

# Critical ideals for countable compact spaces

Małgorzata Kowalczuk



Joint work with R. Filipów and A. Kwela.

## Definition

A family  $\mathcal{I} \subseteq \mathcal{P}(X)$  is an **ideal** on  $X$  if

- ①  $X \notin \mathcal{I}$ ,
- ②  $A \subseteq B \in \mathcal{I} \implies A \in \mathcal{I}$ ,
- ③  $A, B \in \mathcal{I} \implies A \cup B \in \mathcal{I}$ ,
- ④  $\mathcal{I}$  contains all finite subsets of  $X$ .

## Examples

①  $\text{Fin}(X) = \{A \subseteq X : A \text{ is finite}\}$

②  $\text{Fin} = \text{Fin}(\omega)$

③  $\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty \right\}$

④  $\mathcal{I}_d = \left\{ A \subseteq \omega : \lim_{n \rightarrow \infty} \frac{|A \cap \{1, \dots, n\}|}{n} = 0 \right\}$

⑤  $\text{Fin} \otimes \text{Fin}$  is the ideal on  $\omega \times \omega$  defined by

$$A \in \text{Fin} \otimes \text{Fin} \iff \exists i_0 \in \omega \ \forall i \geq i_0 (|\{j \in \omega : (i, j) \in A\}| < \omega).$$

## Theorem (Bolzano-Weierstrass)

For every sequence  $(x_n)_{n \in \omega}$  in  $[0, 1]$  there is an  $A \notin \text{Fin}$  such that the subsequence  $(x_n)_{n \in A}$  is convergent.

## Definition (Kwela, 2023)

$\text{FinBW}(\mathcal{I})$  is the class of all topological spaces  $X$  such that for every sequence  $(x_n)_{n \in \omega}$  in  $X$  there exists  $A \notin \mathcal{I}$  such that the subsequence  $(x_n)_{n \in A}$  is convergent in  $X$ .

$X \in \text{FinBW}(\mathcal{I}) \implies X$  is sequentially compact

$X \in \text{FinBW}(\mathcal{I}) \not\iff X$  is sequentially compact

## Theorem (Bolzano-Weierstrass)

For every sequence  $(x_n)_{n \in \omega}$  in  $[0, 1]$  there is an  $A \notin \text{Fin}$  such that the subsequence  $(x_n)_{n \in A}$  is convergent.

## Definition (Kwela, 2023)

$\text{FinBW}(\mathcal{I})$  is the class of all topological spaces  $X$  such that for every sequence  $(x_n)_{n \in \omega}$  in  $X$  there exists  $A \notin \mathcal{I}$  such that the subsequence  $(x_n)_{n \in A}$  is convergent in  $X$ .

$X \in \text{FinBW}(\mathcal{I}) \implies X$  is sequentially compact

$X \in \text{FinBW}(\mathcal{I}) \not\iff X$  is sequentially compact

## Theorem (Bolzano-Weierstrass)

For every sequence  $(x_n)_{n \in \omega}$  in  $[0, 1]$  there is an  $A \notin \text{Fin}$  such that the subsequence  $(x_n)_{n \in A}$  is convergent.

## Definition (Kwela, 2023)

$\text{FinBW}(\mathcal{I})$  is the class of all topological spaces  $X$  such that for every sequence  $(x_n)_{n \in \omega}$  in  $X$  there exists  $A \notin \mathcal{I}$  such that the subsequence  $(x_n)_{n \in A}$  is convergent in  $X$ .

$X \in \text{FinBW}(\mathcal{I}) \implies X$  is sequentially compact

$X \in \text{FinBW}(\mathcal{I}) \nLeftarrow X$  is sequentially compact

## Katětov order (Katětov, 1968)

Let  $\mathcal{I}$  and  $\mathcal{J}$  be ideals on  $X$  and  $Y$  respectively.

