

Sheaves for Ramsey Theory and Computer Science

Talk for the Winter School in Abstract Analysis

Maximilian Strohmeier

06.02.2026

Didn't Graduate Texts in Mathematics

Max Strohmeier
Saunders Mac Lane

Presheaves
Categories for
the Working
Mathematician

Second Edition

Computer
Scientist

Springer

Section 1

What is $C \rightarrow (B)^A_{r,d}$?

Definition (Ramsey property).

Let K be a category.

Definition (Ramsey property).

Let K be a category.

(a) K has the Ramsey property if for $d = 1$

$\forall A, B \in K, r \in \omega :$

$\exists C \in K :$

$\forall c \in r^{K(A, C)} :$

$\exists b \in K(B, C), d \hookrightarrow r :$

$\forall a \in K(A, B) :$

$c(b \circ a) \in d.$

$\left. \begin{array}{l} \exists b \in K(B, C) : \\ |c(b \circ -)[K(A, B)]| = d \end{array} \right\} C \rightarrow (B)_{r, d}^A$

Definition (Ramsey property).

Let K be a category.

(a) K has the Ramsey property if for $d = 1$

$\forall A, B \in K, r \in \omega :$

$\exists C \in K :$

$\forall c \in r^{K(A, C)} :$

$\exists b \in K(B, C), d \hookrightarrow r :$

$\forall a \in K(A, B) :$

$c(b \circ a) \in d.$

$\left. \begin{array}{l} \exists b \in K(B, C) : \\ |c(b \circ -)[K(A, B)]| = d \end{array} \right\} C \rightarrow (B)_{r, d}^A$

(b) $A \in K$ has small Ramsey degree d if d is minimal such that

$\forall B \in K, r \in \omega : \exists C \in K : C \rightarrow (B)_{r, d}^A.$

We say K has finite small Ramsey degrees if all $A \in K$ have finite small Ramsey degree.

Section 2

Presheaves

Definition.

Let K be a category.

Definition.

Let K be a category.

A presheaf $F : K^{\text{op}} \rightarrow \mathbf{Set}$ is a contravariant functor from K to the category of sets.

Definition.

Let K be a category.

A presheaf $F : K^{\text{op}} \rightarrow \mathbf{Set}$ is a contravariant functor from K to the category of sets.

$$\begin{array}{ccc} A & & \\ \downarrow f & & \\ B & & \end{array}$$

Definition.

Let K be a category.

A presheaf $F : K^{\text{op}} \rightarrow \mathbf{Set}$ is a contravariant functor from K to the category of sets.

$$\begin{array}{ccc} A & \longmapsto & \{a_1, a_2, a_3, \dots\} \\ \downarrow f & & \\ B & & \end{array}$$

Definition.

Let K be a category.

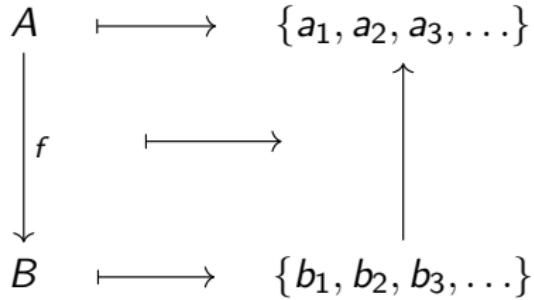
A presheaf $F : K^{\text{op}} \rightarrow \mathbf{Set}$ is a contravariant functor from K to the category of sets.

$$\begin{array}{ccc} A & \xrightarrow{\quad} & \{a_1, a_2, a_3, \dots\} \\ \downarrow f & & \\ B & \xrightarrow{\quad} & \{b_1, b_2, b_3, \dots\} \end{array}$$

Definition.

Let K be a category.

A presheaf $F : K^{\text{op}} \rightarrow \mathbf{Set}$ is a contravariant functor from K to the category of sets.



Theorem (Hadek; [Had25, Thm. 1.2]).

For a small, locally finite category K

Theorem (Hadek; [Had25, Thm. 1.2]).

For a small, locally finite category K

Confluence + Ramsey

\Updownarrow

every presheaf $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ has a non-empty limit $\varprojlim F \in \mathbf{Set}_{\neq \emptyset}$.

Theorem (Hadek; [Had25, Thm. 1.2]).

For a small, locally finite category K

Confluence + Ramsey

\Updownarrow

every presheaf $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ has a non-empty limit $\varprojlim F \in \mathbf{Set}_{\neq \emptyset}$.

