

On minimal dimension of normed barrelled spaces

Damian Sobota

Kurt Gödel Research Center for Mathematical Logic
University of Vienna

Winter School, Hejnice 2026

Motivation — Three Fundamental Theorems

Uniform Boundedness Principle

X, Y – Banach spaces

\mathcal{F} – family of continuous operators $X \rightarrow Y$

If $\sup_{T \in \mathcal{F}} \|T(x)\| < \infty$ for every $x \in X$, then $\sup_{T \in \mathcal{F}} \|T\| < \infty$.

Motivation — Three Fundamental Theorems

Uniform Boundedness Principle

X, Y – Banach spaces

\mathcal{F} – family of continuous operators $X \rightarrow Y$

If $\sup_{T \in \mathcal{F}} \|T(x)\| < \infty$ for every $x \in X$, then $\sup_{T \in \mathcal{F}} \|T\| < \infty$.

Closed Graph Theorem

X, Y – Banach spaces

$T: X \rightarrow Y$ – operator

If T has closed graph, then T is continuous.

Motivation — Three Fundamental Theorems

Uniform Boundedness Principle

X, Y – Banach spaces

\mathcal{F} – family of continuous operators $X \rightarrow Y$

If $\sup_{T \in \mathcal{F}} \|T(x)\| < \infty$ for every $x \in X$, then $\sup_{T \in \mathcal{F}} \|T\| < \infty$.

Closed Graph Theorem

X, Y – Banach spaces

$T: X \rightarrow Y$ – operator

If T has closed graph, then T is continuous.

Open Mapping Theorem

X, Y – Banach spaces

$T: X \rightarrow Y$ – continuous operator

If T is onto, then T is open.

Uniform Boundedness Principle according to Rudin's F.A.

Uniform Boundedness Principle (General Form)

X – F-space (i.e. completely invariant-metrizable topological vector space)

Y – topological vector space

\mathcal{F} – family of continuous operators $X \rightarrow Y$

Uniform Boundedness Principle according to Rudin's F.A.

Uniform Boundedness Principle (General Form)

X – F-space (i.e. completely invariant-metrizable topological vector space)

Y – topological vector space

\mathcal{F} – family of continuous operators $X \rightarrow Y$

If $\{T(x) : T \in \mathcal{F}\}$ is bounded in Y for each $x \in X$, then \mathcal{F} is equicontinuous.

Barrelled spaces

Definition

If A is a subset of a tvs X which is closed, convex, balanced, and absorbing, then A is a *barrel*.

Barrelled spaces

Definition

If A is a subset of a tvs X which is closed, convex, balanced, and absorbing, then A is a *barrel*.

A tvs X is *barrelled* if every barrel in X is a neighborhood of 0.

Characterizations of barrelled spaces

Theorem

Let X be a tvs. TFAE:

- X is barrelled,

Characterizations of barrelled spaces

Theorem

Let X be a tvs. TFAE:

- X is barrelled,
- for any tvs Y and family \mathcal{F} of continuous operators $X \rightarrow Y$, if $\{T(x): T \in \mathcal{F}\}$ is bounded for every $x \in X$, then \mathcal{F} is equicontinuous (hence uniformly bounded),

Characterizations of barrelled spaces

Theorem

Let X be a tvs. TFAE:

- X is barrelled,
- for any tvs Y and family \mathcal{F} of continuous operators $X \rightarrow Y$, if $\{T(x): T \in \mathcal{F}\}$ is bounded for every $x \in X$, then \mathcal{F} is equicontinuous (hence uniformly bounded),
- for any completely metrizable tvs Y and operator $T: X \rightarrow Y$, if T has closed graph, then T is continuous.

Characterizations of barrelled spaces

Theorem

Let X be a tvs. TFAE:

- X is barrelled,
- for any tvs Y and family \mathcal{F} of continuous operators $X \rightarrow Y$, if $\{T(x): T \in \mathcal{F}\}$ is bounded for every $x \in X$, then \mathcal{F} is equicontinuous (hence uniformly bounded),
- for any completely metrizable tvs Y and operator $T: X \rightarrow Y$, if T has closed graph, then T is continuous.

