

Rudin–Blass Ordering of Measures

Adam Morawski

Joint work with P.Borodulin-Nadzieja,
A. Martinez-Celis, and J. Świerczyńska

Measures and Filters

Measure \equiv finitely additive probability measure. Unless otherwise specified, also vanishing on points.

Measures and Filters

Measure \equiv finitely additive probability measure. Unless otherwise specified, also vanishing on points.

Examples

Given an ultrafilter \mathcal{U} let

$$\delta_{\mathcal{U}}(A) = \begin{cases} 1, & \text{if } A \in \mathcal{U} \\ 0, & \text{otherwise,} \end{cases}$$

Measures and Filters

Measure \equiv finitely additive probability measure. Unless otherwise specified, also vanishing on points.

Examples

Given an ultrafilter \mathcal{U} let

$$\delta_{\mathcal{U}}(A) = \begin{cases} 1, & \text{if } A \in \mathcal{U} \\ 0, & \text{otherwise,} \end{cases}$$

$$d_{\mathcal{U}}(A) = \mathcal{U}\text{-}\lim_n \frac{|A \cap n|}{n}.$$

Rudin-Blass ordering

Given $f : \omega \rightarrow \omega$ let

$$f[\mathcal{U}] = \{A : f^{-1}(A) \in \mathcal{U}\}$$

Rudin-Blass ordering

Given $f : \omega \rightarrow \omega$ let

$$f[\mathcal{U}] = \{A : f^{-1}(A) \in \mathcal{U}\}$$

Rudin-Blass ordering

We write $\mathcal{U} \leqslant_{RB} \mathcal{V}$ whenever $\mathcal{U} = f[\mathcal{V}]$ for some finite-to-one function f

Rudin-Blass ordering

Given $f : \omega \rightarrow \omega$ let

$$f[\mathcal{U}] = \{A : f^{-1}(A) \in \mathcal{U}\}$$

$$f[\mu](A) = \mu(f^{-1}(A)).$$

Rudin-Blass ordering

We write $\mathcal{U} \leqslant_{RB} \mathcal{V}$ whenever $\mathcal{U} = f[\mathcal{V}]$ for some finite-to-one function f

Rudin–Blass ordering

Given $f : \omega \rightarrow \omega$ let

$$f[\mathcal{U}] = \{A : f^{-1}(A) \in \mathcal{U}\}$$

$$f[\mu](A) = \mu(f^{-1}(A)).$$

Rudin–Blass ordering

We write $\mathcal{U} \leqslant_{RB} \mathcal{V}$ whenever $\mathcal{U} = f[\mathcal{V}]$ for some finite-to-one function f

and $\mu \leqslant_{RB} \nu$ whenever $\mu = f[\nu]$ for a finite-to-one f .

Rudin–Blass ordering

Given $f : \omega \rightarrow \omega$ let

$$f[\mathcal{U}] = \{A : f^{-1}(A) \in \mathcal{U}\}$$

$$f[\mu](A) = \mu(f^{-1}(A)).$$

Rudin–Blass ordering

We write $\mathcal{U} \leqslant_{RB} \mathcal{V}$ whenever $\mathcal{U} = f[\mathcal{V}]$ for some finite-to-one function f

and $\mu \leqslant_{RB} \nu$ whenever $\mu = f[\nu]$ for a finite-to-one f .

For Rudin–Keisler, drop the finite-to-one requirement.

Selectors

Given $\langle P_n \rangle$ – a partition of ω , a *selector* is a set $S \subseteq \omega$ such that for each n

$$|P_n \cap S| \leq 1.$$

Q-measures

Selectors

Given $\langle P_n \rangle$ – a partition of ω , a *selector* is a set $S \subseteq \omega$ such that for each n

$$|P_n \cap S| \leq 1.$$

Q-points

\mathcal{U} is a Q-point

if for any partition of ω into finite sets

there is a selector S with

$$S \in \mathcal{U}$$

Q-measures

Selectors

Given $\langle P_n \rangle$ – a partition of ω , a *selector* is a set $S \subseteq \omega$ such that for each n