Theorem (S.).

For a category K with objects $A, B \in K$ and numbers of colors $r, d \in \omega$

Theorem (Hadek; [Had25, Thm. 1.2]).

For a small, locally finite category K

Confluence + Ramsey

\Updownarrow

every presheaf $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ has a non-empty limit $\varprojlim F \in \mathbf{Set}_{\neq \emptyset}$.

Theorem (S.).

For a category K with objects $A, B \in K$ and numbers of colors $r, d \in \omega$

$\exists C \in K : C \rightarrow (B)_{r,d}^A$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow r :$
 $\pi F\{A \Rightarrow B\}$ is covered by d partial cones
with non-empty intersection in $F(B)$.

Corollary.

Let K be a category.

Corollary.

Let K be a category.

Let $d \in \omega$, $A, B \in K$ and A_* locally finite.

Corollary.

Let K be a category.

Let $d \in \omega$, $A, B \in K$ and A_* locally finite.

$$\forall r \in \omega : \exists C \in K : C \rightarrow (B)_{r,d}^A$$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} :$
 $F\{A \Rightarrow B\}$ is covered by
 d partial cones with non-
empty intersection in $F(B)$.

Corollary.

Let K be a category.

Let $d \in \omega$, $A, B \in K$ and A_* locally finite.

$$\forall r \in \omega : \exists C \in K : C \rightarrow (B)_{r,d}^A$$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} :$
 $F\{A \Rightarrow B\}$ is covered by
 d partial cones with non-
empty intersection in $F(B)$.

Let $A, B \in K$, $r, d \in \omega$ and
 $|K(A, A)| = 1$.

Corollary.

Let K be a category.

Let $d \in \omega$, $A, B \in K$ and A_* locally finite.

$$\forall r \in \omega : \exists C \in K : C \rightarrow (B)_{r,d}^A$$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} :$
 $F\{A \Rightarrow B\}$ is covered by
 d partial cones with non-
empty intersection in $F(B)$.

Let $A, B \in K$, $r, d \in \omega$ and
 $|K(A, A)| = 1$.

$$\exists C \in K : C \rightarrow (B)_{r,d}^A$$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset} :$
 $|F(A)| \leq r \Rightarrow F\{A \Rightarrow B\}$ is
covered by d partial cones
with non-empty
intersection in $F(B)$.

Section 3

But what if I *want* confluence?

Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$

Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 :$
 πFA_* is covered by d partial cones in
 $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection
everywhere.

Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 :$

πFA_* is covered by d partial cones in

$\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection

everywhere.

Then A_* is d -c.c.

Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 : \pi FA_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Then A_* is d -c.c.

$$A_* := \frac{\bigsqcup_{B \in K} \{A \Rightarrow B\}}{A}$$

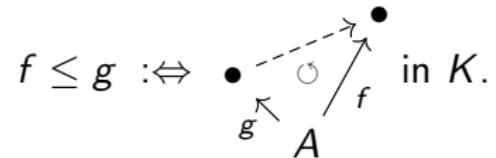
Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 : \pi F A_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Then A_* is d -c.c.

$$A_* := \frac{\bigsqcup_{B \in K} \{A \Rightarrow B\}}{A}$$



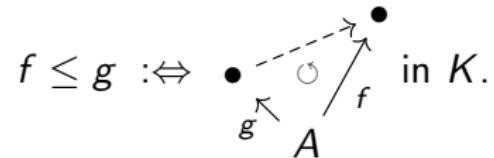
Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 : \pi F A_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Then A_* is d -c.c.

$$A_* := \frac{\bigsqcup_{B \in K} \{A \Rightarrow B\}}{A}$$



Note: \neg splitting \Leftrightarrow WAP.

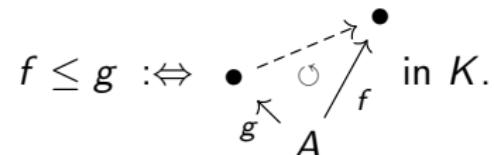
Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 : \pi F A_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Then A_* is d -c.c.

$$A_* := \frac{\bigsqcup_{B \in K} \{A \Rightarrow B\}}{A}$$



Note: \neg splitting \Leftrightarrow WAP.

Remark.

