

Modern methods of constructing the Knaster continuum

Julia Ścisłowska

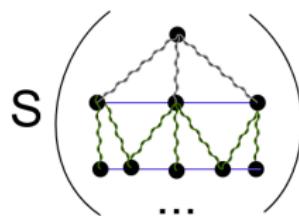
Doctoral School of Exact and Natural Sciences of the University of Warsaw

Winter School in Abstract Analysis 2026 – section Set Theory & Topology

Hejnice, 6th February 2026

CHAPTER 0

Introduction



Plan for today: Describe the Knaster continuum using three limit-like constructions: inverse limit, projective Fraïssé limit, spectrum of an ω -poset.

Plan for today: Describe the Knaster continuum using three limit-like constructions: inverse limit, projective Fraïssé limit, spectrum of an ω -poset.

Main idea: Describe well-known, classical topological spaces using new tools, involving abstract language of category theory and study their properties from different perspectives.

Plan for today: Describe the Knaster continuum using three limit-like constructions: inverse limit, projective Fraïssé limit, spectrum of an ω -poset.

Main idea: Describe well-known, classical topological spaces using new tools, involving abstract language of category theory and study their properties from different perspectives.

But why?

- satisfying combinatorics, nice pictures
- results on spaces
 - a new continuum has been discovered [CKRY]
 - new characterizations of the pseudoarc [IS], [BK]
 - tools to study interesting properties such as e.g. homogeneity
- results on homeomorphisms groups

Why projective Fraïssé ?

Define the **universal Knaster continuum** K to be a Knaster continuum which continuously and openly surjects onto all other Knaster continua.

Why projective Fraïssé ?

Define the **universal Knaster continuum** K to be a Knaster continuum which continuously and openly surjects onto all other Knaster continua.

Theorem, (S. Iyer, [I-1], 2022)

The group $\text{Homeo}(K)$ is isomorphic as a topological group to

$$U \rtimes F$$

where U is a Polish extremely amenable group and F is the free abelian group on countably many generators.

Theorem, (S. Iyer, [I-2], 2023)

The group $\text{Homeo}(K)$ contains an open subgroup with a comeager conjugacy class.

Why posets and spectra?

Recall that the **pseudo-arc** P is the hereditarily indecomposable chainable continuum.

Why posets and spectra?

Recall that the **pseudo-arc** P is the hereditarily indecomposable chainable continuum.

Theorem, (T.Bice, M.Malicki, [BM], 2024)

$\text{Homeo}(P)$, the homeomorphism group of the pseudoarc, has a dense conjugacy class.

CHAPTER 1

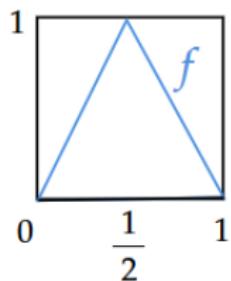
The *continuous*, inverse limit

incarnation of the Knaster continuum

with morphisms being functions $f : I \rightarrow I$, for $I =: [0, 1]$

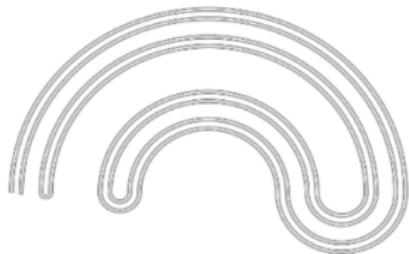
The Knaster continuum

Recall that the **Knaster continuum** is a space homeomorphic to the inverse limit of the sequence of arcs $\varprojlim([0, 1], f_i)_{i=1}^{\infty}$, where for each i , $f_i = f$ (depicted above)



The Knaster continuum

$$\lim_{\leftarrow} \left([0, 1] \xleftarrow{\text{ }} [0, 1] \xleftarrow{\text{ }} [0, 1] \xleftarrow{\text{ }} \dots \right) \text{ homeo } \simeq$$



The Knaster continuum (K_2) and its family - Knaster continua [I-1]

A (generalized) Knaster continuum is a continuum of the form

$$\varprojlim(I_n, f_n)$$

where each $I_n = [0, 1]$ and f_n is an open, continuous surjection.

The Knaster continuum (K_2) and its family - Knaster continua

A (generalized) Knaster continuum is a continuum of the form

$$\varprojlim(I_n, f_n)$$

where each $I_n = [0, 1]$ and f_n is an open, continuous surjection.

Special cases of (generalized) Knaster continua

- The double-splitting Knaster continuum K_2 (to which we will refer as to: *the Knaster continuum*)
- The universal Knaster continuum - a (generalized) Knaster continuum which continuously and openly surjects onto all other (generalized) Knaster continua

CHAPTER 2

The *discrete*, projective Fraïssé-theoretic incarnation of the Knaster continuum

with morphisms being functions $f_n : K_{n+1} \rightarrow K_n$,
for $K_n =$: finite linear graph endowed with discrete topology

A few definitions

- For us a **graph** is a set A equipped with a symmetric, reflexive relation R . An **epimorphism** is a map between graphs which preserves the relation and is surjective on vertices and edges.

- For us a **graph** is a set A equipped with a symmetric, reflexive relation R . An **epimorphism** is a map between graphs which preserves the relation and is surjective on vertices and edges.
- A **topological graph** is a graph such that the underlying set X is a compact, metrizable, zero-dimensional space and R on X is closed. (e.g., a finite graph with discrete topology)

- For us a **graph** is a set A equipped with a symmetric, reflexive relation R . An **epimorphism** is a map between graphs which preserves the relation and is surjective on vertices and edges.
- A **topological graph** is a graph such that the underlying set X is a compact, metrizable, zero-dimensional space and R on X is closed. (e.g., a finite graph with discrete topology)
- A **projective Fraïssé category**, \mathcal{F} , is a countable (up to isomorphism) category of finite graphs and morphisms s.t.
 - 1 each morphism in \mathcal{F} is an epimorphism,
 - 2 \mathcal{F} satisfies the joint projection property (JPP),
 - 3 \mathcal{F} satisfies the projective amalgamation property (AP).