Theorem

Let Y be a locally convex space. TFAE:

- Y is barrelled,

Characterizations of barrelled spaces

Theorem

Let X be a tvs. TFAE:

- X is barrelled,
- for any tvs Y and family \mathcal{F} of continuous operators $X \rightarrow Y$, if $\{T(x): T \in \mathcal{F}\}$ is bounded for every $x \in X$, then \mathcal{F} is equicontinuous (hence uniformly bounded),
- for any completely metrizable tvs Y and operator $T: X \rightarrow Y$, if T has closed graph, then T is continuous.

Theorem

Let Y be a locally convex space. TFAE:

- Y is barrelled,
- for any lcs X and operator $T: X \rightarrow Y$, if T is onto, then for any nhbd U of 0 in X the closure $\overline{T[U]}$ is a nhbd of 0 in Y .

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0
- Fréchet spaces (i.e. completely invariant-metrizable locally convex spaces), e.g. $C(\Omega)$, $C^\infty(\Omega)$

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0
- Fréchet spaces (i.e. completely invariant-metrizable locally convex spaces), e.g. $C(\Omega)$, $C^\infty(\Omega)$
- F-spaces, e.g. $L_p(\mu)$ ($0 < p < 1$)

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0
- Fréchet spaces (i.e. completely invariant-metrizable locally convex spaces), e.g. $C(\Omega)$, $C^\infty(\Omega)$
- F-spaces, e.g. $L_p(\mu)$ ($0 < p < 1$)

Non-examples

- c_{00}

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0
- Fréchet spaces (i.e. completely invariant-metrizable locally convex spaces), e.g. $C(\Omega)$, $C^\infty(\Omega)$
- F-spaces, e.g. $L_p(\mu)$ ($0 < p < 1$)

Non-examples

- c_{00}
- $C([0, 1])$ with L_1 -norm

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0
- Fréchet spaces (i.e. completely invariant-metrizable locally convex spaces), e.g. $C(\Omega)$, $C^\infty(\Omega)$
- F-spaces, e.g. $L_p(\mu)$ ($0 < p < 1$)

Non-examples

- c_{00}
- $C([0, 1])$ with L_1 -norm
- the linear span of characteristic functions of clopen subsets of 2^ω in $C(2^\omega)$

Examples of barrelled spaces

Examples

- Banach spaces, e.g. $C(K)$, $L_p(\mu)$ ($1 \leq p \leq \infty$), c_0
- Fréchet spaces (i.e. completely invariant-metrizable locally convex spaces), e.g. $C(\Omega)$, $C^\infty(\Omega)$
- F-spaces, e.g. $L_p(\mu)$ ($0 < p < 1$)

Non-examples

- c_{00}
- $C([0, 1])$ with L_1 -norm
- the linear span of characteristic functions of clopen subsets of 2^ω in $C(2^\omega)$
- $C_p(X)$ for X infinite pseudocompact

Spaces of continuous functions

Theorem (folklore; probably Schachermayer)

Let K be a zero-dimensional compact space. TFAE:

- the linear span of characteristic functions of clopen subsets of K in $C(K)$ is barrelled,

Spaces of continuous functions

Theorem (folklore; probably Schachermayer)

Let K be a zero-dimensional compact space. TFAE:

- the linear span of characteristic functions of clopen subsets of K in $C(K)$ is barrelled,
- for every sequence (μ_n) of finitely additive measures on the Boolean algebra $\text{Clopen}(K)$ we have:

$$(\forall U \in \text{Clopen}(K): \mu_n(U) \rightarrow 0) \implies \sup_n |\mu_n|(K) < \infty.$$

Spaces of continuous functions

Theorem (folklore; probably Schachermayer)

Let K be a zero-dimensional compact space. TFAE:

- the linear span of characteristic functions of clopen subsets of K in $C(K)$ is barrelled,
- for every sequence (μ_n) of finitely additive measures on the Boolean algebra $\text{Clopen}(K)$ we have:

$$(\forall U \in \text{Clopen}(K): \mu_n(U) \rightarrow 0) \implies \sup_n |\mu_n|(K) < \infty.$$

Theorem (Buchwalter–Schmets)

Let X be a Tychonoff space. TFAE:

- $C_p(X)$ is barrelled,

Spaces of continuous functions

Theorem (folklore; probably Schachermayer)

Let K be a zero-dimensional compact space. TFAE:

- the linear span of characteristic functions of open subsets of K in $C(K)$ is barrelled,
- for every sequence (μ_n) of finitely additive measures on the Boolean algebra $\text{Clopen}(K)$ we have:

$$(\forall U \in \text{Clopen}(K): \mu_n(U) \rightarrow 0) \implies \sup_n |\mu_n|(K) < \infty.$$

Theorem (Buchwalter–Schmets)

Let X be a Tychonoff space. TFAE:

- $C_p(X)$ is barrelled,
- every functionally bounded subset of X is finite.