Let K be a small category, $A \in K$ and $r, d \in \omega$ such that

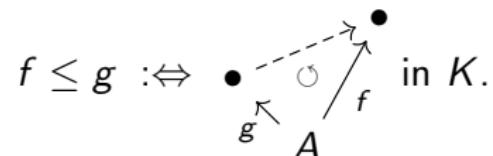
Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 : \pi F A_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Then A_* is d -c.c.

$$A_* := \frac{\bigsqcup_{B \in K} \{A \Rightarrow B\}}{A}$$



Note: \neg splitting \Leftrightarrow WAP.

Remark.

Let K be a small category, $A \in K$ and $r, d \in \omega$ such that

- A_* is confluent and
- $\forall B \in K, F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow r : \pi F \{A \Rightarrow B\}$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ which have non-empty intersection in $F(B)$

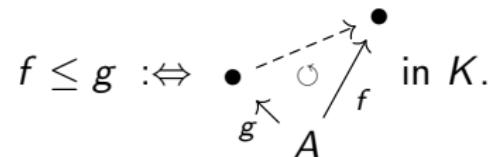
Theorem (S.).

Let K be a category, $A \in K$ and $d \in \omega$ such that

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow d + 1 : \pi F A_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Then A_* is d -c.c.

$$A_* := \frac{\bigsqcup_{B \in K} \{A \Rightarrow B\}}{A}$$



Note: \neg splitting \Leftrightarrow WAP.

Remark.

Let K be a small category, $A \in K$ and $r, d \in \omega$ such that

- A_* is confluent and
- $\forall B \in K, F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow r : \pi F \{A \Rightarrow B\}$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ which have non-empty intersection in $F(B)$

$\Rightarrow \forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset}, \pi : F(A) \rightarrow r : \pi F A_*$ is covered by d partial cones in $\mathbf{Set}_{\neq \emptyset}$ with non-empty intersection everywhere.

Corollary.

Let K be a category.

Let $A \in K$ and A_* locally finite.

$$\text{rd}(A) = d$$

\Updownarrow

$\forall B \in K, F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset} :$
 $F\{A \Rightarrow B\}$ is covered by
 d partial cones with non-
empty intersection in $F(B)$.

Let $A, B \in K$, $r \in \omega$ and

$$|K(A, A)| = 1.$$

$$\exists C \in K : C \rightarrow (B)_{r,1}^A$$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset} :$
 $|F(A)| \leq r \Rightarrow$
 $\exists \lim F\{A \Rightarrow B\} \neq \emptyset.$

Let $A \in K$ and A_* locally finite.

$$A \text{ confluent} + \text{rd}(A) = d$$

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} : FA_*$ is
covered by d partial cones with
non-empty intersection everywhere

\Updownarrow

$$A_* \text{ is } d\text{-c.c.} + \text{rd}(A) = d.$$

(Hadek; [Had25, Thm. 1.2])

Let K be small and locally finite.

Confluence + Ramsey

\Updownarrow

$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} :$
 $\exists \lim F \neq \emptyset$

Section 4

How to imagine this?

Example.

Graphs in a class $K \supseteq \left\{ \{\bullet\} \xrightarrow[t]{s} \{\bullet - \bullet\} \right\}$ are r -colorable

$$\Updownarrow$$

$\neg \exists C \in K : C \rightarrow (\{\bullet - \bullet\})_{r,1}^{\{\bullet\}}$

$$\Updownarrow$$

$\neg \forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset} :$

$|F(A)| \leq r \Rightarrow \exists \varprojlim F\{A \Rightarrow B\} \neq \emptyset$

$$\Updownarrow$$

$\exists F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} : |F(\{\bullet\})| \leq r \wedge$

$\forall x \in F(\{\bullet - \bullet\}) : F(s)(x) \neq F(t)(x).$

Example.

Graphs in a class $K \supseteq \left\{ \{\bullet\} \xrightarrow[t]{s} \{\bullet - \bullet\} \right\}$ are r -colorable

$$\Updownarrow$$

$\neg \exists C \in K : C \rightarrow (\{\bullet - \bullet\})_{r,1}^{\{\bullet\}}$

$$\Updownarrow$$

$\neg \forall F : K^{\text{op}} \rightarrow \mathbf{Set}_{\neq \emptyset} :$

$|F(A)| \leq r \Rightarrow \exists \varprojlim F\{A \Rightarrow B\} \neq \emptyset$

$$\Updownarrow$$

$\exists F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} : |F(\{\bullet\})| \leq r \wedge$

$\forall x \in F(\{\bullet - \bullet\}) : F(s)(x) \neq F(t)(x).$

A presheaf witnessing r -colorability and general r -coloring instructions for each graph which can be directly translated to another in the following way:

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability.

