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There exists a countable graph R (the Random or Rado graph) with the following property.
If a countable graph is chosen at random (by selecting edges independently with
probability % ) then with probability 1, the resulting graph is isomorphic to R.
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The Random (Rado) graph R

Theorem (Erdés—Rényi, 1963)

There exists a countable graph R (the Random or Rado graph) with the following property.
If a countable graph is chosen at random (by selecting edges independently with
probability % ) then with probability 1, the resulting graph is isomorphic to R.

Definition (Extension property)

Graph R satisfies the extension property (EP) if for every pair of finite disjoint sets A, B of
vertices of R there exists vertex v connected to all vertices of A and no vertices of B.

Theorem (Folclore)

If the vertex set of R is partitioned into 2 parts, then the induced subgraph on one of these
parts is isomorphic to R.

@ Let enemy partition vertices of R

@ If red partition is not isomorphic to R it does not satisfy EP.
Let A and B be a witnes.

@® Same for blue partition
@ A contradiction with EP of R for AU A’ and BU B'.
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Colouring subgraphs of R

Theorem (Erdés—Hajnal-Pésa, 1974)
There is colouring of edges of R such that every copy of R contains edges of both colours.

Theorem (Pouzet, Sauer, 1996)
For every finite colouring of edges of R, there is a copy of R touching at most 2 colours.

Theorem (Sauer, 2006 (also follows from proof by Laver, late 1960s))
Let G be the class of all finite graphs.

VAGQHT:T(A)GkaZ1 :R— (R)‘I?,T

By (§) we denote the set of all embeddings of A to B.
Definition (Leeb’s generalization of the Erdés—Rado partition arrow)

C — (B)} ; means:
For every k-colouring of () there exists f € (§) such that ("®)) has at most T colours.

Minimal possible value of T(A) is a big Ramsey degree of A in R.



Colouring embeddings (copies) of hypergraphs

Definition
Given a countable set L of labels, an L-edge-labeled u-uniform hypergraph (or simply an
edge-labeled hypergraph) is a pair A = (A, ea), where e, is a function ea : (u) — L.

Given L-edge-labeled u-uniform hypergraphs A = (A, ea) and B = (B, eg), an embedding
f: A — B is an injective function f: A — B which preserves the labels.
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Colouring embeddings (copies) of hypergraphs

Definition
Given a countable set L of /abels, an L-edge-labeled u-uniform hypergraph (or simply an
edge-labeled hypergraph) is a pair A = (A, ea), where e, is a function ea : (u) — L.

Given L-edge-labeled u-uniform hypergraphs A = (A, ea) and B = (B, eg), an embedding
f: A — B is an injective function f: A — B which preserves the labels.

Definition (Big Ramsey degree)

Given (countably infinite) edge-labelled hypergraph H and finite edge-labelled hypergraph
A, the big Ramsey degree of A in H is the smallest T such that

H— (H)I}H,T

Recall

(%) is the set of all embeddings of hypergraph A to hypergraph B.

C — (B)} ; means:

For every k-colouring of () there exists f  (§) such that ("®)) has at most T colours.
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For finite sets L this follows by essentially the same proof
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Can these results be generalised to L-edge-labelled hypergraphs of uniformity >2?

Yes for finite sets L and arbitrary uniformity:

© M. Balko, D. Chodounsky, J.H., M. Kone¢ny, L. Vena: Big Ramsey degrees of 3-uniform
hypergraphs are finite, Combinatorica (2022).
(Announced on Eurocomb 2019)

® S. Braunfeld, D. Chodounsky, N. de Rancourt, J.H., J. Kawach, M. Kone¢ny: Big Ramsey
Degrees and Infinite Languages, Advances in Combinatorics (2024).

@ Characterisation is joint work with Konecny and Zucker, to appear
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(Laflamme—Sauer—Vuksanovi¢, 2006).

Question
Can these results be generalised to L-edge-labelled hypergraphs of uniformity >2?