$$|P_n \cap S| \leq 1.$$

Q-points and Q-measures

\mathcal{U} is a Q-point μ is a Q^+ -measure
if for any partition of ω into finite sets
there is a selector S with

$$S \in \mathcal{U} \qquad \mu(S) > 0$$

Q-measures

Selectors

Given $\langle P_n \rangle$ – a partition of ω , a *selector* is a set $S \subseteq \omega$ such that for each n

$$|P_n \cap S| \leq 1.$$

Q-points and Q-measures

\mathcal{U} is a Q-point μ is a Q^+ -measure μ is a Q-measure
if for any partition of ω into finite sets
there is a selector S with

$$S \in \mathcal{U} \quad \mu(S) > 0 \quad \mu(S) = 1.$$

Fact

Q-points are exactly the Rudin–Blass minimal ultrafilters.

Q vs RB

Fact

Q-points are exactly the Rudin–Blass minimal ultrafilters.

Fact

Q-measures are Rudin–Blass minimal.

Q vs RB

Fact

Q-points are exactly the Rudin–Blass minimal ultrafilters.

Fact

Q-measures are Rudin–Blass minimal.

Theorem

Consistently, there exists a Rudin–Blass minimal measure, which is not Q^+ .

On existence

Fact

Under *Filter Dichotomy* there is an ultrafilter RB-below any measure and there are no Q-points.

On existence

Fact

Under *Filter Dichotomy* there is an ultrafilter RB-below any measure and there are no Q-points. So there are no Q^+ -measures and no RB-minimal measures.

On existence

Fact

Under *Filter Dichotomy* there is an ultrafilter RB-below any measure and there are no Q-points. So there are no Q^+ -measures and no RB-minimal measures.

Fact

There exists a Q-point whenever there exists a Q-measure.

On existence

Fact

Under *Filter Dichotomy* there is an ultrafilter RB-below any measure and there are no Q-points. So there are no Q⁺-measures and no RB-minimal measures.

Fact

There exists a Q-point whenever there exists a Q-measure.

d_U is never Q⁺.

Atomless Q-measures

Theorem(Avilés, Martínez-Cervantes, Poveda, Sáenz)

Under $\mathfrak{d} = \text{cov}(\mathcal{M})$, every atomless measure defined on a Boolean algebra of size $< \mathfrak{d}$ can be extended to an atomless Q-measure.

Atomless Q-measures

Theorem(Avilés, Martínez-Cervantes, Poveda, Sáenz)

Under $\mathfrak{d} = \text{cov}(\mathcal{M})$, every atomless measure defined on a Boolean algebra of size $< \mathfrak{d}$ can be extended to an atomless Q-measure.

Proposition

If there exists an atomless Q-measure, then there are 2^c different Q-points.

Atomless Q-measures

Theorem(Avilés, Martínez-Cervantes, Poveda, Sáenz)

Under $\mathfrak{d} = \text{cov}(\mathcal{M})$, every atomless measure defined on a Boolean algebra of size $< \mathfrak{d}$ can be extended to an atomless Q-measure.

Proposition

If there exists an atomless Q-measure, then there are 2^c different Q-points.

Theorem

If there are infinitely many pairwise RK-incompatible selective ultrafilters, then there is an atomless Q-measure.

Selective measures and Rudin–Keisler ordering

Selective measures

A measure μ is selective if for any partition $\langle P_n \rangle$ of ω there is a selector S with

$$\mu(S) = 1 - \sum_n \mu(P_n).$$

Selective measures and Rudin–Keisler ordering

Selective measures

A measure μ is selective if for any partition $\langle P_n \rangle$ of ω there is a selector S with

$$\mu(S) = 1 - \sum_n \mu(P_n).$$

Fact

Measure is selective if and only if it is a P-measure and a Q-measure.

Selective measures and Rudin–Keisler ordering

Selective measures

A measure μ is selective if for any partition $\langle P_n \rangle$ of ω there is a selector S with

$$\mu(S) = 1 - \sum_n \mu(P_n).$$

Fact

Measure is selective if and only if it is a P-measure and a Q-measure.

