

Around the decomposability of Borel functions

Winter School in Abstract Analysis 2026
section Set Theory & Topology

Orazio Nicolosi

Dipartimento di matematica "Giuseppe Peano"

February 2nd, 2026

UNIVERSITÀ
DI TORINO

The original problem

Question (Luzin (early 1900s))

Is every Borel function between Polish spaces decomposable as countable union of continuous functions?

The original problem

Question (Luzin (early 1900s))

Is every Borel function between Polish spaces decomposable as countable union of continuous functions?

This question has been answered negatively by:

1. Novikov

The original problem

Question (Luzin (early 1900s))

Is every Borel function between Polish spaces decomposable as countable union of continuous functions?

This question has been answered negatively by:

1. Novikov
2. Keldysh (1934) with a generalized level-by-level answer, i.e. she found for each $1 \leq \alpha < \omega_1$ a function $\Sigma_{\alpha+1}^0$ -measurable which cannot be decomposed as countable union of functions of lower complexity.

The original problem

Question (Luzin (early 1900s))

Is every Borel function between Polish spaces decomposable as countable union of continuous functions?

This question has been answered negatively by:

1. Novikov
2. Keldysh (1934) with a generalized level-by-level answer, i.e. she found for each $1 \leq \alpha < \omega_1$ a function $\Sigma_{\alpha+1}^0$ -measurable which cannot be decomposed as countable union of functions of lower complexity.

Notation

We write $f \in \text{dec}(\Sigma_{\alpha}^0)$ if f is decomposable as countable union of Σ_{α}^0 -measurable functions (on their domains).

The Solecki Dichotomy

Although such decomposability of Borel functions is false in general, the non decomposable functions can be characterized using

The Solecki Dichotomy

Although such decomposability of Borel functions is false in general, the non decomposable functions can be characterized using

Theorem (Solecki Dichotomy)

Given X analytic space, Y separable metrizable and $f : X \rightarrow Y$ Borel; then either $f \in \text{dec}(\Sigma_1^0)$ or f “contains” the Pawlikowski function $P : (\omega + 1)^\omega \rightarrow \omega^\omega$, defined as:

$$P(\eta)(n) = \begin{cases} 0 & \text{if } \eta(n) = \omega \\ \eta(n) + 1 & \text{otherwise} \end{cases}$$

The Solecki Dichotomy

Although such decomposability of Borel functions is false in general, the non decomposable functions can be characterized using

Theorem (Solecki Dichotomy)

Given X analytic space, Y separable metrizable and $f : X \rightarrow Y$ Borel; then either $f \in \text{dec}(\Sigma_1^0)$ or f “contains” the Pawlikowski function $P : (\omega + 1)^\omega \rightarrow \omega^\omega$, defined as:

$$P(\eta)(n) = \begin{cases} 0 & \text{if } \eta(n) = \omega \\ \eta(n) + 1 & \text{otherwise} \end{cases}$$

This result was first proved by Solecki (1998) for Baire class 1 functions and then extended to all Borel function by Zapletal (2004) and by Pawlikowski and Sabok to all functions with analytic graphs (2012).

The Solecki Dichotomy

Although such decomposability of Borel functions is false in general, the non decomposable functions can be characterized using

Theorem (Solecki Dichotomy)

Given X analytic space, Y separable metrizable and $f : X \rightarrow Y$ Borel; then either $f \in \text{dec}(\Sigma_1^0)$ or f “contains” the Pawlikowski function $P : (\omega + 1)^\omega \rightarrow \omega^\omega$, defined as:

$$P(\eta)(n) = \begin{cases} 0 & \text{if } \eta(n) = \omega \\ \eta(n) + 1 & \text{otherwise} \end{cases}$$

This result was first proved by Solecki (1998) for Baire class 1 functions and then extended to all Borel function by Zapletal (2004) and by Pawlikowski and Sabok to all functions with analytic graphs (2012).

Fact (Carroy, Lutz)

The Pawlikowski function is “equivalent” to the **Turing Jump** i.e. the function

$$J : \omega^\omega \rightarrow 2^\omega$$

$$x \mapsto J(x) = x' = \{e \in \omega \mid \varphi_e^x(e) \downarrow\}$$

The Solecki Dichotomy (more precisely)

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f **embeds topologically** into g ($f \sqsubseteq g$) if there exist two topological embeddings $\varphi : X_f \rightarrow X_g$ and $\psi : Y_f \rightarrow Y_g$ such that $\psi \circ f = g \circ \varphi$.

$$\begin{array}{ccc} X_g & \xrightarrow{g} & Y_g \\ \uparrow \varphi & & \uparrow \psi \\ X_f & \xrightarrow{f} & Y_f \end{array}$$

The Solecki Dichotomy (more precisely)

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f **embeds topologically** into g ($f \sqsubseteq g$) if there exist two topological embeddings $\varphi : X_f \rightarrow X_g$ and $\psi : Y_f \rightarrow Y_g$ such that $\psi \circ f = g \circ \varphi$.

$$\begin{array}{ccc} X_g & \xrightarrow{g} & Y_g \\ \uparrow \varphi & & \uparrow \psi \\ X_f & \xrightarrow{f} & Y_f \end{array}$$

Theorem (Solecki Dichotomy)

Given X analytic space, Y separable metrizable and $f : X \rightarrow Y$ Borel; then either $f \in \text{dec}(\Sigma_1^0)$ or $P \sqsubseteq f$.