Dimension of completely metrizable tvs

dimension = algebraic dimension = size of a Hamel basis

Dimension of completely metrizable tvs

dimension = algebraic dimension = size of a Hamel basis

Theorem (Mazur, Löwig, Mackey, ...)

Every infinite-dimensional Fréchet space has dimension $\geq c$.

Dimension of completely metrizable tvs

dimension = algebraic dimension = size of a Hamel basis

Theorem (Mazur, Löwig, Mackey, ...)

Every infinite-dimensional Fréchet space has dimension $\geq \mathfrak{c}$.

Theorem (Popoola–Tweddle)

Every infinite-dimensional completely metrizable tvs has dimension $\geq \mathfrak{c}$.

Dimension of completely metrizable tvs

dimension = algebraic dimension = size of a Hamel basis

Theorem (Mazur, Löwig, Mackey, ...)

Every infinite-dimensional Fréchet space has dimension $\geq \mathfrak{c}$.

Theorem (Popoola–Tweddle)

Every infinite-dimensional completely metrizable tvs has dimension $\geq \mathfrak{c}$.

Theorem (Lacey)

Every infinite-dimensional separable Banach space has dimension \mathfrak{c} .

Dimension of completely metrizable tvs

dimension = algebraic dimension = size of a Hamel basis

Theorem (Mazur, Löwig, Mackey, ...)

Every infinite-dimensional Fréchet space has dimension $\geq \mathfrak{c}$.

Theorem (Popoola–Tweddle)

Every infinite-dimensional completely metrizable tvs has dimension $\geq \mathfrak{c}$.

Theorem (Lacey)

Every infinite-dimensional separable Banach space has dimension \mathfrak{c} .

Corollary

$\mathfrak{c} = \min\{\dim(X) : X \text{ is an infinite-dimensional Fréchet space}\}$

Dimension of barrelled spaces

Question

What is the minimal dimension of an infinite-dimensional barrelled space?

Dimension of barrelled spaces

Question

What is the minimal dimension of an infinite-dimensional barrelled space?

Proposition

Every vector space V can be endowed with a topology τ making it a barrelled space.

(τ is the so-called *strongest locally convex topology* on V)

Dimension of barrelled spaces

Question

What is the minimal dimension of an infinite-dimensional barrelled space?

Proposition

Every vector space V can be endowed with a topology τ making it a barrelled space.

(τ is the so-called *strongest locally convex topology* on V)

So, consider the vector space c_{00} to get the following

Corollary

$\omega = \min\{\dim(X) : X \text{ is an infinite-dimensional barrelled space}\}$

Dimension of metrizable barrelled spaces

Theorem (Saxon–Sánchez Ruiz)

$\mathfrak{b} = \min\{\dim(X) : X \text{ is an inf.-dim. } \underline{\text{metrizable}} \text{ barrelled space}\}$

Dimension of metrizable barrelled spaces

Theorem (Saxon–Sánchez Ruiz)

$b = \min\{dim(X) : X \text{ is an inf.-dim. metrizable barrelled space}\}$

Question

What is the minimal dimension n_b of an infinite-dimensional normed barrelled space?

Dimension of metrizable barrelled spaces

Theorem (Saxon–Sánchez Ruiz)

$\mathfrak{b} = \min\{ \dim(X) : X \text{ is an inf.-dim. metrizable barrelled space} \}$

Question

What is the minimal dimension $\mathfrak{n}\mathfrak{b}$ of an infinite-dimensional normed barrelled space?

Corollary

$\mathfrak{b} \leq \mathfrak{n}\mathfrak{b} \leq \mathfrak{c}$

Dimension of normed barrelled spaces

Theorem (S.)

If $\text{cof}(\mathcal{N}) = \omega_n$ for some $n \in \omega$, then there is a normed barrelled space of dimension $\text{cof}(\mathcal{N})$.

Dimension of normed barrelled spaces

Theorem (S.)

If $\text{cof}(\mathcal{N}) = \omega_n$ for some $n \in \omega$, then there is a normed barrelled space of dimension $\text{cof}(\mathcal{N})$.