$\mathcal{J} \leq_K \mathcal{I} \iff$  there exists a function  $f : X \rightarrow Y$  such that

$$A \in \mathcal{J} \implies f^{-1}[A] \in \mathcal{I}.$$

$\mathcal{I} \approx \mathcal{J} \iff$  there exists a bijection  $f : X \rightarrow Y$  such that

$$A \in \mathcal{J} \iff f^{-1}[A] \in \mathcal{I}.$$

## Theorem (Kwela, 2023)

- ①  $\mathcal{I} \leq_K \text{Fin} \iff \text{FinBW}(\mathcal{I})$  coincides with the class of all sequentially compact spaces
- ②  $\text{Fin} \otimes \text{Fin} \leq_K \mathcal{I} \iff \text{FinBW}(\mathcal{I})$  coincides with the class of all finite spaces.

## Katětov order (Katětov, 1968)

Let  $\mathcal{I}$  and  $\mathcal{J}$  be ideals on  $X$  and  $Y$  respectively.

$\mathcal{J} \leq_K \mathcal{I} \iff$  there exists a function  $f : X \rightarrow Y$  such that

$$A \in \mathcal{J} \implies f^{-1}[A] \in \mathcal{I}.$$

$\mathcal{I} \approx \mathcal{J} \iff$  there exists a bijection  $f : X \rightarrow Y$  such that

$$A \in \mathcal{J} \iff f^{-1}[A] \in \mathcal{I}.$$

## Theorem (Kwela, 2023)

- ①  $\mathcal{I} \leq_K \text{Fin} \iff \text{FinBW}(\mathcal{I})$  coincides with the class of all sequentially compact spaces
- ②  $\text{Fin} \otimes \text{Fin} \leq_K \mathcal{I} \iff \text{FinBW}(\mathcal{I})$  coincides with the class of all finite spaces.

## Katětov order (Katětov, 1968)

Let  $\mathcal{I}$  and  $\mathcal{J}$  be ideals on  $X$  and  $Y$  respectively.

$\mathcal{J} \leq_K \mathcal{I} \iff$  there exists a function  $f : X \rightarrow Y$  such that

$$A \in \mathcal{J} \implies f^{-1}[A] \in \mathcal{I}.$$

$\mathcal{I} \approx \mathcal{J} \iff$  there exists a bijection  $f : X \rightarrow Y$  such that

$$A \in \mathcal{J} \iff f^{-1}[A] \in \mathcal{I}.$$

## Theorem (Kwela, 2023)

- ①  $\mathcal{I} \leq_K \text{Fin} \iff \text{FinBW}(\mathcal{I})$  coincides with the class of all sequentially compact spaces
- ②  $\text{Fin} \otimes \text{Fin} \leq_K \mathcal{I} \iff \text{FinBW}(\mathcal{I})$  coincides with the class of all finite spaces.

## Definition

Let  $X$  be a sequentially compact space. Let  $D \subseteq X$  be a countable infinite subset of  $X$ . We define

$$\text{conv}(D) = \{A \subseteq D : A^d \text{ is finite}\}.$$

where  $A^d = \{p \in X : p \in \text{cl}(A \setminus \{p\})\}$

## Definition

- ① If  $X = [0, 1]$  with the Euclidean topology, we define the ideal

$$\text{conv} = \text{conv}(\mathbb{Q} \cap [0, 1]).$$

- ② For a countable ordinal  $\alpha \geq 2$  and the space  $X = \omega^\alpha + 1$  with the order topology, we define the ideal

$$\text{conv}_\alpha = \text{conv}(\omega^\alpha + 1).$$

**Proposition**

If  $\alpha < \beta$ , then  $\text{conv}_\beta \leq_K \text{conv}_\alpha$  and  $\text{conv}_\alpha \not\leq_K \text{conv}_\beta$ .

**Proposition**

$\text{conv} \leq_K \text{conv}_\alpha$  and  $\text{conv}_\alpha \not\leq_K \text{conv}$  for every  $\alpha$ .

**Proposition**

If  $\alpha < \beta$ , then  $\text{conv}_\beta \leq_K \text{conv}_\alpha$  and  $\text{conv}_\alpha \not\leq_K \text{conv}_\beta$ .