Projective Fraïssé limits

For a projective Fraïssé category \mathcal{F} , let \mathcal{F}^ω be all topological graphs formed as inverse limits of a sequence of structures in \mathcal{F} via morphisms in \mathcal{F} .

For a projective Fraïssé category \mathcal{F} , let \mathcal{F}^ω be all topological graphs formed as inverse limits of a sequence of structures in \mathcal{F} via morphisms in \mathcal{F} .

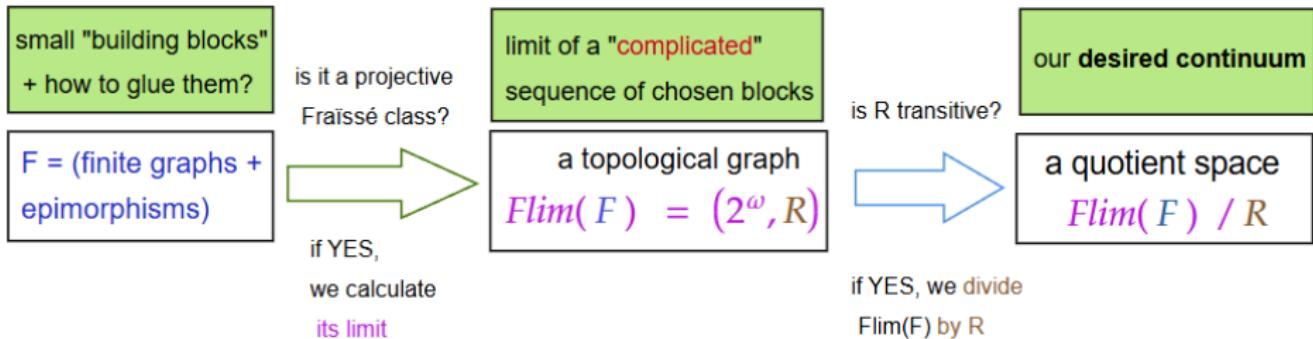
Theorem (T.Irwin, S.Solecki, [IS], 2006)

Let \mathcal{F} be a projective Fraïssé category. There exists a unique (up to isomorphism) topological graph $\mathbb{F} \in \mathcal{F}^\omega$ so that:

- for each $A \in \mathcal{F}$, there is a morphism $\mathbb{F} \rightarrow A$
- for $A, B \in \mathcal{F}$, morphisms $f : \mathbb{F} \rightarrow A$ and $g : B \rightarrow A$, there is a morphism $h : \mathbb{F} \rightarrow B$ with $f = g \circ h$.

The structure \mathbb{F} in Theorem above is called the projective Fraïssé limit of the projective Fraïssé category \mathcal{F}

How to produce continua using projective Fraïssé?



How to build the universal Knaster continuum using projective Fraïssé theory [I-1]

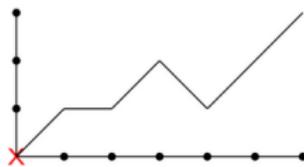
Objects in \mathcal{K} : paths (finite linear graphs) with distinguished endpoint

All pictures on this slide are taken from S.Iyer's presentation *Homeomorphism groups of Knaster continua*, available at: <https://logic.math.caltech.edu/slides/2022-11-30.pdf>

How to build the universal Knaster continuum using projective Fraïssé theory [I-1]

Objects in \mathcal{K} : paths (finite linear graphs) with distinguished endpoint

Epimorphisms between paths: surjective maps that preserve edge relation and distinguished endpoint (discrete analogues of continuous surjections)

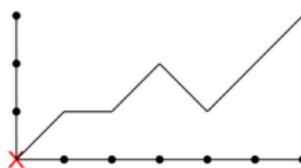


All pictures on this slide are taken from S.Iyer's presentation *Homeomorphism groups of Knaster continua*, available at: <https://logic.math.caltech.edu/slides/2022-11-30.pdf>

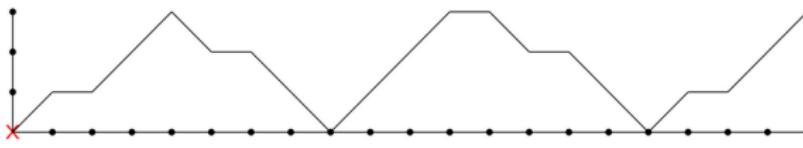
How to build the universal Knaster continuum using projective Fraïssé theory [I-1]

Objects in \mathcal{K} : paths (finite linear graphs) with distinguished endpoint

Epimorphisms between paths: surjective maps that preserve edge relation and distinguished endpoint (discrete analogues of continuous surjections)



Morphisms in \mathcal{K} : those epimorphisms which are *piecewise monotone* (discrete analogues of confluent continuous surjections)



All pictures on this slide are taken from S.Iyer's presentation *Homeomorphism groups of Knaster continua*, available at: <https://logic.math.caltech.edu/slides/2022-11-30.pdf>

Theorem, (S.Iyer, [I-1], 2022)

- \mathcal{K} is a projective Fraïssé category.
- Let \mathbb{K} be the Fraïssé limit of \mathcal{K} . Then the relation $R^{\mathbb{K}}$ is a closed equivalence relation and $\mathbb{K}/R^{\mathbb{K}}$ is homeomorphic to the universal Knaster continuum.

Theorem, (S.Iyer, [I-1], 2022)

A topological space X is a Knaster continuum if and only if X is homeomorphic to the quotient of some pre-continuum in \mathcal{K}^ω

CHAPTER 3

The *discrete*, *spectral* incarnation of the Knaster continuum

with morphisms being relations $R_m^n : K_m \rightarrow K_n$,
for $K_n =$: finite linear graph endowed with discrete topology

Topological space \implies poset of open sets

- Let X be a metrizable compact space.

- Then there exist a sequence $(\mathbb{P}_n)_{n \in \mathbb{N}}$, where

- each \mathbb{P}_n is a finite open cover of X ,
- for every n , \mathbb{P}_n is refined by \mathbb{P}_{n+1} ,
- every open cover of X is refined by some \mathbb{P}_n .