Different reducibilities: (strong) continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **continuously reducible** to g ($f \leq_s g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x))))$.

$$\begin{array}{ccc} X_g & \xrightarrow{g} & Y_g \\ \uparrow \varphi & & \downarrow \psi \\ X_f & \xrightarrow{f} & Y_f \end{array}$$

Different reducibilities: (strong) continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **continuously reducible** to g ($f \leq_s g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x))))$.

$$\begin{array}{ccc} X_g & \xrightarrow{g} & Y_g \\ \uparrow \varphi & & \downarrow \psi \\ X_f & \xrightarrow{f} & Y_f \end{array}$$

The Solecki Dichotomy can be “weakened” with \leq_s in place of \leq

Different reducibilities: (strong) continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **continuously reducible** to g ($f \leq_s g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x))))$.

$$\begin{array}{ccc} X_g & \xrightarrow{g} & Y_g \\ \uparrow \varphi & & \downarrow \psi \\ X_f & \xrightarrow{f} & Y_f \end{array}$$

The Solecki Dichotomy can be “weakened” with \leq_s in place of \sqsubseteq and is not difficult to prove that $J \equiv_s P$.

Different reducibilities: (strong) continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **continuously reducible** to g ($f \leq_s g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x))))$.

$$\begin{array}{ccc} X_g & \xrightarrow{g} & Y_g \\ \uparrow \varphi & & \downarrow \psi \\ X_f & \xrightarrow{f} & Y_f \end{array}$$

The Solecki Dichotomy can be “weakened” with \leq_s in place of \sqsubseteq and is not difficult to prove that $J \equiv_s P$. Moreover, Marks and Montalbà recently announced:

Theorem (Generalized Solecki Dichotomy)

Given $1 \leq \alpha < \omega_1$, and $f : \omega^\omega \rightarrow \omega^\omega$ Borel; then either $f \in \text{dec}(\Sigma^0_{<(1+\alpha)})$ or $J^{(\alpha)} \leq_s f$.

Different reducibilities: weak continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **weakly (continuously) reducible** to g ($f \leqslant_w g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \times X_f \rightarrow Y_f$ such that
 $\forall x \in X_f (f(x) = \psi(g(\varphi(x)), x))$.

Different reducibilities: weak continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **weakly (continuously) reducible** to g ($f \leq_w g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \times X_f \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x)), x))$.

Again, the Solecki Dichotomy can be restated with \leq_w in place of \sqsubseteq . We can now state our main result:

Different reducibilities: weak continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **weakly (continuously) reducible** to g ($f \leqslant_w g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \times X_f \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x)), x))$.

Again, the Solecki Dichotomy can be restated with \leqslant_w in place of \sqsubseteq . We can now state our main result:

Theorem (Lutz, Carroy, Nicolosi)

Given X Polish space, Y separable metrizable and $f : X \rightarrow Y$ Borel; then either $f \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leqslant_w f$.

Different reducibilities: weak continuous reducibility

Definition

Given X_f, Y_f, X_g, Y_g topological spaces and functions $f : X_f \rightarrow Y_f$ and $g : X_g \rightarrow Y_g$, we say that f is **weakly (continuously) reducible** to g ($f \leqslant_w g$) if there exist two partial continuous functions $\varphi : X_f \rightarrow X_g$ and $\psi : Y_g \times X_f \rightarrow Y_f$ such that $\forall x \in X_f (f(x) = \psi(g(\varphi(x)), x))$.

Again, the Solecki Dichotomy can be restated with \leqslant_w in place of \sqsubseteq . We can now state our main result:

Theorem (Lutz, Carroy, Nicolosi)

Given X Polish space, Y separable metrizable and $f : X \rightarrow Y$ Borel; then either $f \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leqslant_w f$.

This result was originally proved by Lutz for functions on the Baire space.

How to define effectivity in Polish spaces?

There are two main approaches for using effectivity in Polish spaces:

How to define effectivity in Polish spaces?

There are two main approaches for using effectivity in Polish spaces:

Using *recursively presented metric spaces*, by fixing:

- a compatible metric
- a countable dense sequence

How to define effectivity in Polish spaces?

There are two main approaches for using effectivity in Polish spaces:

Using *recursively presented metric spaces*, by fixing:

- a compatible metric
- a countable dense sequence

Using *basic spaces*, by fixing:

- a countable basis (basic and recursive spaces of Alain Louveau).

How to define effectivity in Polish spaces?

There are two main approaches for using effectivity in Polish spaces:

Using *recursively presented metric spaces*, by fixing:

- a compatible metric
- a countable dense sequence

Using *basic spaces*, by fixing:

- a countable basis (basic and recursive spaces of Alain Louveau).