Yes for finite sets L and arbitrary uniformity:

© M. Balko, D. Chodounsky, J.H., M. Kone¢ny, L. Vena: Big Ramsey degrees of 3-uniform
hypergraphs are finite, Combinatorica (2022).
(Announced on Eurocomb 2019)

® S. Braunfeld, D. Chodounsky, N. de Rancourt, J.H., J. Kawach, M. Kone¢ny: Big Ramsey
Degrees and Infinite Languages, Advances in Combinatorics (2024).

@ Characterisation is joint work with Konecny and Zucker, to appear
Today: If L is infinite (L = w) the big Ramsey degrees are no longer finite.



Some results on finiteness of big Ramsey degrees

Finiteness of big Ramsey degrees of the order of rationals was shown by Laver in 1969 and
characterised by Devlin in 1979. The topic was revitalized in 2005 by Kechris, Pestov and
TodorCevic.
© Laflamme, Sauer, Vuksanovi¢ (2006): Characterisation of big Ramsey degrees of
homogeneous universal (Rado) graph
@® Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric
spaces
@® Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of
homogeneous dense local order



Some results on finiteness of big Ramsey degrees

Finiteness of big Ramsey degrees of the order of rationals was shown by Laver in 1969 and
characterised by Devlin in 1979. The topic was revitalized in 2005 by Kechris, Pestov and
TodorCevic.

© Laflamme, Sauer, Vuksanovi¢ (2006): Characterisation of big Ramsey degrees of
homogeneous universal (Rado) graph

@® Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric
spaces

@® Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of
homogeneous dense local order

@ Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite

@ Dobrinen (2023): Big Ramsey degrees of universal homogeneous Ki-free graphs are finite for
every k > 3.

@ Zucker (2022): Big Ramsey degrees of Fraissé limits of free amalgamation classes in binary
language with finitely many forbidden substructures are finite.

@ J.H. (2025): Big Ramsey degrees of partial orders and metric spaces are finite.

@ Balko, Chodounsky, Dobrinen, J.H., Konec¢ny, Nesetil, Vena, Zucker (2021): Big Ramsey
degrees of structures described by induced cycles are finite.

© Balko, Chodounsky, Dobrinen, J.H., Konec¢ny, Vena, Zucker (2024): Characterisation of big
Ramsey degrees of Fraissé limits of free amalgamation classes in binary language with finitely
many constraints.
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Known negative results

© Urysohn (metric) space (folklore?)

® Urysohn sphere (Oscillation stability)

® Henson graphs with finitely many forbidden cliques (El-Zahar, Sauer, 1993)
O Real numbers, topological copies of the order of rationals (Todorcevi¢, 1987)
@® Pseudotree (Chodounsky, Monroe, Weinert, 2025+)

@ Boolean algebras (BartoSova, Chodounsky, Csima, H., Kone¢ny, Lakerdas-Gayle,
Unger, Zucker, 2025+)



Denote by RY the w-edge-labelled u-uniform hypergraph.

Let u > 1 be finite and let A be any w-edge-labeled u-uniform hypergraph with 2 vertices.
Then for no finite T satisfies
R, — (RO r



w-edge-labelled graphs

Denote by RY the w-edge-labelled u-uniform hypergraph.

Theorem (H., Koneény, Todorcevi¢, Zucker)

Let u > 1 be finite and let A be any w-edge-labeled u-uniform hypergraph with 2 vertices.
Then for no finite T satisfies
R, — (Rff;)l%ﬂ,r-

Colouring of (“Auu) is persistent if every copy of RY touches every colour. Given u > 2 and
T > 1 we give such persistent colorng of (RAZ) with T + 1 colors.

For simplicity, let's consider only the w-edge-labelled graph R2.



An initial segment of infinie w-edge-labelled graph R?
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An infinite finitely-branching tree where the number of sons of a node x exceeds the
number of nodes on the level of x and below. Sons are enumerated; last son has label x
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Every pair of nodes determines a unique meet (nearest common ancestor)
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height(v,w) is the number of meets which can be reached from coding nodes
corresponding to vertices v, w by this procedure.
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For every embedding ¢ : R2 — R2 there exists an integer m such that for every n > m
there exists an edge (v, w) of label 0 in the image of ¢ of height n.
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