**Proposition**

$\text{conv} \leq_K \text{conv}_\alpha$  and  $\text{conv}_\alpha \not\leq_K \text{conv}$  for every  $\alpha$ .

## Proposition

Let  $A \subseteq \omega^\alpha + 1$ . T.F.A.E.

- 1  $A \in \text{conv}_\alpha$ .
- 2 For every increasing sequence  $(\lambda_n)_{n < \omega}$  in  $\omega^\alpha$ , the set  $A \cap [\lambda_n, \lambda_{n+1}]$  is finite for all but finitely many  $n$ .

## Corollary

The ideals  $\text{conv}_2$  and  $\text{Fin} \otimes \text{Fin}$  are isomorphic.

## Proposition

Let  $A \subseteq \omega^\alpha + 1$ . T.F.A.E.

- 1  $A \in \text{conv}_\alpha$ .
- 2 For every increasing sequence  $(\lambda_n)_{n < \omega}$  in  $\omega^\alpha$ , the set  $A \cap [\lambda_n, \lambda_{n+1}]$  is finite for all but finitely many  $n$ .

## Corollary

The ideals  $\text{conv}_2$  and  $\text{Fin} \otimes \text{Fin}$  are isomorphic.

## Theorem (Mazurkiewicz-Sierpiński)

A countable space  $X$  is compact iff  $X$  is homeomorphic to the space  $\omega^\alpha \cdot n + 1$  with the order topology for some countable ordinal  $\alpha$  and  $n \in \omega$ .

## Definition

Let  $\mathbb{K}$  denote the class of all countable compact spaces and  $\mathbb{K}_\alpha$  denote the class of all compact spaces which are homeomorphic to  $\omega^\beta \cdot n + 1$  for some  $\beta \leq \alpha$  and  $n \in \omega$ .

By Mazurkiewicz-Sierpiński theorem:

$$\mathbb{K} = \bigcup_{\alpha < \omega_1} \mathbb{K}_\alpha.$$

## Theorem (Mazurkiewicz-Sierpiński)

A countable space  $X$  is compact iff  $X$  is homeomorphic to the space  $\omega^\alpha \cdot n + 1$  with the order topology for some countable ordinal  $\alpha$  and  $n \in \omega$ .

## Definition

Let  $\mathbb{K}$  denote the class of all countable compact spaces and  $\mathbb{K}_\alpha$  denote the class of all compact spaces which are homeomorphic to  $\omega^\beta \cdot n + 1$  for some  $\beta \leq \alpha$  and  $n \in \omega$ .

By Mazurkiewicz-Sierpiński theorem:

$$\mathbb{K} = \bigcup_{\alpha < \omega_1} \mathbb{K}_\alpha.$$

## Theorem

### T.F.A.E

- ①  $\text{conv}_{(1+\alpha)+1} \leq_K \mathcal{I}$  and  $\text{conv}_{1+\alpha} \not\leq_K \mathcal{I}$ .
- ②  $\text{FinBW}(\mathcal{I}) \cap \mathbb{K} = \mathbb{K}_\alpha$ .

## Theorem

$$\text{conv}_{1+\alpha} \leq_K \mathcal{I} \iff \omega^\alpha + 1 \notin \text{FinBW}(\mathcal{I}).$$

## Theorem (Meza-Alcántara, 2009)

### T.F.A.E.

- ①  $\text{conv} \not\leq_K \mathcal{I}$ .
- ②  $\text{FinBW}(\mathcal{I})$  coincides with the class of all compact metric spaces in the realm of metric spaces.

## Theorem

T.F.A.E

- ①  $\text{conv}_{(1+\alpha)+1} \leq_K \mathcal{I}$  and  $\text{conv}_{1+\alpha} \not\leq_K \mathcal{I}$ .
- ②  $\text{FinBW}(\mathcal{I}) \cap \mathbb{K} = \mathbb{K}_\alpha$ .

## Theorem

$$\text{conv}_{1+\alpha} \leq_K \mathcal{I} \iff \omega^\alpha + 1 \notin \text{FinBW}(\mathcal{I}).$$

## Theorem (Meza-Alcántara, 2009)

T.F.A.E.

