

Uniwersytet
Wrocławski

c.c.c. Filters.

Arturo Martínez-Celis

February 2026.

Hejnice.

Winter School in Abstract Analysis 2026

section Set Theory & Topology

Talagrand's theorem

Definition

A filter $\mathcal{F} \subseteq \omega^\omega$ is a family of sets closed under supersets and finite intersections. We will assume that $\bigcap \mathcal{F} = \emptyset$. An ultrafilter is a maximal filter.

Theorem [Talagrand]

A filter $\mathcal{F} \subseteq \mathcal{P}(\omega)$ has the Baire property iff is meager iff is bounded, i.e., if there is an interval partition $\langle I_n \rangle$ of ω such that, for all $F \in \mathcal{F}$ and for almost all $n \in \omega$, $F \cap I_n \neq \emptyset$.

Basic fact of life

Ultrafilters are nonmeager.

A set A is \mathcal{F} -positive if $A \cap F$ is infinite for every $F \in \mathcal{F}$. Equivalently, $A \notin \mathcal{F}^*$.

The algebra of \mathcal{F} -positive sets: $\mathcal{P}(\omega)/\mathcal{F}^*$.

We will think of the algebra $\mathcal{P}(\omega)/\mathcal{F}^*$ as the algebra of positive sets.

Observation

A filter \mathcal{U} is an ultrafilter iff $\mathcal{P}(\omega)/\mathcal{U}^*$ has two elements.

Definition

A filter $\mathcal{F} \subseteq \omega^\omega$ is c.c.c. if $\mathcal{P}(\omega)/\mathcal{F}^*$ is c.c.c., i.e., every antichain of positive sets is countable.

Example: If \mathcal{U} is an ultrafilter, then

$$\mu(A) = \lim_{\mathcal{U}} \frac{|A \cap n|}{n}$$

is a (non-atomic) finite additive measure, that vanishes on points.

Let $\mathcal{N}_\mu = \{A \subseteq \omega : \mu(A) = 0\}$. Then \mathcal{N}_μ^* is c.c.c.

Observation

c.c.c. filters are non-meager.

Proof: For all infinite A , we have that $\bigcup_{n \in A} I_n \in \mathcal{F}^+$.

Observation

Filters that admit a measure (i.e. filters of the form \mathcal{N}_μ^*) are c.c.c. and every ultrafilter admits a measure.

$$\delta_{\mathcal{U}}(A) = \begin{cases} 1 & \text{if } A \in \mathcal{U}, \\ 0 & \text{otherwise.} \end{cases}$$

Observation

Ultrafilter \rightarrow Measure \rightarrow c.c.c. \rightarrow non-meager.

None of these can be reversed.

General Problem

Find properties that help us distinguish these classes of filters.

A basis of a filter $\mathcal{B} \subseteq \mathcal{F}$ is a collection of sets closed under finite intersections such that every $F \in \mathcal{F}$ contains a $B \in \mathcal{B}$.

Theorem [P. Simon]

There is a nonmeager filter \mathcal{F} that has a basis of size \mathfrak{b} .

Definition

If φ is a property about filters, then

$$u_\varphi = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a basis for a filter with the property } \varphi\}$$

Cardinal Invariants

- $u_{\text{nonmeager}}$, where φ is the property of being nonmeager ($= b$),
- $u_{\text{c.c.c.}}$, where φ is the property of being c.c.c.,
- u_{measure} , where φ is the property of being the filter that admits a measure,
- $u_{\text{ultrafilter}}$, where φ is the property of being an ultrafilter. ($= u$).

Bounds

Observation

$$\mathfrak{b} = \mathfrak{u}_{\text{nonmeager}} \leq \mathfrak{u}_{\text{c.c.c.}} \leq \mathfrak{u}_{\text{measure}} \leq \mathfrak{u}_{\text{ultrafilter}} = \mathfrak{u}.$$

Theorem

$$\min\{\mathfrak{d}, \mathfrak{r}\} \leq \mathfrak{u}_{\text{c.c.c.}}$$

If $\mathcal{P}(\omega)/\mathcal{F}$ has an atom A , then $\mathcal{F} \upharpoonright A$ is an ultrafilter over A .

Theorem

$$\mathfrak{d} \leq \hat{\mathfrak{u}}_{\text{c.c.c.}}, \text{ where } \hat{\mathfrak{u}}_{\text{c.c.c.}} \text{ is its non-atomic version.}$$

Consistency results

Theorem

It is consistent that $\text{cov}(\mathcal{N}) > \hat{u}_{\text{measure}}$.

Theorem

It is consistent that $\text{cof}(\mathcal{M}) < \hat{u}_{\text{c.c.c.}}$.

Theorem

In the Sacks model, \hat{u}_{measure} is small.

Questions

Question

Is $\hat{\mu}_{\text{measure}} \leq \text{cof}(\mathcal{N})$?

What is the value of $\hat{\mu}_{\text{measure}}$ in the Silver model?

Question

Is $\hat{\mu}_{\text{measure}} = \hat{\mu}_{\text{c.c.c.}}$?

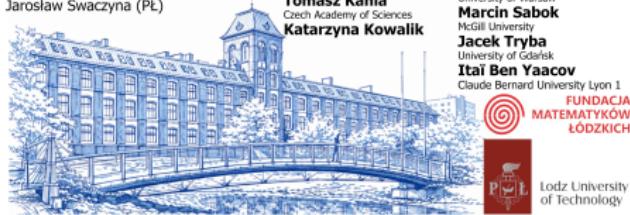
4th ŁÓDŹ LOGIC CONFERENCE

5-7 JUNE
2026

CAMPUS B OF
ŁÓDŹ UNIVERSITY
OF TECHNOLOGY

Scientific comitee:

Szymon Głab (PL)
Adam Kwela (UG)
Maciej Malicki (UW)
Robert Ralowski (PWr)
Jarosław Swaczyna (PL)



MOSTOWSKI LECTURE:
ŚLAWOMIR SOLECKI

Cornell University

Invited speakers:

Alessandro Andretta

University of Turin

Ronnie Chen

University of Florida

Michał Doucha

Czech Academy of Sciences

Joanna Garbulińska-Węgrzyn

Jan Kochanowski University

Tomasz Kania

Czech Academy of Sciences

Katarzyna Kowalik

Piotr Kowalski

University of Wrocław

Krzysztof Krupiński

University of Wrocław

Wiesław Kubiś

Czech Academy of Sciences

Dominik Kwietniak

Jagiellonian University

Witold Marciszewski

University of Warsaw

Marcin Sabok

McGill University

Jacek Tryba

University of Gdańsk

Itai Ben Yaacov

Claude Bernard University Lyon 1

FUNDACJA
MATEMATYKÓW
ŁÓDZKICH

Łódź University
of Technology

Thank you for your attention!

arturo.martinez-celis@math.uni.wroc.pl