

Changing the Length of the Borel Hierarchy

Nick Chapman

February 2026

Definition

Let X be a topological space. Then the Borel hierarchy on X is stratified into classes $\Sigma_\alpha^0(X)$ and $\Pi_\alpha^0(X)$, where $\Sigma_1^0(X)$ is the class of open sets,

$$\Sigma_\alpha^0(X) = \left\{ \bigcup_{i < \omega} A_i \mid \langle A_i \mid i < \omega \rangle \subseteq \bigcup_{\beta < \alpha} \Pi_\beta^0(X) \right\}$$

and $\Pi_\alpha^0(X) = \{X \setminus A \mid A \in \Sigma_\alpha^0(X)\}$.

Definition

The order (or length) of the Borel hierarchy on X is defined as

$$\text{ord}(X) = \min \{ \alpha : \Sigma_\alpha^0(X) = \Pi_\alpha^0(X) = \text{Bor}(X) \}.$$

Observations

Fix $X \subseteq {}^\omega\omega$.

- $1 \leq \text{ord}(X) \leq \omega_1$.
- If X is countable, then $\text{ord}(X) \leq 2$. Furthermore, $\text{ord}(X) = 1$ if and only if X is discrete, which is an absolute property.
- $\text{ord}({}^\omega 2) = \omega_1$.
- If $X \hookrightarrow Y$, then $\text{ord}(X) \leq \text{ord}(Y)$. In particular, every space with a perfect subset has order ω_1 .
- If X is a Luzin set, then $\text{ord}(X) = 3$. (Poprougenko 1930)

Guiding Question

What can $\text{ord}(X)$ be?

Coding Borel sets

Definition

Let a well-founded tree $T \subseteq {}^{<\omega}\omega$ and a function $f : \text{leaf}(T) \rightarrow {}^{<\omega}\omega$ be given. For any node $\eta \in T$, define the interpretation of η as

$$\mathcal{I}_T^f(\eta) = \begin{cases} [f(\eta)] \cap X & \text{if } \eta \in \text{leaf}(T) \\ \bigcap_{\nu \in \text{succ}(\eta)} X \setminus \mathcal{I}_T^f(\nu) & \text{otherwise.} \end{cases}$$

If $\text{rk}_T(\eta) = \alpha$, then $\mathcal{I}_T^f(\eta) \in \mathbf{\Pi}_\alpha^0(X)$. Furthermore, $B \in \mathbf{\Pi}_\alpha^0(X)$ if and only if $B = \mathcal{I}_T^f(\eta)$ for some tree T with $\text{rk}(T) = \alpha$ and $f : \text{leaf}(T) \rightarrow {}^{<\omega}\omega$. The pair $\langle T, f \rangle$ is a **Borel code** for B . Note that for every $\alpha < \omega_1$ there exists a *universal* such tree $T = T_\alpha$ as above.

Suppose $X \subseteq {}^\omega\omega$, $A, B \subseteq X$ are disjoint and $1 < \alpha < \omega_1$.

The partial order $\mathbb{BM}_\alpha(A, B, X)$ of α -forcing (Miller 1979) consists of pairs $p = \langle f_p, R_p \rangle$, where

- f_p is a finite partial function assigning basic clopen sets to leaves of a (canonically chosen) tree T_α of rank α ;
- R_p is a finite relation between inner nodes of the tree and elements of the space X ;
- the function f_p and R_p cohere to generically define a $\mathbf{\Pi}_\alpha^0(X)$ code for a subset of X ;
- the parameters A, B restrict the form of that subset.

Properties of α -forcing

A $\mathbb{BM}_\alpha(A, B, X)$ -generic G induces a function

$$f_G : \text{leaf}(T_\alpha) \rightarrow {}^{<\omega}\omega,$$

hence for every $\eta \in T_\alpha$ a $G_\eta \in \mathbf{\Pi}_{\text{rk}_{T_\alpha}(\eta)}^0(X)$. A pair $\langle \eta, x \rangle \in R_p$ means the promise

$$p \Vdash x \in G_\eta.$$

Properties of α -forcing

Lemma

For $\eta \in \text{nonleaf}(T_\alpha)$ and $x \in X$ we have

$$(\exists p \in G : \langle \eta, x \rangle \in R_p) \Leftrightarrow x \in G_\eta.$$

α -forcing

Lemma

If G is $\mathbb{BM}_\alpha(A, B, X)$ -generic, then $A \subseteq G_\emptyset \subseteq X \setminus B$.