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Take some $\chi \in F(G) \neq \emptyset$. Assign every $v \in K(\{\bullet\}, G)$ the color $F(v)(\chi)$.

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Take some $\chi \in F(G) \neq \emptyset$. Assign every $v \in K(\{\bullet\}, G)$ the color $F(v)(\chi)$. Since for all $e \in K(\{\bullet - \bullet\}, G)$ and $s \neq t \in K(\{\bullet\}, \{\bullet - \bullet\})$ we have

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Take some $\chi \in F(G) \neq \emptyset$. Assign every $v \in K(\{\bullet\}, G)$ the color $F(v)(\chi)$. Since for all $e \in K(\{\bullet - \bullet\}, G)$ and $s \neq t \in K(\{\bullet\}, \{\bullet - \bullet\})$ we have

$$F(e \circ s)(\chi) \neq F(e \circ t)(\chi),$$

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Take some $\chi \in F(G) \neq \emptyset$. Assign every $v \in K(\{\bullet\}, G)$ the color $F(v)(\chi)$. Since for all $e \in K(\{\bullet - \bullet\}, G)$ and $s \neq t \in K(\{\bullet\}, \{\bullet - \bullet\})$ we have

$$F(e \circ s)(\chi) \neq F(e \circ t)(\chi),$$

χ specifies in fact an r -coloring for G .

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Take some $\chi \in F(G) \neq \emptyset$. Assign every $v \in K(\{\bullet\}, G)$ the color $F(v)(\chi)$. Since for all $e \in K(\{\bullet - \bullet\}, G)$ and $s \neq t \in K(\{\bullet\}, \{\bullet - \bullet\})$ we have

$$F(e \circ s)(\chi) \neq F(e \circ t)(\chi),$$

χ specifies in fact an r -coloring for G .

Vice versa, if we have a class K of r -colorable finite graphs send each graph to the set of r -colorings.

Proof.

Let $G \in K$ be a graph in a graph class and $F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset}$ a presheaf witnessing r -colorability. Notice that

- $K(\{\bullet\}, G)$ are exactly the vertices of G and
- $K(\{\bullet - \bullet\}, G)$ the (directions of) edges such that
- vertex $v \in K(\{\bullet\}, \{\bullet - \bullet\})$ in edge $e \in K(\{\bullet - \bullet\}, G)$ is exactly vertex $e \circ v \in K(\{\bullet\}, G)$.

Take some $\chi \in F(G) \neq \emptyset$. Assign every $v \in K(\{\bullet\}, G)$ the color $F(v)(\chi)$. Since for all $e \in K(\{\bullet - \bullet\}, G)$ and $s \neq t \in K(\{\bullet\}, \{\bullet - \bullet\})$ we have

$$F(e \circ s)(\chi) \neq F(e \circ t)(\chi),$$

χ specifies in fact an r -coloring for G .

Vice versa, if we have a class K of r -colorable finite graphs send each graph to the set of r -colorings. Each graph embedding $H \subseteq G$ we send to the function mapping r -colorings of G to their restrictions to H . □

Section 5

And how do you use it?

Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).

Let K be a category.

Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).

Let K be a category.

If $A \in K$ is confluent and has small Ramsey degree 1 then A is amalgamable.

Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).

Let K be a category.

If $A \in K$ is confluent and has small Ramsey degree 1 then A is amalgamable.

In particular

$$\text{Confluence} + \text{Ramsey} \Rightarrow \text{AP}.$$

Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).

Let K be a category.

If $A \in K$ is confluent and has small Ramsey degree 1 then A is amalgamable.

In particular

$$\text{Confluence} + \text{Ramsey} \Rightarrow \text{AP}.$$

Theorem.

Let K be a category and $A \in K$ such that

$$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} : \exists \varprojlim F A_* \neq \emptyset.$$

Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).

Let K be a category.

If $A \in K$ is confluent and has small Ramsey degree 1 then A is amalgamable.

In particular

$$\text{Confluence} + \text{Ramsey} \Rightarrow \text{AP}.$$

Theorem.

Let K be a category and $A \in K$ such that

$$\forall F : K^{\text{op}} \rightarrow \mathbf{Fin}_{\neq \emptyset} : \exists \varprojlim F A_* \neq \emptyset.$$

Then A is amalgamable.

