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Motivating Questions

Question
We want to understand how different formulations of large
cardinals behave in models without AC. Given two definitions of a
large cardinal κ which would be equivalent under choice, can we
witness a failure of this equivalence without choice?

To do this, it can be helpful to construct new models without
choice, sometimes with unusual properties. This generates natural
questions about what types of choiceless models we can construct.

Question
What can models of ZF + ¬AC look like? What if we require these
models to be built intermediate to a forcing extension? What
‘construction methods’ do we need to build them?
The Bristol model acts as an excellent source of counterexamples!
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Symmetric Extensions I

Take a ‘base model’ V |= ZFC, and a forcing extension V [G ]. The
forcing extension must also be a model of choice, but we can
define an intermediate model, M, i.e.

V ⊆ M ⊆ V [G ],

where M is a model of ZF which may witness a failure of choice.

We define a symmetric extension using a symmetric system.

Definition
A symmetric system S is a triple ⟨P, G , F ⟩, where P is a forcing
notion, G ⊆ Aut(P) is a group of automorphisms of P, and F is a
normal filter of subgroups on G .
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Symmetric Extensions II

Let ⟨P, G , F ⟩ be a symmetric system and let ẋ be a P-name. We
say that ẋ is symmetric if symG (ẋ) = {π ∈ G | πẋ = ẋ} ∈ F , i.e
the group of automorphisms which fix ẋ is in the filter.
To generate the symmetric extension, we add only the hereditarily
symmetric names.

Theorem
Suppose that ⟨P, G , F ⟩ is a symmetric system, and G ⊆ P is a
V -generic filter. Then HSG = {ẋG | ẋ ∈ HS} is a transitive
subclass of V [G ] which contains V and satisfies the axioms of ZF.
We refer to this HSG as a symmetric extension of V .
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Small Violations of Choice

Definition
We say that small violations of choice holds in a model if there is a
set S such that for all X there is an ordinal η and a surjection
f : S × η → X .

Theorem (Blass, Usuba)
The following are equivalent:
▶ M |= SVC.
▶ We can restore choice using a set forcing on M.
▶ There is an inner model V ⊆ M such that V |= ZFC and M is

a symmetric extension of V .
▶ There is an inner model V ⊆ M such that V |= ZFC and

there is x ∈ M such that M = V (x).
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Kinna–Wagner Principles
We use Pα(x) to denote taking the αth iterated power set of x .

Definition
The Kinna–Wagner α principle, denoted KWPα states that every
set x injects into Pα(Ord), i.e. there is an ordinal η such that x
injects into Pα(η).

▶ The Kinna–Wagner rank of a set A is the least α for which
some x ∈ Pα(Ord) injects into A.

▶ The Kinna–Wagner degree of a model M is the least α for
which M |= KWPα.

Observe that KWPn → KWPn+1 and that KWP0 is equivalent to
the axiom of choice. We can think of Kinna–Wagner rank as
capturing ‘how far away from being well-orderable’ a set is.

Proposition
SVC → KWP, but the reverse does not hold.
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New choiceless intermediate models

Question
Starting with a model of ZFC, are there intermediate models of ZF
which are not models of SVC?
If we can construct an intermediate model of ¬KWP, i.e. of
unbounded Kinna-Wagner degree, we will have succeeded!

▶ (Monro, 1973) gives us a method for generating a model of
KWPn+1 ∧ ¬KWPn, for every n < ω.

▶ (Shani, 2020) genereralises this, giving models of
KWPα+1 ∧ ¬KWPα, for every α < ω1.

To generate a model with unbounded Kinna–Wagner degree, we
will need a new approach - we will use a class length iteration of
symmetric extensions.
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The Bristol model
The Bristol model is an intermediate model between L and L[c],
constructed using a class length iteration of symmetric extensions,
with unbounded Kinna–Wagner degree.

At each stage of the
iteration, we define a model Mα, using a symmetric system Sα,
and an Mα-generic sequence ϱα of length ωα, coding V Mα

ω+α.
So, at each stage of the iteration, we code a larger and larger
initial segment of the universe. Each stage of the iteration also
pushes the Kinna–Wagner degree higher and higher.
Proposition (Karagila)
If β > α, then Mβ |= ¬KWPα.
We define the Bristol model as M :=

⋃
α∈Ord Mα =

⋃
α∈ord V Mα+1

ω+α .
Corollary
The Bristol Model M |= ¬KWP, and so M |= ¬SVC.
Note that a generalisation of the Bristol model (intermediate
models of ‘deep failure of choice’) has since been defined by Hayut
and Shani. Their construction can be done over any ground model.
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Which large cardinals can live in the Bristol model?
We defined the Bristol model assuming the ground model is a
model of L, which quickly limits which large cardinals can exist an
a (class) symmetric extension. But, the Bristol model construction
still works under weaker assumptions, namely, we need to assume
GCH and □∗

λ for singular λ. These assumptions are compatible
with all known large cardinals with canonical inner models.