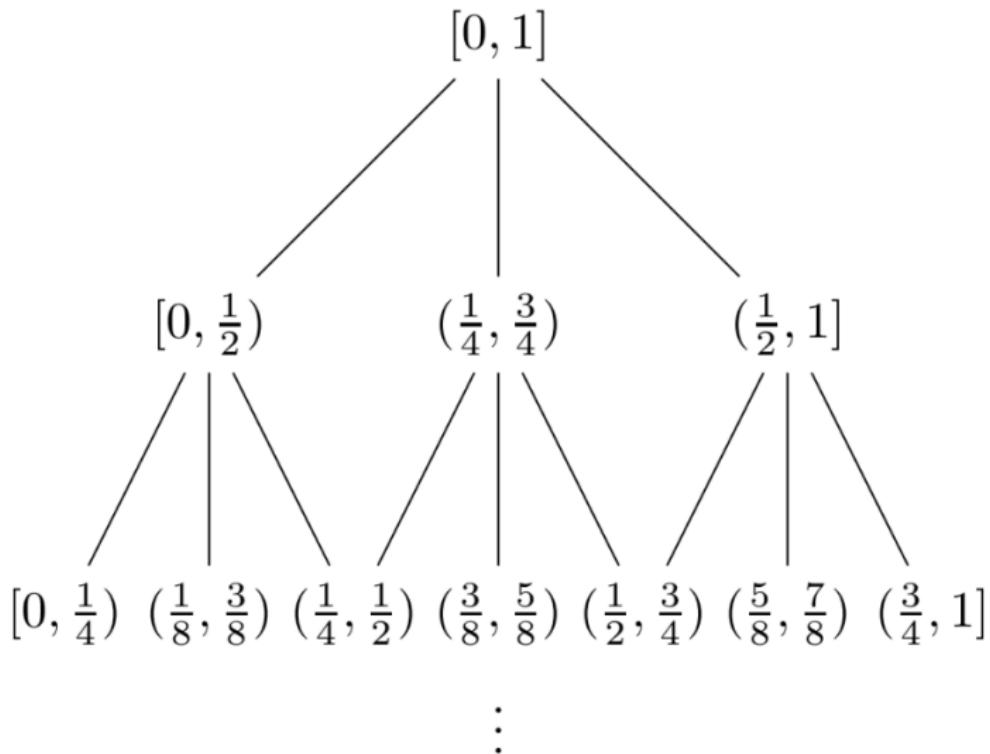
In particular, $(\mathbb{P}_n)_{n \in \mathbb{N}}$ is a basis of X .

- Take the disjoint union $\mathbb{P} = \bigsqcup_{n \in \mathbb{N}} \mathbb{P}_n$ and order \mathbb{P} by inclusion.

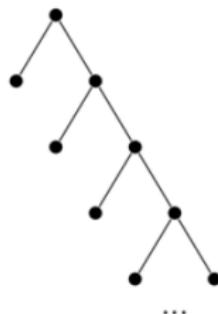
Poset of open sets \implies topological space (Theorem, [BBV-1])

Every metrizable compact space X can be reconstructed from the poset structure of any countable basis $\{B_n : n \in \mathbb{N}\}$ such that $\text{diam}(B_n) \rightarrow 0$.

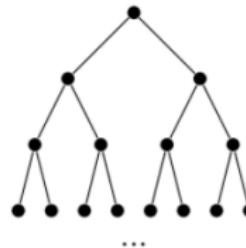
Example: the arc



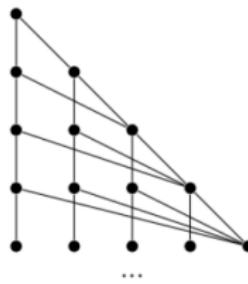
More examples



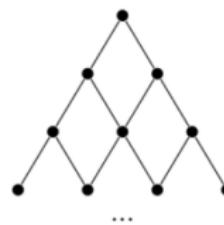
convergent sequence



Cantor space 2^ω



cofinite topology on ω



discrete space $\{0, 1\}$

What is a spectrum?

Let $\mathbb{P} = (\mathbb{P}_n, \sqsupseteq_n^m)$ be a ω -poset where (\mathbb{P}_n) - levels of \mathbb{P} and (\sqsupseteq_n^m) - relations between levels of \mathbb{P} .

What is a spectrum?

Let $\mathbb{P} = (\mathbb{P}_n, \sqsupseteq_n^m)$ be a ω -poset where (\mathbb{P}_n) - levels of \mathbb{P} and (\sqsupseteq_n^m) - relations between levels of \mathbb{P} .

- A **selector** is any upwards closed subset of \mathbb{P} which intersects all levels of \mathbb{P} ,

What is a spectrum?

Let $\mathbb{P} = (\mathbb{P}_n, \sqsupseteq_n^m)$ be a ω -poset where (\mathbb{P}_n) - levels of \mathbb{P} and (\sqsupseteq_n^m) - relations between levels of \mathbb{P} .

- A **selector** is any upwards closed subset of \mathbb{P} which intersects all levels of \mathbb{P} ,
- A **spectrum** of \mathbb{P} , denoted $S\mathbb{P}$, is a space of **minimal selectors** wrt containment:

$$S\mathbb{P} = \{S \subseteq \mathbb{P} : S \text{ is a } \subseteq -\text{minimal selector}\}$$

What is a spectrum?

Let $\mathbb{P} = (\mathbb{P}_n, \sqsupseteq_n^m)$ be a ω -poset where (\mathbb{P}_n) - levels of \mathbb{P} and (\sqsupseteq_n^m) - relations between levels of \mathbb{P} .

- A **selector** is any upwards closed subset of \mathbb{P} which intersects all levels of \mathbb{P} ,
- A **spectrum** of \mathbb{P} , denoted $S\mathbb{P}$, is a space of **minimal selectors** wrt containment:

$$S\mathbb{P} = \{S \subseteq \mathbb{P} : S \text{ is a } \subseteq\text{-minimal selector}\}$$

- For $p \in \mathbb{P}$ we define a subbasic open set

$$p^\in = \{S \in S\mathbb{P} : p \in S\}.$$

Sets $\{p^\in : p \in \mathbb{P}_n, n \in \mathbb{N}\}$ form a **basis of topology** on $S\mathbb{P}$.

