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What are cardinal invariants?

Between R; and 2%, there are potentially many definable cardinals. These are
called cardinal invariants.
For a o-ideal /, let
e add(/) := min{k : | is not closed under union of size x}
e non(/) :=min{|A|: ACRA¢& I}
e cov(/) := min{x : R can be covered by x many members of /}.
e cof(/) := min{|J| : J is a base of /}.
Also we let
e b =min{|F|: F Cw” and there is no single y € w* such that
every x € F is dominated by y}.
e 0 =min{|F|: F Cw* and for all y € w¥
there is x € F such that x dominates y}.
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Cichon’s diagram

N and M denote the null ideal and the meager ideal, respectively.
x — y means ZFC proves x < y.

cov(N) — non(M) — cof (M) — cof (N) — ¢

N; — add(N) — add(M) — cov(M) — non(N)
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Cichon's “minimum”

There are 23 many assignments of N; and XN, to the cardinal invariants appearing
in Cichon's diagram not violating Cichon's diagram and the constraints
add(M) = min{b, cov(M)} and cof (M) = max{d, non(M)}.

Each of them are forceable (mainly due to Bartoszyriski-Judah—Shelah). We here
call it Cichor’s “minimum”.
cov(N) — non(M) — cof (M) — cof (N) —> ¢

|

b——m0

| ]

N; — add(N) — add(M) — cov(M) — non(N)
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The ideal £

Let £ be the o-ideal generated by F, null sets.
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Cichon’s diagram with &

cov(N) non(M) cof (M) cof (N)
A2
non(&) —
\
b——mm0
\9 cov(€)
2
R; —— add(N) add(M) cov(M) —— non(N)

It is known that add(&) =
Also max{cov(M), cov(N)}
min{b, non(N)} < non(€) <

add(M) and cof(€) = cof(M).
< cov(€) < max{d, cov(N)} and
mi n{non(./\/l), non(A)}.
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Prior studies

Research on cardinal invariants of £ dates back to Bartoszynski—Shelah
1992.

Cichon's “minimum” completed by Bartoszynski—Judah—Shelah 1993.

Cichon's maximum was achieved in 2019, and Cichori's maximum without
large cardinals in 2022.

Cichon’s maximum with £ was achieved by Yamazoe in 2026.

Note that Cichon's maximum with £ does not imply Cichon’'s minimum with &,

because the order of cardinal invariants is fixed in each Cichoi's maximum model.

3/ 17
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Cichon’'s minimum with &€

There are 36 many assignments of N; and XN, to the cardinal invariants appearing

in Cichori's diagram and cov(&) and non(€) not violating currently known ZFC
results.

Our conjeture is all of them are forceable.
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Models for non(M) < cov(M)

There are 16 constellations in which non(M) < cov(M) holds.
One of these constellations is CH.
Other 15 constellations can be obtained by finite support iteration, using Cohen

forcing, random forcing, Hechler forcing, amoeba forcing, eventually different
forcing and Kellner—Shelah—T3nasie forcing E.
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Models for cov(M) < non(M)

These cases, we cannot use finite support iteration. So we use countable support
iteration.
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A model where non(M) and non(N) are large

O | | |

O O0—0 O
] ml

This constellation is achieved by the countable support iteration of length w,,
interweaving PT¢, and S, ... PT¢, increases non(M) and S, .. increases

non(N). It has been known that 0 and cov(N') are small in this model (thus
cov(&) is also small).
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A model where non(M) and non(N) are large

07— m——m——m
E%D

New ingredient 1: Every limsup forcing (including S, ,.) preserves all relations
for the left side of Cichon's diagram.
New ingredient 2: PT¢, preserves the relation for non(€).
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Ingredients

Ingredients we have done are:

e Every limsup forcing (including S, ,.) preserves all relations for the left side
of Cichon's diagram.

e PT;, preserves the relation for non(&).

e Every proper forcing having a suitable fragment of Laver property preserves
the relation for cov(/N).

Ingredients we have not done are:
e P: has the property preserving non(/\/).
e P¢ has the property preserving cov(M).

e Finding alternative forcing notions to PT¢, and Q (a creature forcing
increasing non(&)).

14 /17
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