

Slim sets in vector spaces

Wiesław Kubiś

Institute of Mathematics, CAS, Prague, Czechia

Winter School in Abstract Analysis
31 January – 7 February, 2025, Hejnice

Joint work with Wojciech Bielas (University of Silesia in Katowice)

Definition

Let \mathbb{K} be a field and let V be a vector space over \mathbb{K} . A set $S \subseteq V$ is called *n-slim* ($n > 0$) if there exists a linear operator $f: V \rightarrow \mathbb{K}^n$ that preserves affine independence among at most $(n + 1)$ -element subsets of S .

Definition

Let \mathbb{K} be a field and let V be a vector space over \mathbb{K} . A set $S \subseteq V$ is called *n-slim* ($n > 0$) if there exists a linear operator $f: V \rightarrow \mathbb{K}^n$ that preserves affine independence among at most $(n + 1)$ -element subsets of S .

In particular, S is 1-slim if and only if there exists a linear functional on V that is one-to-one on S .

Definition

Let \mathbb{K} be a field and let V be a vector space over \mathbb{K} . A set $S \subseteq V$ is called *n-slim* ($n > 0$) if there exists a linear operator $f: V \rightarrow \mathbb{K}^n$ that preserves affine independence among at most $(n + 1)$ -element subsets of S .

In particular, S is 1-slim if and only if there exists a linear functional on V that is one-to-one on S .

Definition

If $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$ and V is a normed space, we have the obvious notion of *continuous n-slimness*.

Theorem 1

Assume \mathbb{K} is an infinite field and V is a vector space over \mathbb{K} . Then every set $S \subseteq V$ with $|S| < |\mathbb{K}|$ is 1-slim.

Theorem 1

Assume \mathbb{K} is an infinite field and V is a vector space over \mathbb{K} . Then every set $S \subseteq V$ with $|S| < |\mathbb{K}|$ is 1-slim.

Lemma

Let V be a vector space over \mathbb{K} and let $S \subseteq V \setminus \{0\}$ be such that $|S| < |\mathbb{K}|$. Then there exists $f \in V^*$ such that $S \cap \ker f = \emptyset$.

Lemma

Let V be a vector space over \mathbb{K} and let $S \subseteq V \setminus \{0\}$ be such that $|S| < |\mathbb{K}|$. Then there exists $f \in V^*$ such that $S \cap \ker f = \emptyset$.

Proof.

By Zorn's lemma, there exists a maximal linear subspace $W \leq V$ satisfying $W \cap S = \emptyset$. It suffices to show that W has codimension one in V . Suppose otherwise and fix linearly independent vectors $a, b \in V$ such that $\text{lin}\{a, b\} \cap W = \{0\}$. Given $\lambda \in \mathbb{K}$, define

$$W_\lambda = W \oplus \mathbb{K}(a + \lambda b).$$

Then W_λ is a linear subspace of V properly containing W , therefore $(W_\lambda \setminus W) \cap S \neq \emptyset$. We shall prove that $W_\lambda \cap W_\delta = W$ whenever $\lambda \neq \delta$, thus showing that the family $\{(W_\lambda \setminus W)\}_{\lambda \in \mathbb{K}}$ is pairwise disjoint and consequently the set S must have cardinality $\geq |\mathbb{K}|$, which is a contradiction.

Suppose $v \in W_\lambda \cap W_\delta \setminus W$. Then $v = w_0 + r_0(a + \lambda b)$ and $v = w_1 + r_1(a + \delta b)$ for some $w_0, w_1 \in W$ and $r_0, r_1 \in \mathbb{K}$. Hence

$$w_0 - w_1 = (r_1 - r_0)a + (r_1 \delta - r_0 \lambda)b,$$

therefore both sides of this equation are zero. Furthermore, $r_0 = r_1$ and $r_0 \lambda = r_1 \delta$. It cannot be the case that $r_0 = 0 = r_1$, because $v \notin W$. We conclude that

$$\lambda = \delta.$$

□

Proposition

Let H be a non-separable Hilbert space and let S be its orthonormal basis. Then S fails to be continuously 1-slim.

Proposition

Let H be a non-separable Hilbert space and let S be its orthonormal basis. Then S fails to be continuously 1-slim.

Proof.

Every bounded functional on H has a countable support with respect to S . □

Proposition

In a separable normed space, every countable set is continuously k -slim for every $k > 0$.

Proposition

In a separable normed space, every countable set is continuously k -slim for every $k > 0$.

Proof.

Apply the Baire Category Theorem. □

Theorem 2

In a separable normed space, every set of cardinality $< \mathfrak{c}$ is continuously k -slim for every $k > 0$.

Theorem 2

In a separable normed space, every set of cardinality $< \mathfrak{c}$ is continuously k -slim for every $k > 0$.

Proof of the case $k = 1$.

Fix a set X in a real or complex separable normed space V . Let $Y = X - X$. Given $y \in Y \setminus \{0\}$, let

$$A_y = \{\varphi \in V' : \varphi(y) = 0\}.$$

It suffices to show that $\bigcup_{y \in Y} A_y \neq V'$. We now follow the argument of Klee [2] (see also [1]). Choose a weak* dense set $\{b_n\}_{n \in \omega}$ in the unit ball of V' . Given $\lambda \in (0, 1)$, define

$$b_\lambda = \sum_{n=0}^{\infty} \lambda^n b_n.$$

This is well-defined, because the series on the right-hand side is absolutely convergent. Fix $v \in V$ and define

$$f_v(\lambda) = b_\lambda(v) = \sum_{n=0}^{\infty} \lambda^n b_n(v).$$

If $v \neq 0$, f_v is not constant zero. Furthermore, f_v is an analytic function on the interval $(0, 1 - \varepsilon)$, where $0 < \varepsilon < 1$ is fixed, therefore it may have only finitely many zeros. It follows that each set of the form

$$\ker(v) = \{\varphi \in V' : \varphi(v) = 0\}, \quad v \neq 0$$

can contain only finitely many vectors of the form b_λ , where $0 < \lambda < 1 - \varepsilon$. Note that $\ker(y) = A_y$, defined above. This completes the proof. □

Corollary

In a vector space over $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$, every subset of cardinality $< \mathfrak{c}$ is k -slim for every $k > 0$.

- D. GŁODKOWSKI, P. KOSZMIDER, *On coverings of Banach spaces and their subsets by hyperplanes*, Proc. Amer. Math. Soc. 150 (2022) 817–831
- V. KLEE, *On the Borelian and projective types of linear subspaces*, Math. Scand. 6 (1958) 189–199

- [D. GŁODKOWSKI, P. KOSZMIDER, *On coverings of Banach spaces and their subsets by hyperplanes*, Proc. Amer. Math. Soc. 150 (2022) 817–831]
- [V. KLEE, *On the Borelian and projective types of linear subspaces*, Math. Scand. 6 (1958) 189–199]

THANK YOU!