What is a spectrum?

Let $\mathbb{P} = (\mathbb{P}_n, \sqsupseteq_n^m)$ be a ω -poset where (\mathbb{P}_n) - levels of \mathbb{P} and (\sqsupseteq_n^m) - relations between levels of \mathbb{P} .

- A **selector** is any upwards closed subset of \mathbb{P} which intersects all levels of \mathbb{P} ,
- A **spectrum** of \mathbb{P} , denoted $S\mathbb{P}$, is a space of **minimal** selectors wrt containment:

$$S\mathbb{P} = \{S \subseteq \mathbb{P} : S \text{ is a } \subseteq\text{-minimal selector}\}$$

- For $p \in \mathbb{P}$ we define a subbasic open set

$$p^\in = \{S \in S\mathbb{P} : p \in S\}.$$

Sets $\{p^\in : p \in \mathbb{P}_n, n \in \mathbb{N}\}$ form a **basis of topology** on $S\mathbb{P}$.

Intuition: Spectrum of a poset \rightsquigarrow Stone space of a Boolean algebra.

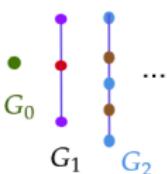
Spectrum S vs inverse limit \varprojlim

<u>inverse limit</u>	<u>spectrum</u>
space of all threads	space of all minimal selectors
open sets are of the form $\{f_{n,oo}^{-1}(U) : U \subseteq X_n, n \in \mathbb{N}\}$	open sets are of the form $\{R_{n,oo}^{-1}(p) : p \in \mathbb{P}_n, n \in \mathbb{N}\}$
$x \in X_n \iff$ basic clopen set in $\varprojlim(X_i, f_i)$ $x \in X_n \iff$ basic closed set in $\varprojlim(X_i, f_i) / \sqcap$	$p \in \mathbb{P}_n \iff$ basic open set in $S\mathbb{P}$
every compact metrizable space can be built this way (but we have to take a quotient space)	every compact metrizable space can be built this way (no quotient needed)

How to produce continua using ω -posets and spectra?

small „building blocks”
+ how to glue them?

$G =$ (finite graphs
+ relations)



$$\left\{ \sqsubset \frac{H}{G} \in \text{Rel}(G, H) : G, H \in \mathbf{G} \right\}$$

take a sequence from G
 $(P_n, \sqsubset \frac{m}{n})$

„open basis”
of a space X

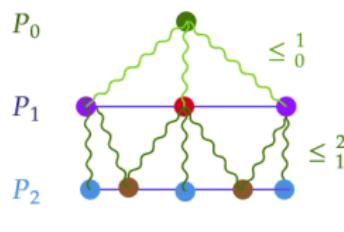
$\mathbf{P} = (P_n, \leq \frac{m}{n})$
omega-poset

take spectrum $S(\mathbf{P})$

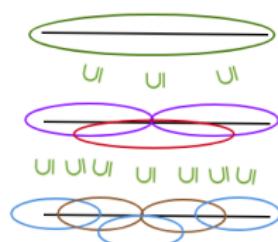
$\mathbf{SP} = X$
our desired compactum

$\mathbf{SP} =$ spectrum
of poset \mathbf{P}

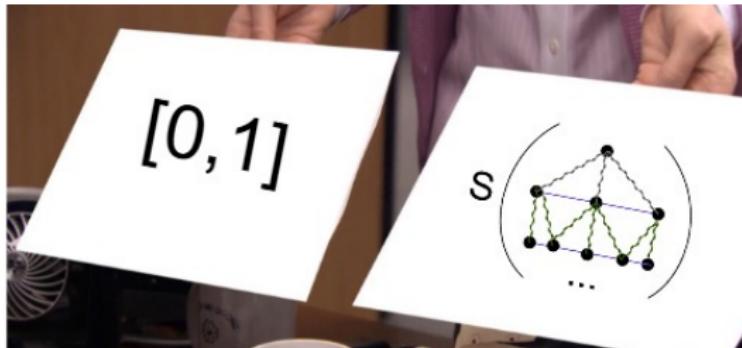
“like an inverse sequence”



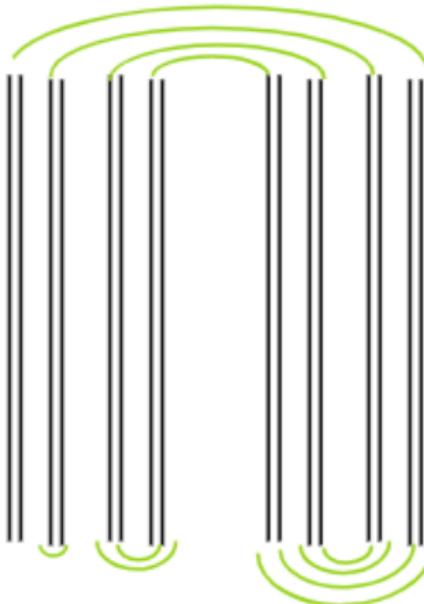
“like an inverse limit”



They are the same picture



What about the Knaster continuum?



We define a **Fraïssé category \mathcal{K}_{rel}** of *piecewise monotone relations between paths* then take a special sequence form \mathcal{K}_{rel} and show that its induced poset gives the **Knaster continuum K_2** as a spectrum.

What about the Knaster continuum?