Consistently, $\mathfrak{nb} < \mathfrak{c}$.

Dimension of normed barrelled spaces

Theorem (S.)

If $\text{cof}(\mathcal{N}) = \omega_n$ for some $n \in \omega$, then there is a normed barrelled space of dimension $\text{cof}(\mathcal{N})$.

Consistently, $\mathfrak{nb} < \mathfrak{c}$.

Theorem (S.-Zdomskyy)

Let $\mathbb{P} \in \{\text{Sacks, Silver, Miller}\}$. Then, in any \mathbb{P} -generic extension $V[G]$, the linear space spanned by clopen subsets of the Stone space $St(\wp(\omega)^\mathbb{V})$ of the ground model Boolean algebra $\wp(\omega)^\mathbb{V}$ endowed with the supremum norm is barrelled and of dimension ω_1 .

Dimension of normed barrelled spaces

Theorem (S.)

If $\text{cof}(\mathcal{N}) = \omega_n$ for some $n \in \omega$, then there is a normed barrelled space of dimension $\text{cof}(\mathcal{N})$.

Consistently, $\mathfrak{nb} < \mathfrak{c}$.

Theorem (S.-Zdomskyy)

Let $\mathbb{P} \in \{\text{Sacks, Silver, Miller}\}$. Then, in any \mathbb{P} -generic extension $V[G]$, the linear space spanned by clopen subsets of the Stone space $St(\wp(\omega)^\mathbb{V})$ of the ground model Boolean algebra $\wp(\omega)^\mathbb{V}$ endowed with the supremum norm is barrelled and of dimension ω_1 .

If \mathbb{P} adds a Cohen real, a random real, or a dominating real (e.g. $\mathbb{P} \in \{\text{Cohen, random, Hechler, Mathias, Laver}\}$), then the above theorem does not hold for \mathbb{P} .

Some new bounds for $n\mathfrak{b}$

Recall: $\mathfrak{b} \leq n\mathfrak{b} \leq \mathfrak{c}$

Some new bounds for nb

Recall: $\mathfrak{b} \leq \text{nb} \leq \mathfrak{c}$

Theorem (Brian–Stuart)

Every infinite-dimensional separable Banach space contains an infinite-dimensional barrelled subspace of dimension $\leq \text{non}(\mathcal{M})$.

Some new bounds for nb

Recall: $\mathfrak{b} \leq \text{nb} \leq \mathfrak{c}$

Theorem (Brian–Stuart)

Every infinite-dimensional separable Banach space contains an infinite-dimensional barrelled subspace of dimension $\leq \text{non}(\mathcal{M})$.

Consequently, $\text{nb} \leq \text{non}(\mathcal{M})$.

Some new bounds for nb

Recall: $\mathfrak{b} \leq \text{nb} \leq \mathfrak{c}$

Theorem (Brian–Stuart)

Every infinite-dimensional separable Banach space contains an infinite-dimensional barrelled subspace of dimension $\leq \text{non}(\mathcal{M})$.

Consequently, $\text{nb} \leq \text{non}(\mathcal{M})$.

Theorem (Brian–Stuart)

If the dual space X^* of a Banach space X contains an isomorphic copy of c_0 or ℓ_p for $1 \leq p < \infty$, then no infinite-dimensional barrelled subspace of E has dimension $< \text{cov}(\mathcal{N})$.

Some new bounds for nb

Recall: $\mathfrak{b} \leq \text{nb} \leq \mathfrak{c}$

Theorem (Brian–Stuart)

Every infinite-dimensional separable Banach space contains an infinite-dimensional barrelled subspace of dimension $\leq \text{non}(\mathcal{M})$.

Consequently, $\text{nb} \leq \text{non}(\mathcal{M})$.

Theorem (Brian–Stuart)

If the dual space X^* of a Banach space X contains an isomorphic copy of c_0 or ℓ_p for $1 \leq p < \infty$, then no infinite-dimensional barrelled subspace of E has dimension $< \text{cov}(\mathcal{N})$.

So, almost $\text{cov}(\mathcal{N}) \leq \text{nb} \dots$

Some new bounds for \mathfrak{nb}

Theorem (S.)

No infinite-dimensional Banach space contains an infinite-dimensional barrelled subspace of dimension $< \text{cov}(\mathcal{N})$.