Proposition

Selective measures are Rudin–Keisler minimal.

We are working with sequences of measures with finite support (there is a finite set of full measure, so *not vanishing on points*). Focus on limit behavior.

Consider δ given by $\delta_n(A) = \begin{cases} 1, & \text{if } n \in A, \\ 0 & \text{otherwise.} \end{cases}$

Construction Framework (Mokobodzki)

We are working with sequences of measures with finite support (there is a finite set of full measure, so *not vanishing on points*). Focus on limit behavior.

Consider δ given by $\delta_n(A) = \begin{cases} 1, & \text{if } n \in A, \\ 0 & \text{otherwise.} \end{cases}$

\preceq relation

$a \preceq b$ if we have $a_n \in \text{conv}\{b_m : m \geq n\}$ for all n .

Construction Framework (Mokobodzki)

We are working with sequences of measures with finite support (there is a finite set of full measure, so *not vanishing on points*). Focus on limit behavior.

Consider δ given by $\delta_n(A) = \begin{cases} 1, & \text{if } n \in A, \\ 0 & \text{otherwise.} \end{cases}$

\preceq relation

$a \preceq^* b$ if we have $a_n \in \text{conv}\{b_m : m \geq n\}$ for all but finitely many n .

Construction Framework (Mokobodzki)

$a \preceq {}^*b$ if $a_n \in \text{conv}\{b_m : m \geq n\}$ for almost all n .

Observations

Let $\lambda_a(X) = \lim_n a_n(X)$ whenever possible.

Construction Framework (Mokobodzki)

$a \preceq^* b$ if $a_n \in \text{conv}\{b_m : m \geq n\}$ for almost all n .

Observations

Let $\lambda_a(X) = \lim_n a_n(X)$ whenever possible.
If $a \preceq^* b$ and $\lambda_b(X)$ exists, then $\lambda_a(X) = \lambda_b(X)$.

Construction Framework (Mokobodzki)

$a \preceq^* b$ if $a_n \in \text{conv}\{b_m : m \geq n\}$ for almost all n .

Observations

Let $\lambda_a(X) = \lim_n a_n(X)$ whenever possible.

If $a \preceq^* b$ and $\lambda_b(X)$ exists, then $\lambda_a(X) = \lambda_b(X)$.

Given b and X there is $a \preceq b$ such that $\lambda_a(X)$ exists.

Construction Framework (Mokobodzki)

$a \preceq^* b$ if $a_n \in \text{conv}\{b_m : m \geq n\}$ for almost all n .

Observations

Let $\lambda_a(X) = \lim_n a_n(X)$ whenever possible.

If $a \preceq^* b$ and $\lambda_b(X)$ exists, then $\lambda_a(X) = \lambda_b(X)$.

Given b and X there is $a \preceq b$ such that $\lambda_a(X)$ exists.

Every countable \preceq^* -desc. sequence has a lower bound.

Construction Framework (Mokobodzki)

$a \preceq^* b$ if $a_n \in \text{conv}\{b_m : m \geq n\}$ for almost all n .

Observations

Let $\lambda_a(X) = \lim_n a_n(X)$ whenever possible.

If $a \preceq^* b$ and $\lambda_b(X)$ exists, then $\lambda_a(X) = \lambda_b(X)$.

Given b and X there is $a \preceq b$ such that $\lambda_a(X)$ exists.

Every countable \preceq^* -desc. sequence has a lower bound.

Proposition

For any $a \preceq \delta$ and f finite-to-one there are $b \preceq a$ and g fin-to-one such, that

$$\forall_X \forall_n \quad |b_n(X) - b_n((gf)^{-1}[X])| < 2^{-n}$$

Construction Scheme

- ▶ Assume CH
- ▶ Enumerate $[\omega]^\omega$ as $\langle A_\alpha : \alpha < \omega_1 \rangle$ and finite to one functions as $\langle f_\alpha : \alpha < \omega_1 \rangle$.
- ▶ Choose a^0 wisely.

