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Section 1

What is
C →

(B)
A
r ,d

?
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Definition (Ramsey property).

Let K be a category.

(a) K has the Ramsey property if for d = 1

∀A,B ∈ K , r ∈ ω :

∃C ∈ K :

∀c ∈ rK(A,C) :

∃b ∈ K (B,C ), d ↪→ r :

∀a ∈ K (A,B) :

c(b ◦ a) ∈ d .

∃b ∈ K (B,C ) :

|c (b ◦ −) [K (A,B)]| = d

C → (B)Ar ,d

(b) A ∈ K has small Ramsey degree d if d is minimal such that

∀B ∈ K , r ∈ ω : ∃C ∈ K : C → (B)Ar ,d .

We say K has finite small Ramey degrees if all A ∈ K have finite
small Ramey degree.
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Section 2

Presheaves
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Definition.

Let K be a category.

A presheaf F : K op → Set is a contravariant functor from K to the
category of sets.

A

B

f
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Theorem (Hadek; [Had25, Thm. 1.2]).

For a small, locally finite category K

Confluence+ Ramsey

⇕
every presheaf F : K op → Fin̸=∅ has a non-empty limit l←−ımF ∈ Set̸=∅.

Theorem (S.).

For a category K with objects A,B ∈ K and numbers of colors r , d ∈ ω

∃C ∈ K : C → (B)Ar ,d

⇕
∀F : K op → Set ̸=∅, π : F (A)→ r :

πF{A ⇛ B} is covered by d partial cones
with non-empty intersection in F (B).
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Corollary.

Let K be a category.

Let d ∈ ω, A,B ∈ K and A∗ locally
finite.

∀r ∈ ω : ∃C ∈ K : C → (B)Ar ,d

⇕
∀F : K op → Fin̸=∅ :

F{A ⇛ B} is covered by
d partial cones with non-
empty intersection in F (B).

Let A,B ∈ K, r , d ∈ ω and
|K (A,A)| = 1.

∃C ∈ K : C → (B)Ar ,d

⇕
∀F : K op → Set̸=∅ :

|F (A)| ≤ r ⇒ F{A ⇛ B} is
covered by d partial cones

with non-empty
intersection in F (B).
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Section 3

But what if I want confluence?
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Theorem (S.).

Let K be a category, A ∈ K and d ∈ ω

such that
∀F : K op → Set ̸=∅, π : F (A)→ d + 1 :
πFA∗ is covered by d partial cones in
Set ̸=∅ with non-empty intersection
everywhere.
Then A∗ is d-c.c.

A∗ :=

⊔
B∈K{A ⇛ B}

A

f ≤ g :⇔
•

•

A

⟲
f

g

in K .

Note: ¬ splitting ⇔ WAP.

Remark.

Let K be a small category, A ∈ K and r , d ∈ ω such that

A∗ is confluent and

∀B ∈ K ,F : K op → Set ̸=∅, π : F (A)→ r : πF{A ⇛ B} is covered by
d partial cones in Set̸=∅ which have non-empty intersection in F (B)

⇒ ∀F : K op → Set ̸=∅, π : F (A)→ r : πFA∗ is covered by d partial cones
in Set̸=∅ with non-empty intersection everywhere.
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Corollary.

Let K be a category.
Let A ∈ K and A∗ locally finite.

rd(A) = d

⇕
∀B ∈ K ,F : K op → Set ̸=∅ :
F{A ⇛ B} is covered by
d partial cones with non-
empty intersection in F (B).

Let A,B ∈ K, r ∈ ω and
|K (A,A)| = 1.

∃C ∈ K : C → (B)Ar ,1

⇕
∀F : K op → Set ̸=∅ :
|F (A)| ≤ r ⇒

∃ l←−ımF{A ⇛ B} ≠ ∅.
Let A ∈ K and A∗ locally finite.

A confluent+ rd(A) = d

⇓
∀F : K op → Fin̸=∅ : FA∗ is

covered by d partial cones with
non-empty intersection everywhere

⇓
A∗ is d-c.c.+ rd(A) = d .

(Hadek; [Had25, Thm. 1.2])
Let K be small and locally finite.

Confluence+ Ramsey

⇕
∀F : K op → Fin̸=∅ :
∃ limF ̸= ∅
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Section 4

How to imagine this?
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Example.