Definition

Let (X, d) be a separable metric space and $\mathbf{r} = (r_i)_{i \in \omega}$ an enumeration (possibly with repetitions) of a dense subset of X . We say that \mathbf{r} is a **recursive presentation** of X if the relations on ω^3

$$P(i, j, k) \Leftrightarrow d(r_i, r_j) \leq q_k$$

$$Q(i, j, k) \Leftrightarrow d(r_i, r_j) < q_k$$

are recursive. The structure (X, d, \mathbf{r}) is called **recursively presented metric space**. If moreover (X, d) is complete, then (X, d, \mathbf{r}) is called **recursively presented Polish space**.

Basic spaces

Definition

A **basic space** \mathcal{X} is a pair $(X, (V_n)_{n \in \omega})$ where X is a second countable topological space, $(V_n)_{n \in \omega}$ is an enumeration (possibly with repetitions) of a countable basis of the topology of X ^a, and there is a semirecursive relation $R \subseteq \omega^3$ such that:

$$V_m \cap V_n = \bigcup_{p \in \omega} \{V_p \mid R(m, n, p)\}$$

^aThe V_n s are not necessarily not empty.

Basic spaces

Definition

A **basic space** \mathcal{X} is a pair $(X, (V_n)_{n \in \omega})$ where X is a second countable topological space, $(V_n)_{n \in \omega}$ is an enumeration (possibly with repetitions) of a countable basis of the topology of X ^a, and there is a semirecursive relation $R \subseteq \omega^3$ such that:

$$V_m \cap V_n = \bigcup_{p \in \omega} \{V_p \mid R(m, n, p)\}$$

^aThe V_n s are not necessarily not empty.

The space ω is basic with the enumeration of the basis given by $V_n^\omega = \{n\}$.

Basic spaces

Definition

A **basic space** \mathcal{X} is a pair $(X, (V_n)_{n \in \omega})$ where X is a second countable topological space, $(V_n)_{n \in \omega}$ is an enumeration (possibly with repetitions) of a countable basis of the topology of X ^a, and there is a semirecursive relation $R \subseteq \omega^3$ such that:

$$V_m \cap V_n = \bigcup_{p \in \omega} \{V_p \mid R(m, n, p)\}$$

^aThe V_n s are not necessarily not empty.

The space ω is basic with the enumeration of the basis given by $V_n^\omega = \{n\}$.

Fact

Subspaces, finite products and countable products of basic spaces are basic spaces.

Σ_1^0 sets

Definition

A subset A of a basic space \mathcal{X} is called $\Sigma_1^0(\mathcal{X})$ (also said **effectively open** in \mathcal{X}) if there is a semirecursive set A^* in ω such that

$$A = \bigcup_{n \in A^*} V_n^{\mathcal{X}}$$

Σ_1^0 sets

Definition

A subset A of a basic space \mathcal{X} is called $\Sigma_1^0(\mathcal{X})$ (also said **effectively open** in \mathcal{X}) if there is a semirecursive set A^* in ω such that

$$A = \bigcup_{n \in A^*} V_n^{\mathcal{X}}$$

The Σ_1^0 sets of the basic space $(\omega, (\{n\})_{n \in \omega})$, are exactly the semirecursive sets.

Σ_1^0 sets

Definition

A subset A of a basic space \mathcal{X} is called $\Sigma_1^0(\mathcal{X})$ (also said **effectively open** in \mathcal{X}) if there is a semirecursive set A^* in ω such that

$$A = \bigcup_{n \in A^*} V_n^{\mathcal{X}}$$

The Σ_1^0 sets of the basic space $(\omega, (\{n\})_{n \in \omega})$, are exactly the semirecursive sets.

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces, a function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_1^0 -**recursive** if its diagram is Σ_1^0 , that is:

$$D_f = \{(x, n) \mid f(x) \in V_n^{\mathcal{Y}}\} \in \Sigma_1^0(\mathcal{X} \times \omega)$$

Any Σ_1^0 -recursive function is also continuous.

Σ_1^0 sets

Definition

A subset A of a basic space \mathcal{X} is called $\Sigma_1^0(\mathcal{X})$ (also said **effectively open** in \mathcal{X}) if there is a semirecursive set A^* in ω such that

$$A = \bigcup_{n \in A^*} V_n^{\mathcal{X}}$$

The Σ_1^0 sets of the basic space $(\omega, (\{n\})_{n \in \omega})$, are exactly the semirecursive sets.

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces, a function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_1^0 -**recursive** if its diagram is Σ_1^0 , that is:

$$D_f = \{(x, n) \mid f(x) \in V_n^{\mathcal{Y}}\} \in \Sigma_1^0(\mathcal{X} \times \omega)$$

Any Σ_1^0 -recursive function is also continuous. Moreover, the Σ_1^0 -recursive functions generalize not only the computable functions on the natural numbers but also the computable functions on ω^ω (Type-2 theory of effectivity).

Recursive spaces

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces, $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a **recursive isomorphism** if it is Σ_1^0 -recursive, bijective, and has Σ_1^0 -recursive inverse.