Corollary

$\mathbb{BM}_\alpha(A, X \setminus A, X) \Vdash A \in \mathbf{\Pi}_\alpha^0(X)$.

Two forcings of interest: $\mathbb{BM}_\alpha(\emptyset, \emptyset, X)$ and $\mathbb{BM}_\alpha(A, X \setminus A, X)$.

Theorem (Miller 1979)

Let $X \subseteq {}^{\omega\omega}$ be uncountable and $1 < \alpha < \omega_1$ a successor ordinal. Then there is a c.c.c. forcing extension with $V[G] \models \text{ord}(X) = \alpha$.

Proof Strategy.

Finite support iteration of α -forcing, where we iterate sufficiently long to catch all Borel subsets of X using a bookkeeping argument as parameters for a $\mathbb{BM}_\alpha(A, X \setminus A, X)$ -generic. □

After this forcing, we have $V[G] \models \text{ord}(X) \leq \alpha$.

A model

Theorem (Miller 1979)

Let $X \subseteq {}^{\omega}\omega$ be uncountable and $1 < \alpha < \omega_1$ a successor ordinal. Then there is a c.c.c. forcing extension with $V[G] \models \text{ord}(X) = \alpha$.

Proof Strategy.

Finite support iteration of α -forcing, where we iterate sufficiently long to catch all Borel subsets of X using a bookkeeping argument as parameters for a $\mathbb{BM}_\alpha(A, X \setminus A, X)$ -generic.

Question

How can we ensure $V[G] \models \text{ord}(X) \geq \alpha$?

Question

How can we ensure $V[G] \models \text{ord}(X) \geq \alpha$?

Question

How can we ensure $V[G] \models \text{ord}(X) \geq \alpha$?

First add a $\mathbb{BM}_{\alpha-1}(\emptyset, \emptyset, X)$ -generic.

Use ranked forcing techniques to ensure

$$V[G] \models G_\emptyset(0) \notin \Sigma_{\alpha-1}^0(X)!$$

Ranked forcing

Definition (Miller)

Let \mathbb{P} be a forcing notion. We say $\text{rk} : \mathbb{P} \rightarrow \text{Ord} \cup \{\infty\}$ is a *rank function* on \mathbb{P} if the following holds:

For each $p \in \mathbb{P}$ and ordinal β there exists a $q \in \mathbb{P}$ with $q \parallel p$ and $\text{rk}(q) \leq \beta$ such that for each $r \in \mathbb{P}$, $\text{rk}(r) < \beta$ we have

$$r \parallel q \implies r \parallel p.$$

The forcing $\mathbb{BM}_\alpha(A, B, X)$ admits a **sufficiently rich family of rank functions**.

Preserving the generic Π -set

The following theorem is formulated in [Ch] to encompass several arguments of Miller.

Theorem

Suppose $1 < \alpha < \omega_1$, $X \subseteq {}^\omega 2$ and \mathcal{P} is a $\text{BM}_\alpha(\emptyset, \emptyset, X)$ -name for a c.c.c. forcing notion. Write $\mathbb{P} = \text{BM}_\alpha(\emptyset, \emptyset, X) \star \mathcal{P}$. Assume that there exists a **sufficiently rich family of rank functions** on \mathbb{P} . Then for each uncountable $Y \subseteq X$

$$\mathbb{P} \Vdash G_\emptyset(0) \cap Y \notin \Sigma_\alpha^0(Y).$$

Iterating

From now on, we consider finite support iterations

$$\mathbb{P} = \langle \mathbb{P}_\gamma, \mathbb{Q}_\gamma : \gamma < \gamma^* \rangle,$$

where $\mathbb{P}_\gamma \Vdash \mathbb{Q}_\gamma = \text{BM}_{\alpha_\gamma}(A_\gamma, B_\gamma, X_\gamma)$. Without loss of generality $A_0 = B_0 = \emptyset$.

Most iterations cannot be ranked

Example

Consider the two-step iteration

$$\mathbb{P} = \text{BM}_\alpha(\emptyset, \emptyset, X) \star \text{BM}_\alpha(X \setminus G_\emptyset(0), G_\emptyset(0), X).$$

Then $\mathbb{P} \Vdash G_\emptyset(0) \in \Sigma_\alpha^0(X)$, so by the previous theorem \mathbb{P} cannot be ranked!

Two results

Miller's main two results concerning α -forcing are the following:

Iteration Ranked (Miller 1979, Theorem 34)

$\dot{X}_\gamma = X \in V, \gamma < \gamma^*$ and $\alpha_\gamma = \alpha_0 + 1, 0 < \gamma < \gamma^*$.