Theorem (A. Bartoš, J.Ś)

- Let $K = \varprojlim(I_n, \Delta)$, where $\Delta : I_{n+1} \rightarrow I_n$ is a tent map of degree 2.
- Let $\mathbb{D}_n = \pi_n^{-1}[C_{2n}]$, be a family of covers of K , where C_n is regular cover of I_n and $\pi_n : K \rightarrow I_n$ is a projection.
- Let $R_n^{n+1} : \mathbb{D}_{n+1} \rightarrow \mathbb{D}_n$ be a composition of tent pattern and double splitting pattern.
- Then $(\mathbb{D}_n, R_n^{n+1})$ is a Fraïssé sequence in \mathcal{K}_{rel} .
- Let \mathbb{D} be an induced poset of a sequence $(\mathbb{D}_n, R_n^{n+1})$.
- Then

$$S\mathbb{D} \xrightarrow{\text{homeo}} K.$$

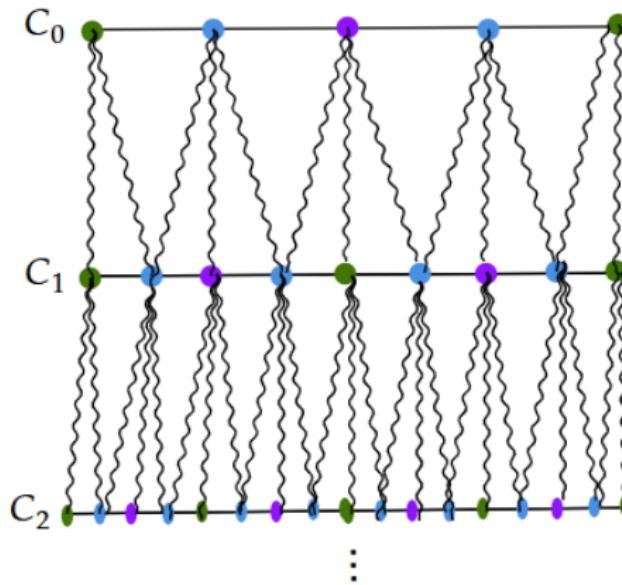
Knaster continuum as a spectrum - part 1

We will introduce a family of **regular covers** $(C_n)_{n \in \mathbb{N}}$ of $I = [0, 1]$.

Let C_n be a linear graph of length $2^{n+2} + 1$.

⋮

We define relations between finite sets C_n such that each element of C_n is related to 3 consecutive elements of C_{n+1} and consecutive pairs in C_n are related to exactly 1 common element in C_{n+1} .

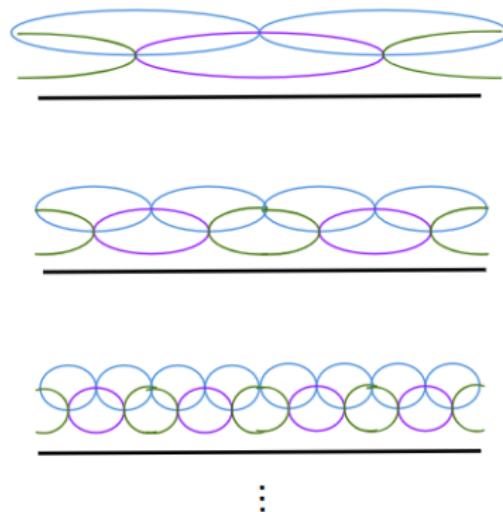
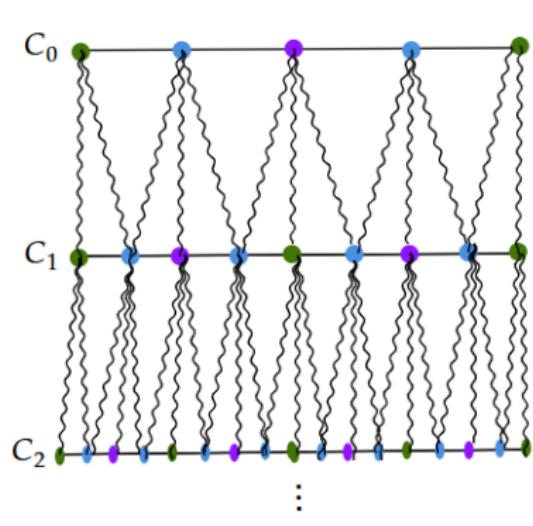


Knaster continuum as a spectrum - part 3

Definition: graphs $(C_n)_{n \geq 1}$ are **regular covers** of $[0, 1]$.

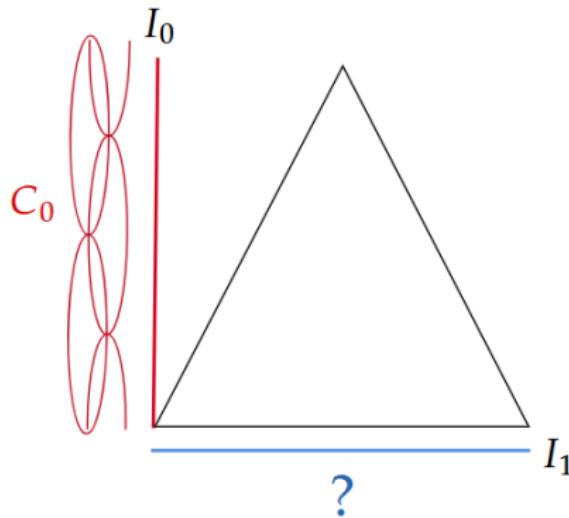
Intuition:

- intersection of basic sets \iff edge in graph
- containment of sets \iff order relation in poset $C = \bigsqcup C_n$

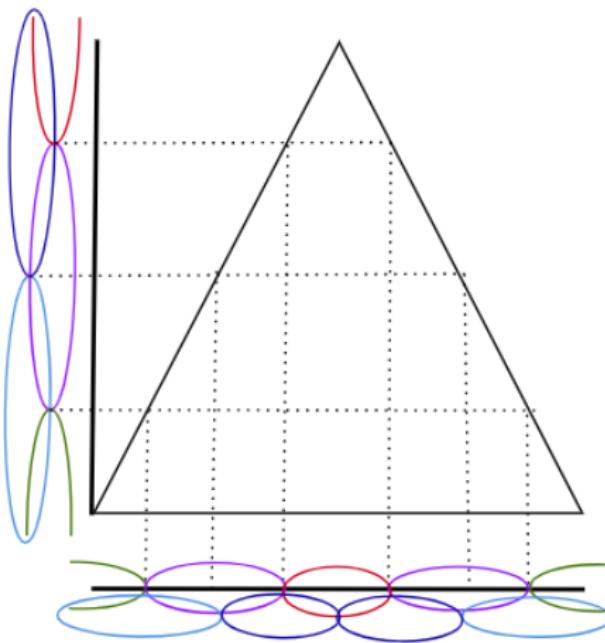


Take $\Delta : I_1 \rightarrow I_0$, let C_0 be a cover of I_0 .