Recursive spaces

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces, $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a **recursive isomorphism** if it is Σ_1^0 -recursive, bijective, and has Σ_1^0 -recursive inverse.

Fact

Any recursively presented metric space (X, d, \mathbf{r}) admits a structure of basic space by considering $V_n = \{x \in X \mid d(\mathbf{r}_{(n)_0}, x) < q_{(n)_1}\}$.

Recursive spaces

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces, $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a **recursive isomorphism** if it is Σ_1^0 -recursive, bijective, and has Σ_1^0 -recursive inverse.

Fact

Any recursively presented metric space (X, d, r) admits a structure of basic space by considering $V_n = \{x \in X \mid d(r_{(n)_0}, x) < q_{(n)_1}\}$.

Definition

A basic space \mathcal{X} is **recursive** if it is recursively isomorphic to a subspace of a recursively presented metric space.

Recursive spaces

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces, $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a **recursive isomorphism** if it is Σ_1^0 -recursive, bijective, and has Σ_1^0 -recursive inverse.

Fact

Any recursively presented metric space (X, d, r) admits a structure of basic space by considering $V_n = \{x \in X \mid d(r_{(n)_0}, x) < q_{(n)_1}\}$.

Definition

A basic space \mathcal{X} is **recursive** if it is recursively isomorphic to a subspace of a recursively presented metric space.

Proposition

Any recursive space is recursively isomorphic to a subspace of the Hilbert cube $[0, 1]^\omega$.

Lightface pointclasses and universal sets

The pointclasses in the **Arithmetical Hierarchy** are defined (by induction) as:

$$\Sigma_1^0 \quad \Pi_1^0 = \neg \Sigma_1^0 \quad \Sigma_{n+1}^0 = \exists^0 \Pi_n^0 \quad \Pi_{n+1}^0 = \neg \Sigma_{n+1}^0 \quad \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

Lightface pointclasses and universal sets

The pointclasses in the **Arithmetical Hierarchy** are defined (by induction) as:

$$\Sigma_1^0 \quad \Pi_1^0 = \neg \Sigma_1^0 \quad \Sigma_{n+1}^0 = \exists^0 \Pi_n^0 \quad \Pi_{n+1}^0 = \neg \Sigma_{n+1}^0 \quad \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

Definition

Given \mathcal{X} , \mathcal{Y} basic spaces and Γ lightface pointclass, $G \in \Gamma(\mathcal{X} \times \mathcal{Y})$ is **universal** for $\Gamma(\mathcal{Y})$ if

$$\forall P \subseteq Y (P \in \Gamma \Leftrightarrow \exists x \in X (P = G_x))$$

where $G_x = \{y \in Y \mid G(x, y)\}$ is called x -section of G .

Lightface pointclasses and universal sets

The pointclasses in the **Arithmetical Hierarchy** are defined (by induction) as:

$$\Sigma_1^0 \quad \Pi_1^0 = \neg \Sigma_1^0 \quad \Sigma_{n+1}^0 = \exists^0 \Pi_n^0 \quad \Pi_{n+1}^0 = \neg \Sigma_{n+1}^0 \quad \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces and Γ lightface pointclass, $G \in \Gamma(\mathcal{X} \times \mathcal{Y})$ is **universal** for $\Gamma(\mathcal{Y})$ if

$$\forall P \subseteq Y (P \in \Gamma \Leftrightarrow \exists x \in X (P = G_x))$$

where $G_x = \{y \in Y \mid G(x, y)\}$ is called x -section of G .

A similar definition can be given for the boldface pointclasses in topological spaces.

Lightface pointclasses and universal sets

The pointclasses in the **Arithmetical Hierarchy** are defined (by induction) as:

$$\Sigma_1^0 \quad \Pi_1^0 = \neg \Sigma_1^0 \quad \Sigma_{n+1}^0 = \exists^0 \Pi_n^0 \quad \Pi_{n+1}^0 = \neg \Sigma_{n+1}^0 \quad \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces and Γ lightface pointclass, $G \in \Gamma(\mathcal{X} \times \mathcal{Y})$ is **universal** for $\Gamma(\mathcal{Y})$ if

$$\forall P \subseteq Y (P \in \Gamma \Leftrightarrow \exists x \in X (P = G_x))$$

where $G_x = \{y \in Y \mid G(x, y)\}$ is called x -section of G .

A similar definition can be given for the boldface pointclasses in topological spaces.

Remark

Considering a α -semirecursive set instead of a semirecursive A^* in the definition of effective open set, we obtain the pointclass of α -effectively open sets that we denote with $\Sigma_1^{0,\alpha}$.

