in the following theorem:

Theorem 3: Todorcevic

Suppose X is a Banach space of density < m admitting a
bounded linear operator H : X — co(w;1) with nonsep-

arable range. Then X admits a quotient with a basis of
length w;.
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The main ideas

The core argument lies in the following theorem:

Theorem 3: Todorcevic

Suppose X is a Banach space of density < m admitting a
bounded linear operator H : X — co(w;1) with nonsep-

arable range. Then X admits a quotient with a basis of
length w;.

Along its proof, Baire category arguments are used twice.
Once to prove that the following space is norm-dense in X:

:{:reX > falz |<oo}

a<wi
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The forcing poset

...and again to find an uncountable subsequence of
S = (fa)aer such that there is a quotient map from X onto
spans.

The forcing poset we use here is the set of the p = (D,,,T'p, ¢p)
such that:

D, is a finite subset of Y;
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The forcing poset

...and again to find an uncountable subsequence of
S = (fa)aer such that there is a quotient map from X onto
spans.

The forcing poset we use here is the set of the p = (D,,,T'p, ¢p)
such that:

D, is a finite subset of Y;

I', is a finite subset of wy;

gp is a rational number in (0, 1);

For every f* € (span{fy : v € I',})* with || f*|| = 1, there is
an z € D, with ||z|| = 1 such that

. 5
77(e) — e(@)] < 2l
forall e € span{f, : v € ', }.
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The forcing poset

We order the poset by letting p < ¢ if explicitly:

D, C D, T'y CTyand g, > g4
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The forcing poset

We order the poset by letting p < ¢ if explicitly:
D, C D, T'y CTyand g, > g4

The following separation condition holds:

(Vo € Dp) T. s3(x)N(Cg\Ty) = 0.

where I'.(z) is a finite set such that 3° ., [fa(2)] <e.
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Why is it ccc?

Theorem 4: Lindenstrauss-Rosenthal

Let X be a Banach space. For every finite-dimensional
space E of X**, finite-dimensional subspace F of X*
and € > 0 there exists a linear isomorphism T : & —

T(E) C X such that ||T|| - [|T7Y]| € 1+ ¢, 2*(Tz*) =
z**(z*) for all 2** € E and z* € F and T is the identity
on ENX.
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The dense subsets

Let Y, be a dense subset of Y of size < m. We now define the
dense subsets of our poset:

For every x € spang Yy, theset D, = {p € P:x € D,} is
dense;
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The dense subsets

Let Y, be a dense subset of Y of size < m. We now define the
dense subsets of our poset:

For every x € spang Yy, theset D, = {p € P:x € D,} is
dense;

Foreveryy <wj, theset E, ={peP:(Jacl),) a>~}
is dense;

For every rationale € (0,1),theset F. = {p e P: ¢, < ¢}
is dense.
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What about the operator?

Theorem 5: Todorcevic

Let X be a Banach space of density < m whose dual
ball equipped with the weak* topology is countably de-

termined. Then there is a bounded linear operator with
non-separable range H : X — co(ws).
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What about the operator?

Theorem 5: Todorcevic

Let X be a Banach space of density < m whose dual
ball equipped with the weak* topology is countably de-

termined. Then there is a bounded linear operator with
non-separable range H : X — co(ws).

Theorem 6: Todorcevic

Let X be a Banach space whose dual ball equipped with
the weak* topology is not countably determined. Then,

under PID there is a bounded linear operator with non-
separable range H : X — ¢p(w1)-
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Final remarks

Is it true that every Banach space has a quotient space
with a Schauder basis of the same length as its density?
Unfortunately, no. One example is the space [, (2%).
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Final remarks

Is it true that every Banach space has a quotient space
with a Schauder basis of the same length as its density?
Unfortunately, no. One example is the space [, (2%).

This question is equivalent to the one about the existence
of bounded fundamental biorthogonal systems (Plichko).
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Thank you!

Obrigado!

Dékuji!
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