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Abstract

We show that the big Ramsey degrees of every countable universal u-uniform ω-edge-
labeled hypergraph are infinite for every u ≥ 2. Together with a recent result of Braunfeld,
Chodounský, de Rancourt, Hubička, Kawach, and Konečný this finishes full characterisa-
tion of unrestricted relational structures with finite big Ramsey degrees.

1 Introduction

Let A be a set and let u be a positive integer. We denote by
(
A
u

)
the set of all u-element

subsets of A. Given a countable set L of labels, an L-edge-labeled u-uniform hypergraph (or
simply an edge-labeled hypergraph) is a pair A = (A, eA), where eA is a function eA :

(
A
u

)
→ L.

We call A the vertex set of A and consider only finite and countably infinite vertex sets. We
say that A is finite if A is finite. We will view u-uniform hypergraphs as {0, 1}-edge-labeled
u-uniform hypergraphs (where the label 0 represents non-edges) and graphs as {0, 1}-edge-
labeled 2-uniform hypergraphs.

Given L-edge-labeled u-uniform hypergraphs A = (A, eA) and B = (B, eB), an embed-
ding f : A → B is an injective function f : A → B such that for every E ∈

(
A
u

)
we have

eA(E) = eB(f [E]), where f [E] = {f(v) : v ∈ E}. If A ⊆ B and the inclusion map is an
embedding, we call A a substructure of B. We say that A is homogeneous if every isomor-
phism between finite substructures of A extends to an automorphism of A, and A is universal
if every countable L-edge-labeled u-uniform hypergraph embeds into A. It is a well-known
consequence of the Fraïssé theorem [9] that for every finite integer u and finite or countable
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set L there exists an up-to-isomorphism unique universal and homogeneous L-edge-labeled
hypergraph Ru

L. Equivalently, Ru
L can be characterised by the extension property : For ev-

ery u-uniform L-edge-labeled hypergraph B and its finite substructure A, every embedding
A → Ru

ω extends to an embedding B → Ru
ω, see e.g. [10]. If µ is a probability measure on

L with full support, then letting eµ :
(
ω
u

)
→ L be randomly generated according to µ, the

structure (ω, eµ) is with probability 1 isomorphic to Ru
L, and thus hypergraphs Ru

L can be
called random countable edge-labeled hypergraphs. R2

{0,1} is known as the random graph or
Rado graph [5]. Given edge-labeled hypergraphs A and B, we denote by Emb(A,B) the set
of all embeddings from A to B. If C is another edge-labeled hypergraph and ℓ ≤ k < ω, we
write C −→ (B)Ak,ℓ to denote the following statement:

For every colouring χ : Emb(A,C) → {1, . . . , k} with k colours, there exists an
embedding f : B → C such that the restriction of χ to Emb(A, f(B)) takes at
most ℓ distinct values.

For a countably infinite edge-labeled hypergraph B and a finite substructure A of B, the big
Ramsey degree of A in B is the least number D ∈ ω (if it exists) such that B −→ (B)Ak,D for
every k ∈ ω. We say that B has finite big Ramsey degrees if the big Ramsey degree of every
finite substructure A of B exists.

In 1969 Laver introduced a proof technique which shows that R2
L has finite big Ramsey de-

grees for every finite set L [7, 8, 17]. This was refined by Laflamme, Sauer, and Vuksanovic [14]
to precisely characterise the big Ramsey degrees of these structures. Finiteness of big Ramsey
degrees of R3

{0,1} was announced at Eurocomb 2019 by Balko, Chodounský, Hubička, Konečný,
and Vena [1] with a proof published in 2020 [2]. In 2024, Braunfeld, Chodounský, de Ran-
court, Hubička, Kawach, and Konečný [4] extended the proof to arbitrary finite u > 0 and
finite L and generalised the setup to model-theoretic L′-structures where L′ is a (possibly
infinite) relational language containing only finitely many relations of every given arity a > 1.
Answering Question 7.5 of [4] we show that the assumption about finiteness of L as well as
the above assumption about language L′ is necessary:

Theorem 1.1. Let u > 1 be finite and let A be any ω-edge-labeled u-uniform hypergraph with
2 vertices. Then A does not have finite big Ramsey degree in Ru

ω.