Lightface pointclasses and universal sets

The pointclasses in the **Arithmetical Hierarchy** are defined (by induction) as:

$$\Sigma_1^0 \quad \Pi_1^0 = \neg \Sigma_1^0 \quad \Sigma_{n+1}^0 = \exists^0 \Pi_n^0 \quad \Pi_{n+1}^0 = \neg \Sigma_{n+1}^0 \quad \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces and Γ lightface pointclass, $G \in \Gamma(\mathcal{X} \times \mathcal{Y})$ is **universal** for $\Gamma(\mathcal{Y})$ if

$$\forall P \subseteq Y (P \in \Gamma \Leftrightarrow \exists x \in X (P = G_x))$$

where $G_x = \{y \in Y \mid G(x, y)\}$ is called x -section of G .

A similar definition can be given for the boldface pointclasses in topological spaces.

Remark

Considering a α -semirecursive set instead of a semirecursive A^* in the definition of effective open set, we obtain the pointclass of α -effectively open sets that we denote with $\Sigma_1^{0,\alpha}$.

Moreover, the process of relativization can be extended also to these pointclasses, obtaining this way the corresponding *topological/boldface pointclasses*.

Lightface pointclasses and universal sets

The pointclasses in the **Arithmetical Hierarchy** are defined (by induction) as:

$$\Sigma_1^0 \quad \Pi_1^0 = \neg \Sigma_1^0 \quad \Sigma_{n+1}^0 = \exists^0 \Pi_n^0 \quad \Pi_{n+1}^0 = \neg \Sigma_{n+1}^0 \quad \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

Definition

Given \mathcal{X}, \mathcal{Y} basic spaces and Γ lightface pointclass, $G \in \Gamma(\mathcal{X} \times \mathcal{Y})$ is **universal** for $\Gamma(\mathcal{Y})$ if

$$\forall P \subseteq Y (P \in \Gamma \Leftrightarrow \exists x \in X (P = G_x))$$

where $G_x = \{y \in Y \mid G(x, y)\}$ is called x -section of G .

A similar definition can be given for the boldface pointclasses in topological spaces.

Remark

Considering a α -semirecursive set instead of a semirecursive A^* in the definition of effective open set, we obtain the pointclass of α -effectively open sets that we denote with $\Sigma_1^{0,\alpha}$.

Moreover, the process of relativization can be extended also to these pointclasses, obtaining this way the corresponding *topological/boldface pointclasses*.

In particular, for any recursive space \mathcal{X} : $\Sigma_n^0(\mathcal{X}) = \bigcup_{\alpha \in \omega^\omega} \Sigma_n^{0,\alpha}(\mathcal{X})$.

Continuous degrees

Definition

Given \mathcal{X} and \mathcal{Y} recursive spaces, $y \in \mathcal{Y}$ is **representation reducible** to $x \in \mathcal{X}$ (and we write $y \leqslant_M x$) if $y = f(x)$, for some $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a partial Σ_1^0 -recursive function on its domain.

Continuous degrees

Definition

Given \mathcal{X} and \mathcal{Y} recursive spaces, $y \in \mathcal{Y}$ is **representation reducible** to $x \in \mathcal{X}$ (and we write $y \leq_M x$) if $y = f(x)$, for some $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a partial Σ_1^0 -recursive function on its domain.

\leq_M is a quasi-order (reflexive and transitive).

Continuous degrees

Definition

Given \mathcal{X} and \mathcal{Y} recursive spaces, $y \in \mathcal{Y}$ is **representation reducible** to $x \in \mathcal{X}$ (and we write $y \leqslant_M x$) if $y = f(x)$, for some $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a partial Σ_1^0 -recursive function on its domain.

\leqslant_M is a quasi-order (reflexive and transitive).

Definition (Continuous degrees [Mil04] and [GKN20])

Given \mathcal{X} recursive space, the **continuous degree** of $x \in \mathcal{X}$ is its equivalence class under the relation \equiv_M (over elements of recursive spaces).

Continuous degrees

Definition

Given \mathcal{X} and \mathcal{Y} recursive spaces, $y \in \mathcal{Y}$ is **representation reducible** to $x \in \mathcal{X}$ (and we write $y \leqslant_M x$) if $y = f(x)$, for some $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a partial Σ_1^0 -recursive function on its domain.

\leqslant_M is a quasi-order (reflexive and transitive).

Definition (Continuous degrees [Mil04] and [GKN20])

Given \mathcal{X} recursive space, the **continuous degree** of $x \in \mathcal{X}$ is its equivalence class under the relation \equiv_M (over elements of recursive spaces).

Fact

Given \mathcal{X} recursive space,

1. $\forall x \in \mathcal{X} \exists z \in [0, 1]^\omega (x \equiv_M z)$.
2. $\forall x, y \in \omega^\omega (y \leqslant_T x \Leftrightarrow y \leqslant_M x)$

The Turing jump for recursive spaces

The notion of Turing Jump can be extended to all recursive spaces

Definition ([GKN20])

Given \mathcal{X} recursive space, the $\Sigma_n^{0,\alpha}$ -**jump** is the function $J_{\mathcal{X}}^{(n),\alpha} : \mathcal{X} \rightarrow 2^\omega$ defined as:

$$J_{\mathcal{X}}^{(n),\alpha}(x) = \{e \in \omega \mid x \in H_{\Sigma_n^{0,\alpha}, e}^{\mathcal{X}}\}$$