Proposition (Karagila)
If A is a set of ordinals in the Bristol model, then there is a real r
such that A ∈ V [r ], and moreover r ∈ V or r is Cohen over V .

Corollary
If κ is a large cardinal defined by the existance of a set of ordinals,
and this largeness is preserved by adding a Cohen real, then κ
remains large in the Bristol model.
So, if we construct the Bristol model over a ground model of
‘L + there exists a Mahlo cardinal κ’, then κ will remain Mahlo in
the Bristol model.
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What about weakly compact cardinals?
Defining a weakly compact cardinal without choice is ...
complicated.

(Showing that weak criticality is equivalent to the extension
property and implies indescribability is due to Hayut and Karagila.
Other implications are ongoing work of myself and Lyra Gardiner.)
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The tree property
We say κ has the tree property if every κ-tree has a branch. In
ZFC, κ having the tree property and being inaccessible is
equivalent to being weakly compact. We need to be more careful
with our definitions in ZF, and we also want to assume that our
trees live in Vκ.

Proposition (D, Karagila)
Let κ be a weakly compact cardinal, then there is a symmetric
extension in which every tree of height κ with levels of size < κ
has a branch, and for any α < κ, we have that κ ̸⩽ 2α. We can
show 2ω surjects onto κ.
So, let us assume something stronger. We say κ is honestly
inaccessible if Vκ |= ZF2.
Proposition (D, Karagila)
If κ is weakly compact, then there is a symmetric extension in
which κ is honestly inaccessible, every T of height κ with levels
< κ has a branch, but there is a tree T ⊆ Vκ of height κ such that
κ ̸⩽ Tα for all α < κ, and T does not have a branch.
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The tree property in the Bristol model
Note that if κ is inaccessible in the ground model, κ will be
honestly inaccessible in the Bristol model.
Definition
We say that T is a (κ, α)-tree if T is a tree of height T such that
Tα ∈ Vκ and T has Kinna–Wagner rank ⩽ α.

Theorem (D, Karagila)
Assume κ is weakly compact. In Mκ, for α < κ, every (κ, α)-tree
has a branch. However, there is a (κ, κ)-tree which does not have
a branch.

Proof.
(Sketch). For α < κ, every α-set in Mκ has already been added in
Mα+1. Mα is generated by a symmetric extension of size < κ.
Being weakly critical is preserved by small forcings, and being
weakly critical implies the tree property, so (κ, α)-trees must have
branches. However, we can build a (κ, κ)-tree in the forcing Qκ,
and argue by homogeneity that it does not have a branch.
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Future work

Conjecture (D, Karagila)
In Mκ+1, κ has the tree property. That is, every (κ, κ)-tree has a
branch.

Question
If κ is weakly critical in L, is κ weakly critical in the Bristol model?

Conjecture (D, Hayut, Karagila)
If κ is weakly compact, then in the Hayut–Shani construction of
models with deep failure of choice, κ is weakly critical.

Conjecture (D, Hayut, Karagila)
What is the relationship between the tree property and weakly
critical cardinals? We conjecture being weakly critical is stronger
than “inaccessible and has the tree property” without choice.
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Summary

▶ Symmetric extensions are a generalisation of forcing, used to
generate models with ‘small’ failures of choice.

▶ We can use class length iterations of symmetric extensions to
define models with ‘deeper’ failures of choice, such as the
Bristol model. These models may be an interesting source of
counterexamples we can use to seperate definitions of large
cardinals without choice.

▶ We can separate many different definitions of weak
compactness without choice.

▶ We have to be very careful to define weak compactness using
the tree property without choice in a ‘strong’ way.

▶ The tree property interacts with the Bristol model iteration in
a subtle way, and there is more to understand about what
large cardinals are preserved in the full Bristol model.
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Workshop announcement!
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Thank you!
mmhid@leeds.ac.uk

hopeduncan.notion.site
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