Theorem (Miller 1979, Theorem 34)

For every uncountable $X \subseteq {}^\omega\omega$ and successor ordinal $\alpha < \omega_1$ there is a c.c.c forcing extension

$V[G] \models \text{ord}(X) = \alpha.$

Two results

Miller's main two results concerning α -forcing are the following:

Iteration Ranked (Miller 1979, Theorem 22)

$\mathcal{X}_\gamma = {}^\omega\omega \cap V^{\mathbb{P}_\gamma}$ and $\Vdash \mathcal{A}_\gamma = \mathcal{B}_\gamma = \emptyset$ for all $\gamma < \gamma^*$.

Theorem (Miller 1979, Theorem 22)

There is a model of

$$\forall X \subseteq {}^\omega\omega : |X| \leq \aleph_0 \vee \text{ord}(X) = \omega_1.$$

One result

The two proofs are very different, but they can be unified to get the following:

Iteration Ranked (Ch.)

$X_\gamma = {}^\omega\omega \cap V^{\mathbb{P}_\gamma}$, either $\Vdash A_\gamma = B_\gamma = \emptyset$ or $\alpha_\gamma > \alpha_0$.

It would require a much more sophisticated analysis to drop the requirement $(\Vdash A_\gamma = B_\gamma = \emptyset) \Rightarrow \alpha_\gamma > \alpha_0$!

One result

The two proofs are very different, but they can be unified to get the following:

Iteration Ranked (Ch.)

$\tilde{X}_\gamma = {}^\omega\omega \cap V^{\mathbb{P}_\gamma}$, either $\Vdash \tilde{A}_\gamma = \tilde{B}_\gamma = \emptyset$ or $\alpha_\gamma > \alpha_0$.

Theorem (Ch.)

Consistently $\text{ord}(X) \geq \alpha$ for all uncountable $X \subseteq {}^\omega\omega$ and $\text{ord}(X) = \alpha$ for $|X| < 2^\omega$.

Note that the perfect set property starts taking hold at $|X| = 2^\omega$.

Generalized descriptive set theory

Let $\kappa = \kappa^{<\kappa}$ be a regular cardinal.

The analogue we are now interested in are the κ -Borel subsets of $X \subseteq {}^\kappa\kappa$!

Definition

The higher Baire space ${}^\kappa\kappa$ is endowed with the *bounded* topology generated by the sets $[s] = \{x | s \subseteq x\}$ for $s \in {}^{<\kappa}\kappa$.

For $X \subseteq {}^\kappa\kappa$, the κ -Borel hierarchy is generated by taking $\leq\kappa$ -unions and intersections.

Definition

Let $\text{ord}_\kappa(X)$ be the least ordinal α such that

$$\kappa\text{-}\Sigma_\alpha^0(X) = \kappa\text{-}\Pi_\alpha^0(X) = \kappa\text{-}\mathbf{Bor}(X).$$

We have $1 \leq \text{ord}_\kappa(X) \leq \kappa^+$.

Higher α -forcing

One can attempt to generalize the requisite notions and define a higher version of α -forcing. The presence of nodes $\eta \in T$ with limit rank $<\kappa$ makes this difficult, necessitating the use of a more complicated combinatorial structure. Let us write $\mathbb{BM}_\alpha^\kappa(A, B, X)$ for the κ -version of α -forcing.

Instead of finite support, we now work with $<\kappa$ -supported iterations of κ^+ -c.c. forcings.

Preserving the generic Π -set, revisited

Theorem

Suppose $\lambda \geq \kappa$, $1 < \alpha < \kappa^+$, $X \subseteq {}^\kappa 2$ and \mathcal{P} is a $\text{BM}_\alpha^\kappa(\emptyset, \emptyset, X)$ -name for a λ^+ -c.c. forcing notion. Write $\mathbb{P} = \text{BM}_\alpha^\kappa(\emptyset, \emptyset, X) \star \mathcal{P}$. Lastly, assume that \mathbb{P} admits a **sufficiently rich family of rank functions**.

Then for each $Y \subseteq X$ with $|Y| > \lambda$,

$$\mathbb{P} \Vdash G_\emptyset(0) \cap Y \notin \lambda\text{-}\Sigma_\alpha^0(Y).$$

Spaces of finite order

Iteration Ranked (Agostini, Ch., Motto Ros, Pitton)

$\tilde{X}_\gamma = X \in V$, $\alpha_\gamma = \alpha_0 + 1 < \omega$ for $\gamma > 0$.