What will be the preimage $\Delta^{-1}[C_0]$?

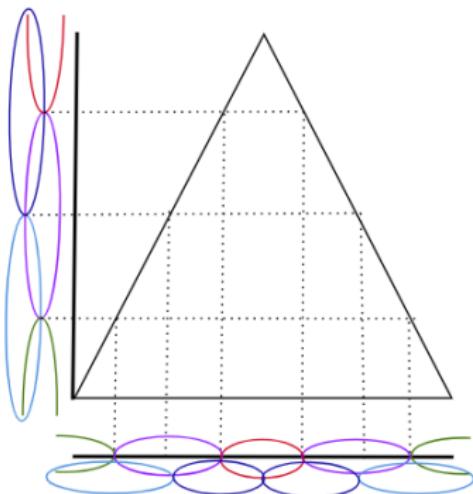


Knaster continuum as a spectrum - part 5

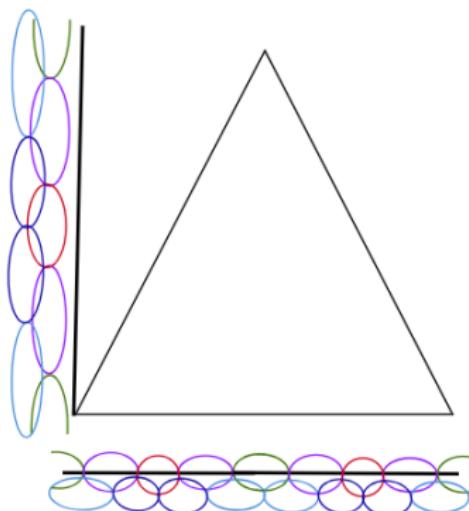


$$C_1 = \Delta^{-1}[C_0]$$

Knaster continuum as a spectrum - part 6



$$C_1 = \Delta^{-1}[C_0]$$

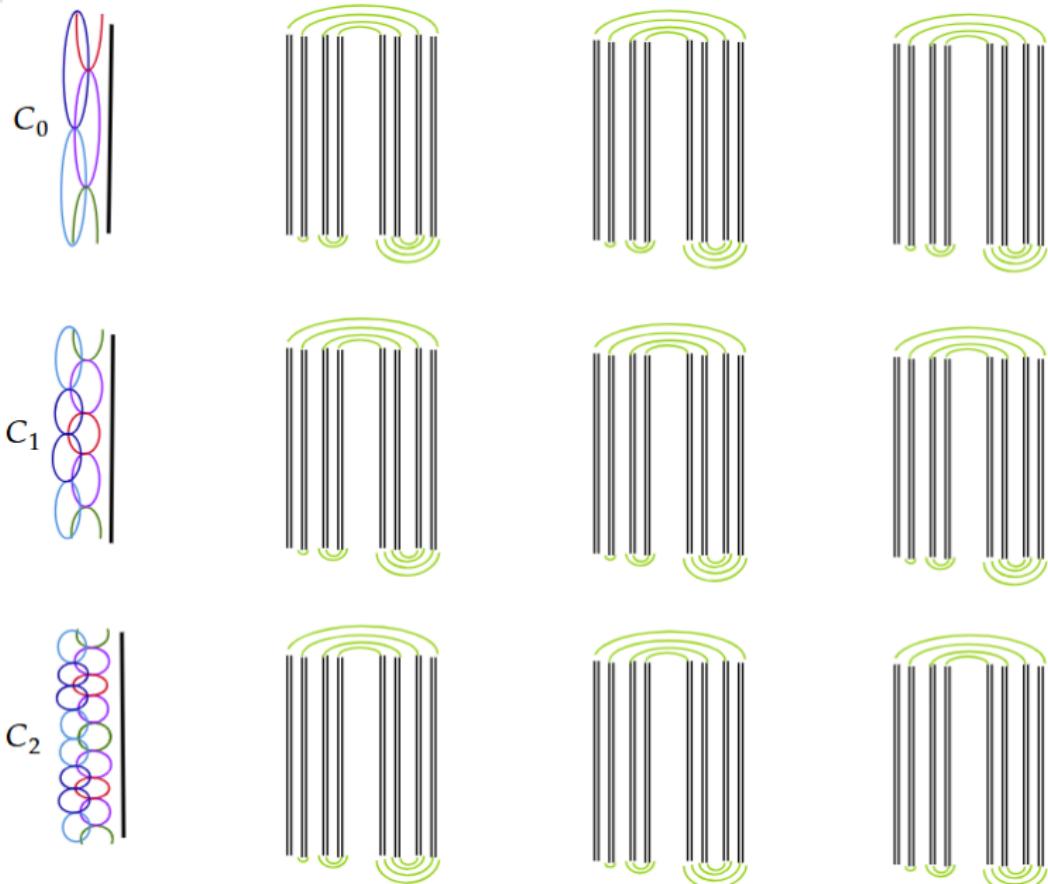


