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Measures and Filters

Measure≡finitely additive probability measure. Unless
otherwise specified, also vanishing on points.

Examples

Given an ultrafilter U let

δU (A) =
{

1, if A ∈ U
0, otherwise,

dU (A) = U-limn
|A ∩ n|
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Rudin–Blass ordering

Given f : ω → ω let
f [U ] = {A : f−1(A) ∈ U}

f [µ](A) = µ(f−1(A)).

Rudin–Blass ordering

We write U ⩽RB V whenever U = f [V] for some finite-
to-one function f

and µ ⩽RB ν whenever µ = f [ν] for a fininte-to-one f .

For Rudin–Keisler, drop the finite-to-one requirement.
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Q-measures

Selectors

Given ⟨Pn⟩ – a partition of ω, a selector is a set S ⊆ ω
such that for each n

|Pn ∩ S| ⩽ 1.

Q-points

and Q-measures

U is a Q-point

µ is a Q+-measure µ is a Q-measure

if for any partition of ω into finite sets
there is a selector S with

S ∈ U

µ(S) > 0 µ(S) = 1.
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Q vs RB

Fact

Q-points are exactly the Rudin–Blass minimal ultrafil-
ters.

Fact

Q-measures are Rudin–Blass minimal.

Theorem

Consistently, there exists a Rudin-Blass minimal mea-
sure, which is not Q+.
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On existence

Fact

Under Filter Dichotomy there is an ultrafilter RB-below
any measure and there are no Q-points.

So there are
no Q+-measures and no RB-minimal measures.

Fact

There exists a Q-point whenever there exists a Q-
measure.

dU is never Q+.
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Atomless Q-measures

Theorem(Avilés, Martinez-Cervantes, Poveda, Sáenz)

Under d = cov(M), every atomless measure defined
on a Boolean algebra of size < d can be extended to
an atomless Q-measure.

Proposition

If there exists an atomless Q-measure, then there are
2c different Q-points.

Theorem

If there are infinitely many pairwise RK-incompatible
selective ultrafilters, then there is an atomless Q-
measure.
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Construction Framework (Mokobodzki) skip

We are working with sequences of measures with finite
support (there is a finite set of full measure, so not vanishing
on points). Focus on limit behavior.

Consider δ given by δn(A) =
{

1, if n ∈ A,
0 otherwise.

⪯ relation

a ⪯ b if we have an ∈ conv{bm : m ⩾ n} for all n.
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Construction Framework (Mokobodzki)

a ⪯ ∗b if an ∈ conv{bm : m ⩾ n} for almost all n.

Observations

Let λa(X) = limn an(X) whenever possible.

If a ⪯∗ b and λb(X) exists, then λa(X) = λb(X).
Given b and X there is a ⪯ b such that λa(X) exists.
Every countable⪯∗-desc. sequence has a lower bound.

Proposition

For any a ⪯ δ and f finite-to-one there are b ⪯ a and g
fin-to-one such, that

∀X ∀n
∣∣bn(X)− bn

(
(gf )−1[X]

)∣∣ < 2−n
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Construction Scheme

▶ Assume CH
▶ Enumerate [ω]ω as ⟨Aα : α < ω1⟩ and finite to one

functions as ⟨fα : α < ω1⟩.
▶ Choose a0 wisely.

▶ Choose aα+1 ⪯ aα ensuring

▶ measurability of Aα,
▶ invariance under gαfα-preimages for some gα.

▶ On limit steps diagonalize getting aβ ⪯∗ aα (∀α<β).
Let λ(X) = λaα(X) = limn aαn (X) for any α where the limit
exists.
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Improvements

Restrict ourselves to Q-convex combinations. Consider(
{s : s ⪯ δ},⪯∗ ).

This ordering is <p-closed.

Theorem

Under p = c there is a Rudin–Blass minimal measure,
which is not Q+. It can be made a P-measure, and so
Rudin–Keisler minimal.
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Concluding Remarks

Theorem

If µ is Rudin–Blass minimal, then µ = µ0 +
∑

n νn where
µ0 is a Q-measure and each νn is not Q+.

Questions

Can all/none RB-minimal measures be Q?
Are all Rudin–Keisler minimal measures P-measures?
Does existence of Q+ measures imply the existence of
Q-measures?
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