The Turing jump for recursive spaces

The notion of Turing Jump can be extended to all recursive spaces

Definition ([GKN20])

Given \mathcal{X} recursive space, the $\Sigma_n^{0,\alpha}$ -**jump** is the function $J_{\mathcal{X}}^{(n),\alpha} : \mathcal{X} \rightarrow 2^\omega$ defined as:

$$J_{\mathcal{X}}^{(n),\alpha}(x) = \{e \in \omega \mid x \in H_{\Sigma_n^{0,\alpha}, e}^{\mathcal{X}}\}$$

This operator respects the structure of the continuous degrees,

The Turing jump for recursive spaces

The notion of Turing Jump can be extended to all recursive spaces

Definition ([GKN20])

Given \mathcal{X} recursive space, the $\Sigma_n^{0,\alpha}$ -**jump** is the function $J_{\mathcal{X}}^{(n),\alpha} : \mathcal{X} \rightarrow 2^\omega$ defined as:

$$J_{\mathcal{X}}^{(n),\alpha}(x) = \{e \in \omega \mid x \in H_{\Sigma_n^{0,\alpha},e}^{\mathcal{X}}\}$$

This operator respects the structure of the continuous degrees, moreover the usual Turing Jump on the Baire space is “equivalent” to the Σ_1^0 -jump $J_{\omega^\omega}^{(1),\emptyset}$.

The Turing jump for recursive spaces

The notion of Turing Jump can be extended to all recursive spaces

Definition ([GKN20])

Given \mathcal{X} recursive space, the $\Sigma_n^{0,\alpha}$ -**jump** is the function $J_{\mathcal{X}}^{(n),\alpha} : \mathcal{X} \rightarrow 2^\omega$ defined as:

$$J_{\mathcal{X}}^{(n),\alpha}(x) = \{e \in \omega \mid x \in H_{\Sigma_n^{0,\alpha},e}^{\mathcal{X}}\}$$

This operator respects the structure of the continuous degrees, moreover the usual Turing Jump on the Baire space is “equivalent” to the Σ_1^0 -jump $J_{\omega^\omega}^{(1),\emptyset}$. In fact:

$$\forall x \in \omega^\omega (J_{\omega^\omega}^{(1),\emptyset}(x) \equiv_T J(x))$$

For this reason, we simply write $x^{(n)}$ instead of $J^{(n-1)} \circ J_{\mathcal{X}}^{(1),\emptyset}(x)$.

The Turing jump for recursive spaces

The notion of Turing Jump can be extended to all recursive spaces

Definition ([GKN20])

Given \mathcal{X} recursive space, the $\Sigma_n^{0,\alpha}$ -**jump** is the function $J_{\mathcal{X}}^{(n),\alpha} : \mathcal{X} \rightarrow 2^\omega$ defined as:

$$J_{\mathcal{X}}^{(n),\alpha}(x) = \{e \in \omega \mid x \in H_{\Sigma_n^{0,\alpha},e}^{\mathcal{X}}\}$$

This operator respects the structure of the continuous degrees, moreover the usual Turing Jump on the Baire space is “equivalent” to the Σ_1^0 -jump $J_{\omega^\omega}^{(1),\emptyset}$. In fact:

$$\forall x \in \omega^\omega (J_{\omega^\omega}^{(1),\emptyset}(x) \equiv_T J(x))$$

For this reason, we simply write $x^{(n)}$ instead of $J^{(n-1)} \circ J_{\mathcal{X}}^{(1),\emptyset}(x)$.

Theorem (Generalized Posner-Robinson for recursive spaces)

Given \mathcal{X} and \mathcal{Y} recursive spaces, for every $n \in \omega$

$$\forall x \in \mathcal{X} \forall y \in \mathcal{Y} (y \leq_M x^{(n)} \dot{\vee} \exists g \in 2^\omega (x \oplus y \oplus g \geq_M (g \oplus x)^{(n+1)})).$$

A modification of Lutz's game

Given two functions $f : \omega^\omega \rightarrow \omega^\omega$ and $g : \mathcal{X} \rightarrow \mathcal{Y}$ (where \mathcal{X} and \mathcal{Y} are recursive spaces) we define the game $G_M(f, g)$ as follows:

A modification of Lutz's game

Given two functions $f : \omega^\omega \rightarrow \omega^\omega$ and $g : \mathcal{X} \rightarrow \mathcal{Y}$ (where \mathcal{X} and \mathcal{Y} are recursive spaces) we define the game $G_M(f, g)$ as follows: **Player 2** first plays a code $e \in \omega$ corresponding to a Σ_1^0 -recursive function. For the rest of the game, **Player 1** plays each turn a digit of a real $x = x_0x_1 \dots \in \omega^\omega$ and **Player 2** plays a digit of two reals, $b = b_0b_1 \dots \in \omega^\omega$ and $z = z_0z_1 \dots \in \omega^\omega$.