Graphs in a class K ⊇
{
{•}

s
⇒
t
{• − •}

}
are r -colorable

⇕
¬∃C ∈ K : C → ({• − •}){•}r ,1

⇕
¬∀F : K op → Set ̸=∅ :

|F (A)| ≤ r ⇒ ∃ l←−ımF{A ⇛ B} ≠ ∅
⇕

∃F : K op → Fin̸=∅ : |F ({•})| ≤ r∧
∀x ∈ F ({• − •}) : F (s)(x) ̸= F (t)(x).

A presheaf witnessing r -colorability and general r -coloring instructions for
each graph which can be directly translated to another in the following
way:
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Proof.

Let G ∈ K be a graph in a graph class and F : K op → Fin̸=∅ a presheaf
witnessing r -colorability.

Notice that

K ({•},G ) are exactly the vertices of G and

K ({• − •},G ) the (directions of) edges such that

vertex v ∈ K ({•}, {• − •}) in edge e ∈ K ({• − •},G ) is exactly
vertex e ◦ v ∈ K ({•},G ).

Take some χ ∈ F (G ) ̸= ∅. Assign every v ∈ K ({•},G ) the color F (v)(χ).
Since for all e ∈ K ({• − •},G ) and s ̸= t ∈ K ({•}, {• − •}) we have

F (e ◦ s)(χ) ̸= F (e ◦ t)(χ),

χ specifies in fact an r -coloring for G .
Vice versa, if we have a class K of r -colorable finite graphs send each
graph to the set of r -colorings. Each graph embedding H ⊆ G we send to
the function mapping r -colorings of G to their restrictions to H.
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Section 5

And how do you use it?
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Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).

Let K be a category.

If A ∈ K is confluent and has small Ramsey degree 1 then A is
amalgamable.
In particular

Confluence+ Ramsey⇒ AP.

Theorem.

Let K be a category and A ∈ K such that
∀F : K op → Fin̸=∅ : ∃ l←−ımFA∗ ̸= ∅.
Then A is amalgamable.
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Let K be a category.
If A ∈ K is confluent and has small Ramsey degree 1 then A is
amalgamable.
In particular

Confluence+ Ramsey⇒ AP.

Theorem.

Let K be a category and A ∈ K such that
∀F : K op → Fin̸=∅ : ∃ l←−ımFA∗ ̸= ∅.

Then A is amalgamable.

Maximilian Strohmeier Sheaves for RT and CS 06.02.2026 16 / 18



Theorem (Slightly generalized from [NEŠ05, Thm. 4.2(i)]).
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Proof.

We will prove the existence of an amalgam over A,B,C ∈ K ,
b ∈ K (A,B), c ∈ K (A,C ).

Define the presheaf

F : K op → Fin

D 7→
{
χ ∈ {b, c}K(A,D)

∣∣∣ ∀f ∈ K (A,D), g : g ◦ χ(f ) ̸= f
}
,

F (f )(χ) := χ(f ◦ −).(
∀χ ∈ F (B) : χ(b) = c

)
⇒

(
F (b)(χ)(idA) = χ(b ◦ idA) = χ(b) = c

)
.(

∀χ ∈ F (C ) : χ(c) = b
)
⇒

(
F (c)(χ)(idA) = χ(c ◦ idA) = χ(c) = b

)
.

For any χ ∈ l←−ımFA∗ we have b = c , providing a trivial amalgam, or(
F (b) ◦ l←−ımFA∗

)
(χ)(idA) = F (b)

(
l←−ımFA∗(χ)

)
(idA) = c(

F (c) ◦ l←−ımFA∗
)
(χ)(idA) = F (c)

(
l←−ımFA∗(χ)

)
(idA) = d which

contradicts the commutativity of a cone. Hence l←−ımFA∗ = ∅.
⇒ ∃D ∈ K such that F (D) = ∅. ⇒ ∃f ∈ K (A,D) such that for both b
and c there exist gb and gc respectively such that gb ◦ b = f = gc ◦ c. It is
thus an amalgam over b and c .
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Thank you for paying attention to my propaganda.

Maximilian Hadek.
Kőnig = ramsey, a compactness lemma for ramsey categories, 2025.

JAROSLAV NEŠETŘIL.
Ramsey classes and homogeneous structures.
Combinatorics, Probability and Computing, 14(1–2):171–189, 2005.
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