It is known that the big Ramsey degrees of R1
ω are finite [4]. It is also easy to show:

Theorem 1.2. Let u > 1 be finite and A be the ω-edge-labeled u-uniform hypergraph with 1
vertex. Then the big Ramsey degree of A in Ru

ω is 1.

Consequently, our result concludes the characterisation of unrestricted structures with
finite big Ramsey degrees (see [4] for precise definitions). Our proof introduces a new technique
that complements the existing arguments for infinite lower bounds which can be divided
into three types: Counting number of oscillations of monotone functions assigned to sub-
objects [6, 16, 3], study of the partial order of ages (ranks or orbits) of vertices [15], and
arguments based on the distance and diameter in metric spaces [14].

Solving the question about finiteness of big Ramsey degrees of the R2
ω suggests the fol-

lowing question about its reduct, which forgets the actual labels of edges and only records
information about pairs of vertices with equivalent labels:

Problem 1.3. Let L be a relational language with a single quaternary relation R and K the
class of all finite L-structures where A such that
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1. for every (a, b, c, d) ∈ RA it holds that a ̸= b, c ̸= d and (c, d, a, b) ∈ RA,

2. for pair of distinct vertices a, b of A it holds that (a, b, a, b), (a, b, b, a) ∈ RA,

3. whenever (a, b, c, d) and (c, d, e, f) is in RA then also (a, b, e, f) ∈ RA.

(In other words, RA defines an equivalence on 2-element subsets of vertices of A.) Does the
Fraïssé limit of K have finite big Ramsey degrees?

It is known that K has a precompact Ramsey expansion [12, 11] (fixing a linear ordering
of vertices as well as a linear ordering of equivalence classes) and thus bounded small Ramsey
degrees. However, the question about the finiteness of big Ramsey degrees is fully open.

2 Compressed tree of types

We devote the rest of this abstract to a discussion of the proof of Theorem 1.1. Toward that,
we fix u > 1 and a hypergraph Ru

ω with vertex set ω (that is, we work with an arbitrary but
fixed enumeration of Ru

ω). We will construct explicit colourings which contradict the existence
of big Ramsey degrees in Ru

ω.
Our construction is based on ideas used for analyzing structures which do have finite big

Ramsey degrees. This is done using Ramsey-type theorems working with the so-called tree of
types, see e.g. [13]. The main difficulty of applying this technique to Ru

ω is the fact that the
tree of types of Ru

ω is infinitely branching. We overcome this problem by using a related tree
which is finitely branching but the number of immediate successors of a vertex grows very
rapidly. This lets us reverse the argument and instead of showing that big Ramsey degrees
are finite, we obtain enough structure to show that they are infinite.

Let us introduce the key definitions. Put L = ω∪{⋆} where ⋆ will play the role of a special
label which intuitively means that the information is “missing”.

Definition 2.1 (f -type). Let f : ω → ω ∪ {ω} be an arbitrary function. We call an L-edge-
labeled u-uniform hypergraph X an f -type of level ℓ if:

1. The vertex set of X is X = {0, 1, . . . , ℓ− 1} ∪ {t} where t is a special vertex, called the
type vertex.

2. For every E ∈
(
X
u

)
with eX(E) ̸= ⋆ it holds that t ∈ E and eX(E) < f(max(E \ {t})).

3. For every E ∈
(
X
u

)
with t ∈ E such that f(max(E \ {t})) = ω it holds that eX(E) ̸= ⋆.

We also call a hyper-graph X simply an f -type if it is an f -type of level ℓ for some ℓ ∈ ω. In
this situation we put ℓ(X) = ℓ.

Definition 2.2 (Tree of f -types). Let f : ω → ω ∪ {ω} be an arbitrary function. By Tf we
denote the set of all f -types. We will view Tf as a (set-theoretic) tree equipped with a partial
order ⊑ and operation ∧ (meet) defined as follows: Given f -types X,Y ∈ Tf we put X ⊑ Y
if and only if X is an (induced) sub-structure of Y. By X∧Y we denote the (unique) f -type
Z ∈ Tf such that Z ⊑ X, Z ⊑ Y of largest level among all f -types with this property. Finally,
given integer ℓ, we put Tf (ℓ) = {X ∈ Tf : ℓ(X) = ℓ} and call it the level ℓ of Tf . We call
X ∈ Tf an immediate successor of Y ∈ Tf if and only if Y ⊑ X and ℓ(X) = ℓ(Y) + 1.
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The usual tree of types corresponds to using the constant function fω where fω(i) = ω
for every i ∈ ω. Every fω-type X of level ℓ can be thought of as a one vertex extension of
some ω-edge-labeled u-uniform hypergraph A with vertex set {0, 1, . . . , ℓ−1}. For this reason
we put eX(E) = ⋆ for every E ∈