A modification of Lutz's game

Given two functions $f : \omega^\omega \rightarrow \omega^\omega$ and $g : \mathcal{X} \rightarrow \mathcal{Y}$ (where \mathcal{X} and \mathcal{Y} are recursive spaces) we define the game $G_M(f, g)$ as follows: **Player 2** first plays a code $e \in \omega$ corresponding to a Σ_1^0 -recursive function. For the rest of the game, **Player 1** plays each turn a digit of a real $x = x_0 x_1 \dots \in \omega^\omega$ and **Player 2** plays a digit of two reals, $b = b_0 b_1 \dots \in \omega^\omega$ and $z = z_0 z_1 \dots \in \omega^\omega$.

Player 1	x_0	x_1	\dots
Player 2	e	b_0, z_0	b_1, z_1

A modification of Lutz's game

Given two functions $f : \omega^\omega \rightarrow \omega^\omega$ and $g : \mathcal{X} \rightarrow \mathcal{Y}$ (where \mathcal{X} and \mathcal{Y} are recursive spaces) we define the game $G_M(f, g)$ as follows: **Player 2** first plays a code $e \in \omega$ corresponding to a Σ_1^0 -recursive function. For the rest of the game, **Player 1** plays each turn a digit of a real $x = x_0 x_1 \dots \in \omega^\omega$ and **Player 2** plays a digit of two reals, $b = b_0 b_1 \dots \in \omega^\omega$ and $z = z_0 z_1 \dots \in \omega^\omega$.

Player 1		x_0	x_1	...
Player 2	e	b_0, z_0	b_1, z_1	...

Player 2 wins if and only if b is a $\rho_{\mathcal{X}}$ -name for an element $y \in \mathcal{X}_g$ (i.e. $b \in \text{dom}(\rho_{\mathcal{X}})$) and $f(x) = \Phi_e^{(\mathcal{Y} \times \omega^\omega \times \omega^\omega), \omega^\omega}(g(\rho_{\mathcal{X}}(b)), x, z)$, where $\rho_{\mathcal{X}} : \omega^\omega \rightarrow \mathcal{X}$ is the *admissible representation* defined as: $\rho_{\mathcal{X}}(p) = x \Leftrightarrow \text{ran}(p) = \{n \in \omega \mid x \in V_n^{\mathcal{X}}\}$

A modification of Lutz's game

Given two functions $f : \omega^\omega \rightarrow \omega^\omega$ and $g : \mathcal{X} \rightarrow \mathcal{Y}$ (where \mathcal{X} and \mathcal{Y} are recursive spaces) we define the game $G_M(f, g)$ as follows: **Player 2** first plays a code $e \in \omega$ corresponding to a Σ_1^0 -recursive function. For the rest of the game, **Player 1** plays each turn a digit of a real $x = x_0 x_1 \dots \in \omega^\omega$ and **Player 2** plays a digit of two reals, $b = b_0 b_1 \dots \in \omega^\omega$ and $z = z_0 z_1 \dots \in \omega^\omega$.

Player 1		x ₀	x ₁	...
Player 2	e	b ₀ , z ₀	b ₁ , z ₁	...

Player 2 wins if and only if b is a $\rho_{\mathcal{X}}$ -name for an element $y \in \mathcal{X}_g$ (i.e. $b \in \text{dom}(\rho_{\mathcal{X}})$) and $f(x) = \Phi_e^{(\mathcal{Y} \times \omega^\omega \times \omega^\omega), \omega^\omega}(g(\rho_{\mathcal{X}}(b)), x, z)$, where $\rho_{\mathcal{X}} : \omega^\omega \rightarrow \mathcal{X}$ is the *admissible representation* defined as: $\rho_{\mathcal{X}}(p) = x \Leftrightarrow \text{ran}(p) = \{n \in \omega \mid x \in V_n^{\mathcal{X}}\}$

Remark

If f and g are Borel and the domain of $\rho_{\mathcal{X}}$ is Borel, then so is the payoff of $G_M(f, g)$.

A modification of Lutz's game

Given two functions $f : \omega^\omega \rightarrow \omega^\omega$ and $g : \mathcal{X} \rightarrow \mathcal{Y}$ (where \mathcal{X} and \mathcal{Y} are recursive spaces) we define the game $G_M(f, g)$ as follows: **Player 2** first plays a code $e \in \omega$ corresponding to a Σ_1^0 -recursive function. For the rest of the game, **Player 1** plays each turn a digit of a real $x = x_0 x_1 \dots \in \omega^\omega$ and **Player 2** plays a digit of two reals, $b = b_0 b_1 \dots \in \omega^\omega$ and $z = z_0 z_1 \dots \in \omega^\omega$.

Player 1		x_0	x_1	...
Player 2		e	b_0, z_0	b_1, z_1

Player 2 wins if and only if b is a $\rho_{\mathcal{X}}$ -name for an element $y \in \mathcal{X}_g$ (i.e. $b \in \text{dom}(\rho_{\mathcal{X}})$) and $f(x) = \Phi_e^{(\mathcal{Y} \times \omega^\omega \times \omega^\omega), \omega^\omega}(g(\rho_{\mathcal{X}}(b)), x, z)$, where $\rho_{\mathcal{X}} : \omega^\omega \rightarrow \mathcal{X}$ is the *admissible representation* defined as: $\rho_{\mathcal{X}}(p) = x \Leftrightarrow \text{ran}(p) = \{n \in \omega \mid x \in V_n^{\mathcal{X}}\}$

Remark

If f and g are Borel and the domain of $\rho_{\mathcal{X}}$ is Borel, then so is the payoff of $G_M(f, g)$.

