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Ideals

Definition

A family I ⊆ P(X ) is an ideal on X if

1 X /∈ I,

2 A ⊆ B ∈ I =⇒ A ∈ I,

3 A,B ∈ I =⇒ A ∪ B ∈ I,

4 I contains all finite subsets of X .
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Ideals

Examples

1 Fin(X ) = {A ⊆ X : A is finite}
2 Fin = Fin(ω)

3 I1/n =

{
A ⊆ ω :

∑
n∈A

1
n < ∞

}
4 Id =

{
A ⊆ ω : lim

n→∞
|A∩{1,...,n}|

n = 0
}

5 Fin⊗ Fin is the ideal on ω × ω defined by

A ∈ Fin⊗ Fin ⇐⇒ ∃i0 ∈ ω ∀i ≥ i0 (|{j ∈ ω : (i , j) ∈ A}| < ω).
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FinBW

Theorem (Bolzano-Weierstrass)

For every sequence (xn)n∈ω in [0, 1] there is an A /∈ Fin such that the
subsequence (xn)n∈A is convergent.

Definition (Kwela, 2023)

FinBW(I) is the class of all topological spaces X such that for every
sequence (xn)n∈ω in X there exists A /∈ I such that the subsequence
(xn)n∈A is convergent in X .

X ∈ FinBW (I) =⇒ X is sequentially compact
X ∈ FinBW (I) ⇍= X is sequentially compact
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FinBW and Katětov order

Katětov order (Katětov, 1968)

Let I and J be ideals on X and Y respectively.
J ≤K I ⇐⇒ there exists a function f : X → Y such that

A ∈ J =⇒ f −1[A] ∈ I.

I ≈ J ⇐⇒ there exists a bijection f : X → Y such that

A ∈ J ⇐⇒ f −1[A] ∈ I.

Theorem (Kwela, 2023)

1 I ≤K Fin ⇐⇒ FinBW(I) coincides with the class of all
sequentially compact spaces

2 Fin⊗ Fin ≤K I ⇐⇒ FinBW(I) coincides with the class of all
finite spaces.

Ma lgorzata Kowalczuk (University of Gdańsk) Critical ideals for countable compact spaces



FinBW and Katětov order
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Critical Ideals

Definition

Let X be a sequentially compact space. Let D ⊆ X be a countable
infinite subset of X . We define

conv(D) = {A ⊆ D : Ad is finite}.

where Ad = {p ∈ X : p ∈ cl(A \ {p})}
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Critical Ideals

Definition

1 If X = [0, 1] with the Euclidean topology, we define the ideal

conv = conv(Q ∩ [0, 1]).

2 For a countable ordinal α ≥ 2 and the space X = ωα + 1 with the
order topology, we define the ideal

convα = conv(ωα + 1).

Ma lgorzata Kowalczuk (University of Gdańsk) Critical ideals for countable compact spaces



convs

Proposition

If α < β, then convβ ≤K convα and convα ̸≤K convβ .

Proposition

conv ≤K convα and convα ̸≤K conv for every α.
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Combinatorial characterization

Proposition

Let A ⊆ ωα + 1. T.F.A.E.

1 A ∈ convα.

2 For every increasing sequence (λn)n<ω in ωα, the set A ∩ [λn, λn+1]
is finite for all but finitely many n.

Corollary

The ideals conv2 and Fin⊗ Fin are isomorphic.
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Countable Compact Spaces

Theorem (Mazurkiewicz-Sierpiński)

A countable space X is compact iff X is homeomorphic to the space
ωα · n + 1 with the order topology for some countable ordinal α and
n ∈ ω.

Definition

Let K denote the class of all countable compact spaces and Kα denote
the class of all compact spaces which are homeomorphic to ωβ · n + 1 for
some β ≤ α and n ∈ ω.
By Mazurkiewicz-Sierpiński theorem:

K =
⋃

α<ω1

Kα.
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Critical Ideals for Countable Compact Spaces

Theorem

T.F.A.E

1 conv(1+α)+1 ≤K I and conv1+α ̸≤K I.

2 FinBW(I) ∩K = Kα.

Theorem

conv1+α ≤K I ⇐⇒ ωα + 1 ̸∈ FinBW(I).

Theorem (Meza-Alcántara, 2009)

T.F.A.E.

1 conv ̸≤K I.

2 FinBW(I) coincides with the class of all compact metric spaces in
the realm of metric spaces.
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Structure

Proposition

The ideal convα is not the greatest lower bound of {convβ : β < α}.

Definition

For every limit ordinal α define:

conv<α = {A ⊆ ωα + 1 : ∀β < α (A ∩ ωβ ∈ convβ)}

Proposition

1 The ideal conv<α is the greatest lower bound of {convβ : β < α}.

2 convα ≤K conv<α and conv<α ≰K convα.
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Question

Question

Is there a greatest lower bound for the ideals convα for all α?
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Topological complexity

Topological complexity

By identifying sets of natural numbers with their characteristic functions,
we equip P(ω) with the topology of the Cantor space {0, 1}ω and
therefore we can assign topological complexity to ideals on ω.

Proposition

1 The ideals conv<α are Π0
5-complete ideals.

2 The ideals convα are Σ0
4-complete ideals.
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Thank You!

Thank You!
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