$$C_2 = \Delta^{-1}[C_1]$$

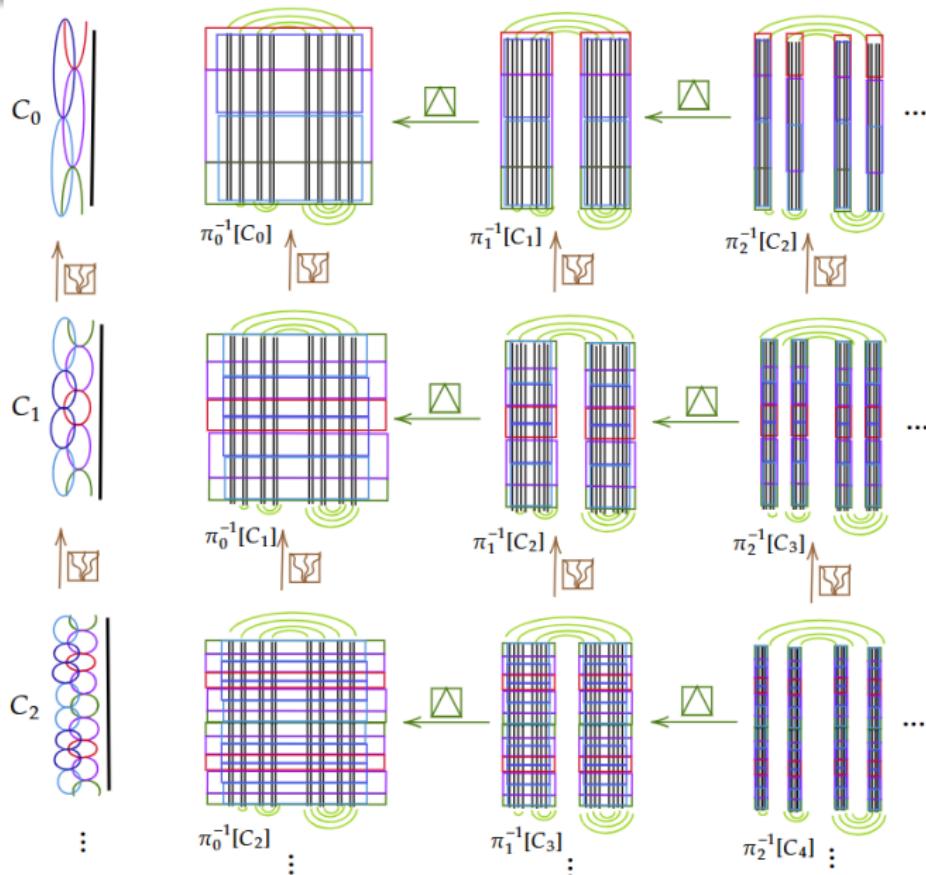
in general,

$$C_{n+1} = \Delta^{-1}[C_n]$$

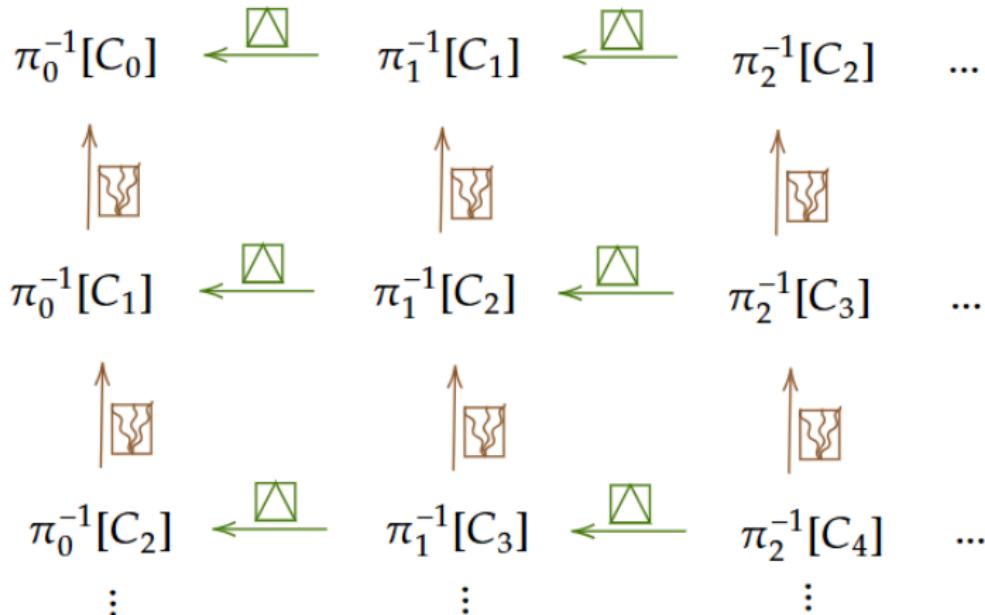
Knaster continuum as a spectrum - part 7



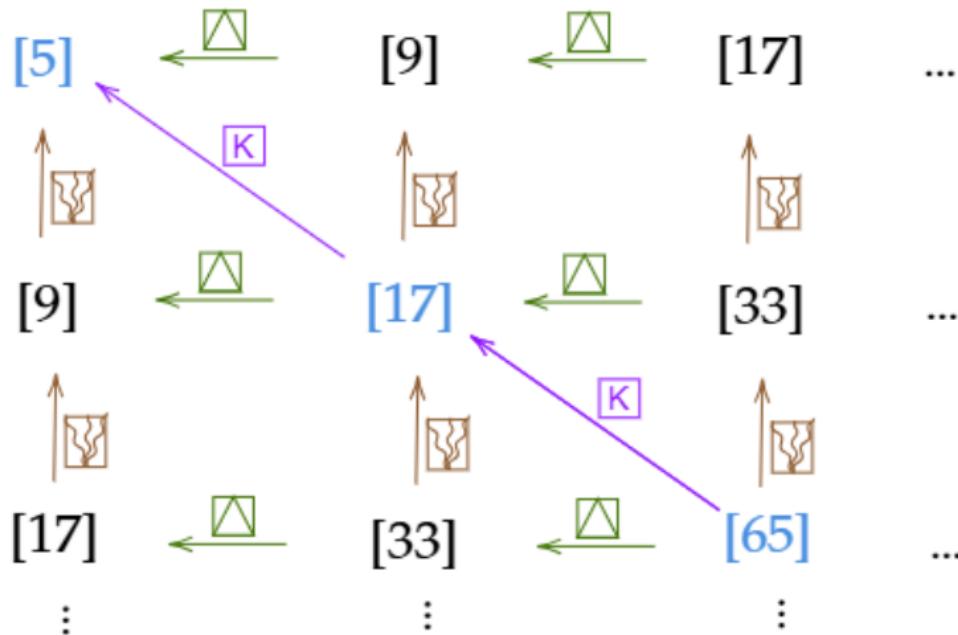
Knaster continuum as a spectrum - part 8