Construction Scheme

- ▶ Assume CH
- ▶ Enumerate $[\omega]^\omega$ as $\langle A_\alpha : \alpha < \omega_1 \rangle$ and finite to one functions as $\langle f_\alpha : \alpha < \omega_1 \rangle$.
- ▶ Choose a^0 wisely.
- ▶ Choose $a^{\alpha+1} \preceq a^\alpha$ ensuring
 - ▶ measurability of A_α ,

Construction Scheme

- ▶ Assume CH
- ▶ Enumerate $[\omega]^\omega$ as $\langle A_\alpha : \alpha < \omega_1 \rangle$ and finite to one functions as $\langle f_\alpha : \alpha < \omega_1 \rangle$.
- ▶ Choose a^0 wisely.
- ▶ Choose $a^{\alpha+1} \preceq a^\alpha$ ensuring
 - ▶ measurability of A_α ,
 - ▶ invariance under $g_\alpha f_\alpha$ -preimages for some g_α .

Construction Scheme

- ▶ Assume CH
- ▶ Enumerate $[\omega]^\omega$ as $\langle A_\alpha : \alpha < \omega_1 \rangle$ and finite to one functions as $\langle f_\alpha : \alpha < \omega_1 \rangle$.
- ▶ Choose a^0 wisely.
- ▶ Choose $a^{\alpha+1} \preceq a^\alpha$ ensuring
 - ▶ measurability of A_α ,
 - ▶ invariance under $g_\alpha f_\alpha$ -preimages for some g_α .
- ▶ On limit steps diagonalize getting $a^\beta \preceq^* a^\alpha$ ($\forall \alpha < \beta$).

Construction Scheme

- ▶ Assume CH
- ▶ Enumerate $[\omega]^\omega$ as $\langle A_\alpha : \alpha < \omega_1 \rangle$ and finite to one functions as $\langle f_\alpha : \alpha < \omega_1 \rangle$.
- ▶ Choose a^0 wisely.
- ▶ Choose $a^{\alpha+1} \preceq a^\alpha$ ensuring
 - ▶ measurability of A_α ,
 - ▶ invariance under $g_\alpha f_\alpha$ -preimages for some g_α .
- ▶ On limit steps diagonalize getting $a^\beta \preceq^* a^\alpha$ ($\forall \alpha < \beta$).

Let $\lambda(X) = \lambda_{a^\alpha}(X) = \lim_n a_n^\alpha(X)$ for any α where the limit exists.

Improvements

Restrict ourselves to \mathbb{Q} -convex combinations. Consider

$$(\{s : s \preceq \delta\}, \preceq^*).$$

This ordering is $\text{<}\mathfrak{p}$ -closed.

Improvements

Restrict ourselves to \mathbb{Q} -convex combinations. Consider

$$(\{s : s \preceq \delta\}, \preceq^*).$$

This ordering is $\text{<}\mathfrak{p}$ -closed.

Theorem

Under $\mathfrak{p} = \mathfrak{c}$ there is a Rudin–Blass minimal measure, which is not \mathbb{Q}^+ .

Improvements

Restrict ourselves to \mathbb{Q} -convex combinations. Consider

$$(\{s : s \preceq \delta\}, \preceq^*).$$

This ordering is $\text{<}\mathfrak{p}$ -closed.

Theorem

Under $\mathfrak{p} = \mathfrak{c}$ there is a Rudin–Blass minimal measure, which is not \mathbb{Q}^+ . It can be made a \mathbb{P} -measure, and so Rudin–Keisler minimal.

Concluding Remarks

Theorem

If μ is Rudin–Blass minimal, then $\mu = \mu_0 + \sum_n \nu_n$ where μ_0 is a Q-measure and each ν_n is not Q^+ .

Concluding Remarks

Theorem

If μ is Rudin–Blass minimal, then $\mu = \mu_0 + \sum_n \nu_n$ where μ_0 is a Q-measure and each ν_n is not Q^+ .

Questions

Can all/none RB-minimal measures be Q?

Are all Rudin–Keisler minimal measures P-measures?

Does existence of Q^+ measures imply the existence of Q-measures?