- ①  $\text{conv} \not\leq_K \mathcal{I}$ .
- ②  $\text{FinBW}(\mathcal{I})$  coincides with the class of all compact metric spaces in the realm of metric spaces.

## Theorem

### T.F.A.E

- ①  $\text{conv}_{(1+\alpha)+1} \leq_K \mathcal{I}$  and  $\text{conv}_{1+\alpha} \not\leq_K \mathcal{I}$ .
- ②  $\text{FinBW}(\mathcal{I}) \cap \mathbb{K} = \mathbb{K}_\alpha$ .

## Theorem

$$\text{conv}_{1+\alpha} \leq_K \mathcal{I} \iff \omega^\alpha + 1 \notin \text{FinBW}(\mathcal{I}).$$

## Theorem (Meza-Alcántara, 2009)

### T.F.A.E.

- ①  $\text{conv} \not\leq_K \mathcal{I}$ .
- ②  $\text{FinBW}(\mathcal{I})$  coincides with the class of all compact metric spaces in the realm of metric spaces.

## Proposition

The ideal  $\text{conv}_\alpha$  is not the greatest lower bound of  $\{\text{conv}_\beta : \beta < \alpha\}$ .

## Definition

For every limit ordinal  $\alpha$  define:

$$\text{conv}_{<\alpha} = \{A \subseteq \omega^\alpha + 1 : \forall \beta < \alpha (A \cap \omega^\beta \in \text{conv}_\beta)\}$$

## Proposition

- 1 The ideal  $\text{conv}_{<\alpha}$  is the greatest lower bound of  $\{\text{conv}_\beta : \beta < \alpha\}$ .
- 2  $\text{conv}_\alpha \leq_K \text{conv}_{<\alpha}$  and  $\text{conv}_{<\alpha} \not\leq_K \text{conv}_\alpha$ .

## Proposition

The ideal  $\text{conv}_\alpha$  is not the greatest lower bound of  $\{\text{conv}_\beta : \beta < \alpha\}$ .

## Definition

For every limit ordinal  $\alpha$  define:

$$\text{conv}_{<\alpha} = \{A \subseteq \omega^\alpha + 1 : \forall \beta < \alpha (A \cap \omega^\beta \in \text{conv}_\beta)\}$$

## Proposition

- 1 The ideal  $\text{conv}_{<\alpha}$  is the greatest lower bound of  $\{\text{conv}_\beta : \beta < \alpha\}$ .
- 2  $\text{conv}_\alpha \leq_K \text{conv}_{<\alpha}$  and  $\text{conv}_{<\alpha} \not\leq_K \text{conv}_\alpha$ .

## Proposition

The ideal  $\text{conv}_\alpha$  is not the greatest lower bound of  $\{\text{conv}_\beta : \beta < \alpha\}$ .

## Definition

For every limit ordinal  $\alpha$  define:

$$\text{conv}_{<\alpha} = \{A \subseteq \omega^\alpha + 1 : \forall \beta < \alpha (A \cap \omega^\beta \in \text{conv}_\beta)\}$$

## Proposition

- 1 The ideal  $\text{conv}_{<\alpha}$  is the greatest lower bound of  $\{\text{conv}_\beta : \beta < \alpha\}$ .
- 2  $\text{conv}_\alpha \leq_K \text{conv}_{<\alpha}$  and  $\text{conv}_{<\alpha} \not\leq_K \text{conv}_\alpha$ .

## Question

Is there a greatest lower bound for the ideals  $\text{conv}_\alpha$  for all  $\alpha$ ?

## Topological complexity

By identifying sets of natural numbers with their characteristic functions, we equip  $\mathcal{P}(\omega)$  with the topology of the Cantor space  $\{0, 1\}^\omega$  and therefore we can assign topological complexity to ideals on  $\omega$ .

## Proposition

- ① The ideals  $\text{conv}_{<\alpha}$  are  $\Pi_5^0$ -complete ideals.
- ② The ideals  $\text{conv}_\alpha$  are  $\Sigma_4^0$ -complete ideals.

# Thank You!

Thank You!