

Flat sets in vector spaces

Wiesław Kubiś

February 5, 2026

Abstract

Let \mathbb{K} be a field and let V be a vector space over \mathbb{K} . A set $S \subseteq V$ is called *n-slim* ($n > 0$) if there exists a linear operator $f: V \rightarrow \mathbb{K}^n$ that preserves affine independence among at most $(n + 1)$ -element subsets of S . In particular, S is 1-slim if and only if there exists a linear functional on V that is one-to-one on S .

We show that if \mathbb{K} is infinite then every set of cardinality $< |\mathbb{K}|$ is 1-slim. The argument is elementary, using basic linear algebra. On the other hand, we do not know whether the same is true for *n*-slimness when $n > 1$.

On the other hand, we prove that every subset S of a separable normed space over the real or complex numbers is *continuously n-slim* for every $n > 0$, as long as $|S| < \mathfrak{c}$, i.e., there exists a bounded operator witnessing *n*-slimness. The proof is based on an old trick of V. Klee, using analytic functions. Easy examples show that this fails in non-separable Banach spaces.

(Joint work with Wojciech Bielas)