Lemma (Lutz, Carroy, Nicolosi)

- If Player 2 has a winning strategy for $G_M(f, g)$, then $f \leq_w g$.
- If Player 1 has a winning strategy for $G_M(J^{(n)}, g)$, then $g \in \text{dec}(\Sigma_n^0)$.

Using Borel determinacy we get

Theorem (Lutz, Carroy, Nicolosi)

Given \mathcal{X}, \mathcal{Y} recursive spaces such that $\rho_{\mathcal{X}}$ has Borel domain and $g : \mathcal{X} \rightarrow \mathcal{Y}$ Borel; then either $g \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leqslant_w g$.

Using Borel determinacy we get

Theorem (Lutz, Carroy, Nicolosi)

Given \mathcal{X}, \mathcal{Y} recursive spaces such that $\rho_{\mathcal{X}}$ has Borel domain and $g : \mathcal{X} \rightarrow \mathcal{Y}$ Borel; then either $g \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leqslant_w g$.

Clearly, under the Axiom of Determinacy, this result generalizes to all recursive spaces and functions.

Using Borel determinacy we get

Theorem (Lutz, Carroy, Nicolosi)

Given \mathcal{X}, \mathcal{Y} recursive spaces such that $\rho_{\mathcal{X}}$ has Borel domain and $g : \mathcal{X} \rightarrow \mathcal{Y}$ Borel; then either $g \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leqslant_w g$.

Clearly, under the Axiom of Determinacy, this result generalizes to all recursive spaces and functions. In addition:

Fact

The domain of the considered representation is Borel for any recursively presented Polish spaces.

Using Borel determinacy we get

Theorem (Lutz, Carroy, Nicolosi)

Given \mathcal{X}, \mathcal{Y} recursive spaces such that $\rho_{\mathcal{X}}$ has Borel domain and $g : \mathcal{X} \rightarrow \mathcal{Y}$ Borel; then either $g \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leq_w g$.

Clearly, under the Axiom of Determinacy, this result generalizes to all recursive spaces and functions. In addition:

Fact

The domain of the considered representation is Borel for any recursively presented Polish spaces.

Thus we get:

Corollary

Given \mathcal{X} recursively presented Polish space, \mathcal{Y} recursive space and $g : \mathcal{X} \rightarrow \mathcal{Y}$ Borel; then either $g \in \text{dec}(\Sigma_n^0)$ or $J^{(n)} \leq_w g$.

Further directions

- Is it possible to find a game that characterizes weak reducibility \leq_w in a wider context? (e.g. in separable metrizable spaces)

Further directions

- Is it possible to find a game that characterizes weak reducibility \leq_w in a wider context? (e.g. in separable metrizable spaces)
- How to extend this result to all the Borel hierarchy?

Further directions

- Is it possible to find a game that characterizes weak reducibility \leq_w in a wider context? (e.g. in separable metrizable spaces)
- How to extend this result to all the Borel hierarchy?
- Can this result be strengthened up to the Generalized Solecki Dichotomy proved by Marks and Montalbàn? What about the topological embedding?

- Is it possible to find a game that characterizes weak reducibility \leq_w in a wider context? (e.g. in separable metrizable spaces)
- How to extend this result to all the Borel hierarchy?
- Can this result be strengthened up to the Generalized Solecki Dichotomy proved by Marks and Montalbàn? What about the topological embedding?

Thank you for your attention.

Bibliography

[GKN20] Vassilios Gregoriades, Takayuki Kihara, and Keng Ng. "Turing degrees in Polish spaces and decomposability of Borel functions". In: *Journal of Mathematical Logic* 21.01 (2020). URL: <https://www.worldscientific.com/doi/abs/10.1142/S021906132050021X>.

[Lut23] Patrick Lutz. "The Solecki dichotomy and the Posner-Robinson theorem are almost equivalent". In: (2023). URL: <https://doi.org/10.48550/arXiv.2301.07259>.

[Mil04] Joseph S. Miller. "Degrees of unsolvability of continuous functions". In: *Journal of Symbolic Logic* 69.2 (2004), pp. 555–584. URL: <https://doi.org/10.2178/jsl/1082418543>.

[Peq15] Yann Pequignot. "A Wadge hierarchy for second countable spaces". In: *Archive for Mathematical Logic* 54 (2015). URL: <https://doi.org/10.1007/s00153-015-0434-y>.

[Sol98] Slawomir Solecki. "Decomposing Borel Sets and Functions and the Structure of Baire Class 1 Functions". In: *Journal of the American Mathematical Society* 11.3 (1998), pp. 521–550. URL: <http://www.jstor.org/stable/2646160>.