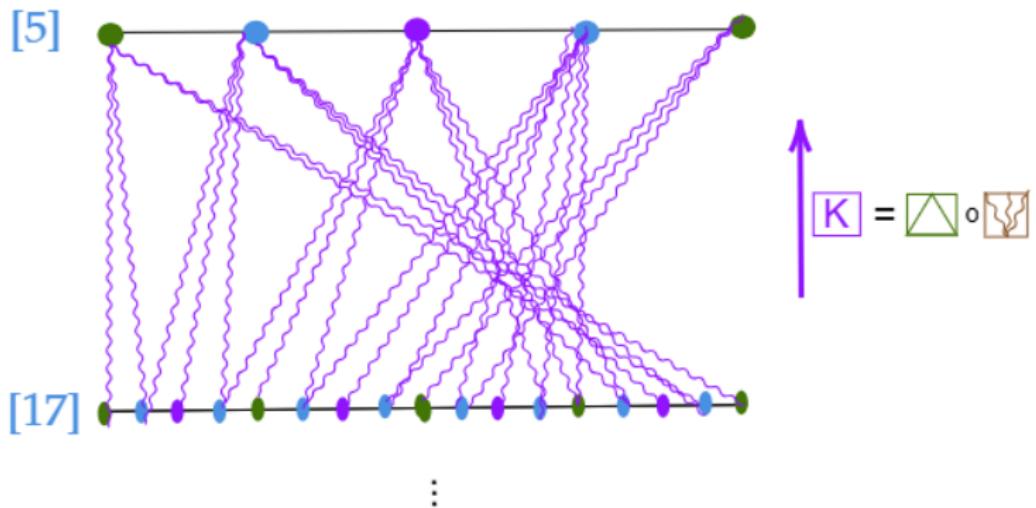
Knaster continuum as a spectrum - part 9



Knaster continuum as a spectrum - part 10



Knaster continuum as a spectrum - part 11



Theorem (BBV-2)

Let X be a non-empty compact metric space and let (G_n) be a sequence of minimal open covers of X such that

- 1 G_n consolidates G_{n+1} for every $n \in \mathbb{N}$,
- 2 $G_n \cap G_{n+1} = \emptyset$ for every $n \in \mathbb{N}$,
- 3 $\lim_{n \rightarrow \infty} \max\{\text{diam}(g) : g \in G_n\} = 0$.

Endow every G_n with the edge relation

$$g \sqcap g' \iff g \cap g' \neq \emptyset,$$

and let, for $m \leq n$, $\sqsubset_n^m \subseteq G_m \times G_n$ be the restriction of the inclusion relation on $\mathcal{P}(X)$. Let \mathbb{P} denote the poset $\bigcup_{n \in \mathbb{N}} G_n$ with inclusion as the order relation.

Then

$$S\mathbb{P} \xrightarrow{\text{homo}} X$$

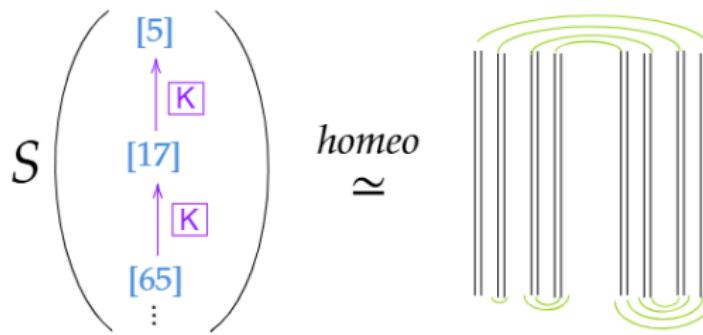
What's the recipe for the Knaster continuum?

Knaster continuum as a spectrum

Use this theorem for a sequence

$$\pi_n^{-1}(C_{2n})$$

where C_n is the n -th regular cover of the interval $I = [0, 1]$ and $\pi_n : K \rightarrow I_n$ is a projection.



Bibliography (1 of 2)

- [BBV-1] A. Bartoš, T. Bice, A. Vignati, *Constructing Compacta from Posets.*, Publ. Mat. 69 (2025), 217–265.
- [BBV-2] A. Bartoš, T. Bice, A. Vignati, *Generic Compacta from Relations between Finite Graphs: Theory Building and Examples*, Preprint, 2025,
<https://arxiv.org/abs/2408.15228>
- [BK] A. Bartoš, W. Kubiś, *Hereditarily indecomposable continua as generic mathematical structures*, Preprint, 2022,
<https://arxiv.org/pdf/2208.06886>
- [CKRY] W. J. Charatonik, A. Kwiatkowska, R.P. Roe, S. Yang, *Projective Fraïssé limits of trees with confluent epimorphisms*, Preprint, 2023, <https://arxiv.org/abs/2312.16915>
- [IS] T. Irwin, S. Solecki, *Projective Fraïssé Limits and the Pseudo-Arc*, Transactions of the American Mathematical Society, Vol. 358, No. 7 (Jul., 2006), pp. 3077-3096

Bibliography (2 of 2)

- [I-1] S.Iyer, *The homeomorphism group of the universal Knaster continuum*, Preprint, 2022,
<https://arxiv.org/abs/2208.02461>
- [I-2] S.Iyer, *Direct limits of large orbits and the Knaster continuum homeomorphism group*, Preprint, 2023,
https://drive.google.com/file/d/1scKeJ34UajvKPIu7_zW_ne43BjLv1nf/view?usp=sharing
- [MB] T.Bice, M.Malicki, *Homeomorphisms of the Pseudoarc*, Preprint, 2024, <https://arxiv.org/abs/2412.20401>
- [N] Sam B. Nadler Jr., *Continuum Theory: An Introduction*, Marcel Dekker, Inc., New York, 1992.

Děkuju!