Some new bounds for \mathfrak{nb}

Theorem (S.)

No infinite-dimensional Banach space contains an infinite-dimensional barrelled subspace of dimension $< \text{cov}(\mathcal{N})$.

Corollary

$$\text{cov}(\mathcal{N}) \leq \mathfrak{nb}$$

Some new bounds for nb

Theorem (S.)

No infinite-dimensional Banach space contains an infinite-dimensional barrelled subspace of dimension $< \text{cov}(\mathcal{N})$.

Corollary

$$\text{cov}(\mathcal{N}) \leq \text{nb}$$

Corollary

$$\max(\mathfrak{b}, \text{cov}(\mathcal{N})) \leq \text{nb} \leq \text{non}(\mathcal{M})$$

Some new bounds for \mathfrak{nb}

Theorem (S.)

No infinite-dimensional Banach space contains an infinite-dimensional barrelled subspace of dimension $< \text{cov}(\mathcal{N})$.

Corollary

$$\text{cov}(\mathcal{N}) \leq \mathfrak{nb}$$

Corollary

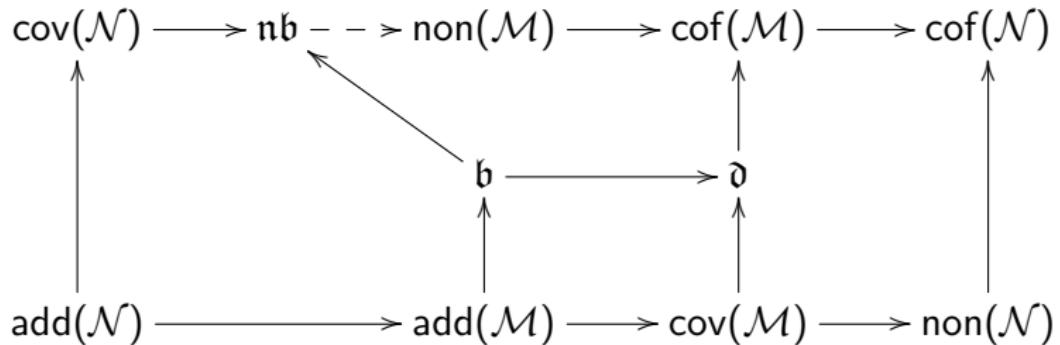
$$\max(\mathfrak{b}, \text{cov}(\mathcal{N})) \leq \mathfrak{nb} \leq \text{non}(\mathcal{M})$$

Considering any model with $\mathfrak{b} < \text{cov}(\mathcal{N})$, we get the following

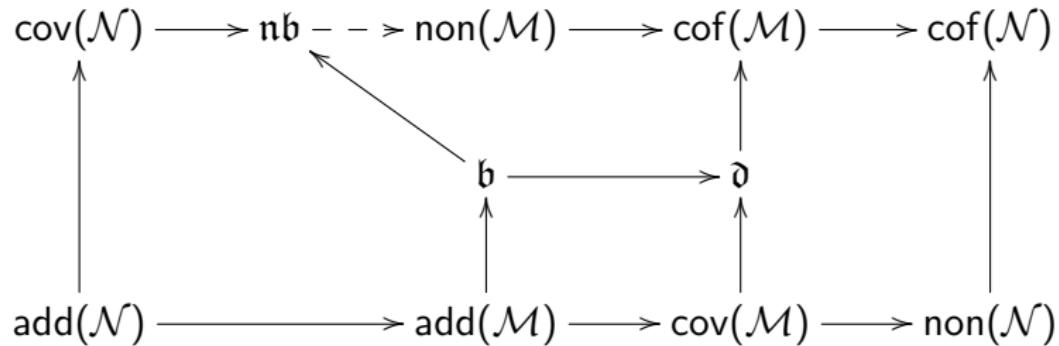
Corollary

Consistently, there exists an infinite-dimensional metrizable barrelled space X such that for each infinite-dimensional normed barrelled space Y we have $\dim(X) < \dim(Y)$.

Cichoń's diagram and \mathbb{nb}



Cichoń's diagram and \mathbb{nb}



Question

$\mathbb{nb} = \text{non}(\mathcal{M})$?

The end

Thank you for the attention!

Thank you, Guys!!!

Adam Bartoš

David Chodounský

Jan Grebík

Chris Lambie-Hanson