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$.

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c)$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b)$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$F : K^{\text{op}} \rightarrow \mathbf{Fin}$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$F(f)(\chi) := \chi(f \circ -)$.

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim F A_*$ we have $b = c$, providing a trivial amalgam, or

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim FA_*$ we have $b = c$, providing a trivial amalgam, or

$$(F(b) \circ \varprojlim FA_*) (\chi)(\text{id}_A) = F(b) (\varprojlim FA_*(\chi)) (\text{id}_A) = c$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim FA_*$ we have $b = c$, providing a trivial amalgam, or

$$(F(b) \circ \varprojlim FA_*) (\chi)(\text{id}_A) = F(b) (\varprojlim FA_*(\chi)) (\text{id}_A) = c$$

$$(F(c) \circ \varprojlim FA_*) (\chi)(\text{id}_A) = F(c) (\varprojlim FA_*(\chi)) (\text{id}_A) = d$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim FA_*$ we have $b = c$, providing a trivial amalgam, or

$$(F(b) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(b)(\varprojlim FA_*(\chi))(\text{id}_A) = c$$

$$(F(c) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(c)(\varprojlim FA_*(\chi))(\text{id}_A) = d \text{ which}$$

contradicts the commutativity of a cone. Hence $\varprojlim FA_* = \emptyset$.

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim FA_*$ we have $b = c$, providing a trivial amalgam, or

$$(F(b) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(b)(\varprojlim FA_*(\chi))(\text{id}_A) = c$$

$$(F(c) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(c)(\varprojlim FA_*(\chi))(\text{id}_A) = d \text{ which}$$

contradicts the commutativity of a cone. Hence $\varprojlim FA_* = \emptyset$.

$$\Rightarrow \exists D \in K \text{ such that } F(D) = \emptyset.$$

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim FA_*$ we have $b = c$, providing a trivial amalgam, or

$$(F(b) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(b)(\varprojlim FA_*(\chi))(\text{id}_A) = c$$

$$(F(c) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(c)(\varprojlim FA_*(\chi))(\text{id}_A) = d \text{ which}$$

contradicts the commutativity of a cone. Hence $\varprojlim FA_* = \emptyset$.

$\Rightarrow \exists D \in K$ such that $F(D) = \emptyset$. $\Rightarrow \exists f \in K(A, D)$ such that for both b and c there exist g_b and g_c respectively such that $g_b \circ b = f = g_c \circ c$.

Proof.

We will prove the existence of an amalgam over $A, B, C \in K$, $b \in K(A, B)$, $c \in K(A, C)$. Define the presheaf

$$F : K^{\text{op}} \rightarrow \mathbf{Fin}$$

$$D \mapsto \left\{ \chi \in \{b, c\}^{K(A, D)} \mid \forall f \in K(A, D), g : g \circ \chi(f) \neq f \right\},$$

$$F(f)(\chi) := \chi(f \circ -).$$

$$(\forall \chi \in F(B) : \chi(b) = c) \Rightarrow (F(b)(\chi)(\text{id}_A) = \chi(b \circ \text{id}_A) = \chi(b) = c).$$

$$(\forall \chi \in F(C) : \chi(c) = b) \Rightarrow (F(c)(\chi)(\text{id}_A) = \chi(c \circ \text{id}_A) = \chi(c) = b).$$

For any $\chi \in \varprojlim FA_*$ we have $b = c$, providing a trivial amalgam, or

$$(F(b) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(b)(\varprojlim FA_*(\chi))(\text{id}_A) = c$$

$$(F(c) \circ \varprojlim FA_*)(\chi)(\text{id}_A) = F(c)(\varprojlim FA_*(\chi))(\text{id}_A) = d \text{ which}$$

contradicts the commutativity of a cone. Hence $\varprojlim FA_* = \emptyset$.

$\Rightarrow \exists D \in K$ such that $F(D) = \emptyset$. $\Rightarrow \exists f \in K(A, D)$ such that for both b and c there exist g_b and g_c respectively such that $g_b \circ b = f = g_c \circ c$. It is thus an amalgam over b and c .

Thank you for paying attention to my propaganda.

FEDERAL

GALAXY

TOP NEWS

ENLIST

EXIT

WOULD YOU LIKE TO KNOW MORE?

Maximilian Hadek.

König = ramsey, a compactness lemma for ramsey categories, 2025.