({0,1,...,ℓ−1}
u

)
since this label is determined by A. We will

consider functions f with Im(f) ⊆ ω and then f -types capture only partial information about
these one vertex extensions. We make this explicit as follows:

Definition 2.3 (f -type of a vertex). Given v ∈ Ru
ω, the f -type of v, denoted by Tpf (v), is

an f -type X of level v where given E ∈
(
X
u

)
, and writing E′ = (E \ {t}) ∪ {v}, we have

eX(E) =

{
eRu

ω
(E′) if t ∈ E and eRu

ω
(E′) < f(max(E \ {t}))

⋆ otherwise.

Notice that for every choice of f it follows by universality and homogeneity of Ru
ω that for

every f -type X there exist infinitely many vertices v of Ru
ω satisfying Tpf (v) ⊒ X.

3 Persistent colouring of Ru
ω

If function f : ω → ω ∪ {ω} is fixed then every vertex v of Ru
ω is associated with the f -type

Tpf (v) ∈ Tf . Given two vertices of Ru
ω, we can then study their iterated meet closure in the

tree Tf defined as follows.

Definition 3.1. Given a pair of nodes X,Y ∈ Tf , its f -height, denoted by heightf (X,Y), is
the number of repetitions of the following procedure:

1. Put Z = X ∧Y.

2. If Tpf (ℓ(Z)) = Z terminate.

3. Repeat from step 1 with X = Tpf (ℓ(Z)) and Y = Z.

Given vertices v, w ∈ Ru
ω we also put heightf (v, w) = heightf (Tpf (v),Tpf (w)).

Theorem 3.2. Assume that f(ℓ) : ω → ω is a function satisfying

f(ℓ) ≥
∏

u−2≤i<ℓ

(f(i) + 1)(
i

u−2)

for every ℓ ∈ ω. Then for every embedding φ : Ru
ω → Ru

ω there exists integer m such that for
every n > m there exist vertices v, w ∈ φ[Ru

ω] satisfying

1. if u = 2 then eRu
ω
({v, w}) = 0 and,

2. heightf (v, w) = n.

Notice that Theorem 3.2 immediately implies Theorem 1.1. Let A be as in Theorem 1.1
and assume A = {0, 1}. If u = 2, without loss of generality we can also assume that
eA({0, 1}) = 0. Given finite n > 1, we define colouring χn : Emb(A,Rω

u) → n by putting
χn(h) = heightf (h(0), h(1)) mod n for every h ∈ Emb(A,Ru

ω). By Theorem 3.2, for every
embedding φ : Ru

ω → Ru
ω there are copies of A in every colour showing that the big Ramsey

degree of A is greater than n.
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Tf

Tpf (φ(v1))

Y1 Y′
1

Tpf (φ(v2))
Y2 Y′

2

Tpf (w
′
1)

Tpf (w1)

Tpf (w2) Tpf (w
′
2))

Figure 1: Configuration of tree nodes used in the proof of Theorem 3.2.

Proof of Theorem 3.2 (sketch). Fix f and embedding φ : Ru
ω → Ru

ω as in the statement. The
rapid growth of f ensures that for every f -type X it holds that number of immediate successors
of X is greater than number of nodes of Tf of level ℓ(X). This makes it possible to obtain
for every vertex v ∈ Ru

ω (up to u− 1 exceptions) vertices v+, v
′
+ ∈ Ru

ω with the property that
φ(v) = ℓ(Tpf (φ(v))) = ℓ(Tpf (φ(v+)) ∧ Tpf (φ(v

′
+)).

Using a technique inspired by Lachlan, Sauer, and Vuksanovic [14] we obtain vertices
v0, v1, . . . ∈ Ru

ω, w1, w2, . . . ∈ φ[Ru
ω], w′

1, w
′
2, . . . ∈ φ[Ru

ω] and nodes Y0,Y1, . . ., Y′
0,Y

′
1, . . . in

configuration as depicted in Figure 1. Then it follows that for every i > 1 we get heightf (wi+1,
w′
i+1) = heightf (wi, w

′
i) + 1.
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