Theorem (Agostini, Ch., Motto Ros, Pitton)

Suppose $X \subseteq {}^\kappa\kappa$ is of size $|X| > \kappa$ and $1 < \alpha < \omega$. Then there is a $<\kappa$ -closed, κ^+ -c.c. forcing extension such that

$$V[G] \models \text{ord}_\kappa(X) = \alpha.$$

Iteration Ranked (Ch.)

- $\tilde{X}_\gamma = X_\gamma \in V$,
- either $\alpha_\gamma > \alpha_0$ or $\mathbb{P}_\gamma \Vdash A_\gamma = B_\gamma = \emptyset$ or $|X_\gamma| < |X_0|$.

Theorem (Ch.)

Suppose $X \subseteq {}^\kappa \kappa$, $|X| > \kappa$ and $1 < \alpha < \kappa^+$ is a successor. Then there is a $< \kappa$ -closed, κ^+ -c.c. forcing extension such that

$$V[G] \models \text{ord}_\kappa(X) = \alpha.$$

Separating by size

Theorem (Ch.)

Let f be a function assigning to each cardinal λ with $\kappa < \lambda \leq 2^\kappa$ an ordinal $1 < f(\lambda) \leq \kappa^+$ such that

- 1 f is (not necessarily strictly) increasing,
- 2 $f(2^\kappa) = \kappa^+$,
- 3 if λ is a successor cardinal, then $f(\lambda)$ is a successor ordinal or $f(\lambda) = \kappa^+$,
- 4 Continuity: if λ is a limit cardinal, then $f(\lambda) = \sup_{\lambda' < \lambda} f(\lambda')$.

Then there exists a $<\kappa$ -closed, κ^+ -c.c. generic extension $V[G]$ of the universe such that

$$V[G] \models \forall X \subseteq {}^\kappa \kappa, X \in V, |X| > \kappa : \text{ord}_\kappa(X) = f(|X|).$$

Ranked iterations

Type \ Setting	ω	$\kappa = \kappa^{<\kappa},$ α finite	$\kappa = \kappa^{<\kappa},$ $1 < \alpha < \kappa^+$
fixed space X	Miller 1979	Agostini, Ch., Motto Ros, Pitton	Ch.
$X_\gamma = {}^\omega\omega \cap V^{\mathbb{P}_\gamma},$ only increase	Miller 1979	Ch.: at least for $\gamma^* < \omega$	
$X_\gamma = {}^\omega\omega \cap V^{\mathbb{P}_\gamma},$ one α	Ch.	Possibly at least for $\gamma^* < \omega$	
separate by size: ground model	essentially Miller '79 (Th. 34,52)		Ch.
separate by size: all subsets		?	

Děkuji za pozornost!

Definability of X

Suppose $X \subseteq {}^\omega\omega$ is itself definable (Borel). Then $\text{ord}_\omega(X) \in \{1, 2, \omega_1\}$ by the perfect set property. This no longer has to be the case in the generalized setting: consistently, the κ -perfect set property fails even for closed sets!

Leaving ω behind and reaping the benefits

Combining arguments of Silver, Lücke, Agostini/Ch./Motto Ros/Pitton and Ch. gives us:

Theorem

For $\kappa > \omega$ and $1 < \alpha < \kappa^+$ there consistently exists a κ -Borel set B with $\text{ord}_\kappa(B) = \alpha$.

Moreover, in the preceding theorems, whenever a set $X \in V$ is κ -Borel with no perfect subset, it will retain the **same** definition through its κ -Borel code in the forcing extension. One can arrange $X \in \kappa\text{-}\Sigma_2^0$ with no perfect subset for every $X \in V$.

Bibliography

[Ago+25] Claudio Agostini, Nick Chapman, Luca Motto Ros, and Beatrice Pitton. *Generalized Borel Sets*. 2025. URL: <https://arxiv.org/abs/2511.15663>.

[Chaa] Nick Chapman. *On λ -Borel Subsets of the Reals*. in preparation.

[Chab] Nick Chapman. *Ranked Forcing and the Length of Generalized Borel Hierarchies*. in preparation.

[Mil79] Arnold W. Miller. “On the length of Borel hierarchies”. In: *Annals of Mathematical Logic* 16.3 (1979).

[Mil95] Arnold W. Miller. *Descriptive set theory and forcing: how to prove theorems about Borel sets the hard way*. eng. Lecture notes in logic 4. Berlin Heidelberg: Springer, 1995. ISBN: 978-3-540-60059-6 978-0-387-60059-8.