

Topology idealized

Grzegorz Wełyczko, Szymon Żeberski

Wrocław University of Science and Technology

Winter School
Hejnice, 2026

Motivation, Cale's work

Aleksandar Pavlovic (1974-2025)

- A. Njamcul, A. Pavlović, On topology expansion using ideals. Topology Appl. 374 (2025)

Definition

(X, τ) a topological space and $\mathcal{I} \subseteq P(X)$ an ideal.

- ▶ $A^* = \{x \in X : (\forall U \in \tau)(x \in U \rightarrow U \cap A \notin \mathcal{I})\}$.
- ▶ $A \mapsto A^*$ is called **local function**.
- ▶ $cl^*(A) = A \cup A^*$ is a closure operator.
- ▶ $\tau_{\mathcal{I}}$ is a topology on X given by cl^* .

Definition

(X, τ) a topological space and $\mathcal{I} \subseteq P(X)$ an ideal.

- ▶ $A^* = \{x \in X : (\forall U \in \tau)(x \in U \rightarrow U \cap A \notin \mathcal{I})\}$.
- ▶ $A \mapsto A^*$ is called **local function**.
- ▶ $c/^*(A) = A \cup A^*$ is a closure operator.
- ▶ $\tau_{\mathcal{I}}$ is a topology on X given by $c/^*$.

Fact

The basis of topology $\tau_{\mathcal{I}}$ is given by sets of the form $U \setminus I$, where $U \in \tau$ and $I \in \mathcal{I}$.

Density

$$d(X, \tau) = \min\{|D| : D \subseteq X \text{ is dense in } X\}$$

Fact

$$\text{non}(\mathcal{I}) \leq d(X, \tau_{\mathcal{I}}).$$

Proof.

Assume D is dense and $|D| < \text{non}(\mathcal{I})$.

Then $D \in \mathcal{I}$, so $X \setminus D \in \tau_{\mathcal{I}}$. \square

Weight

$w(X, \tau) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \tau \text{ is a topological base for } \tau\}.$

Tightness

$t(X, \tau) = \min\{\kappa : \forall A \subseteq X \ \forall x \in \text{cl}A \ \exists B \subseteq A \ |B| \leq \kappa \wedge x \in \text{cl}B\}.$

Lindelof number

$L(X, \tau) = \min\{\kappa : \forall \mathcal{U} \subseteq \tau \ (X = \bigcup \mathcal{U} \rightarrow \exists \mathcal{V} \in [\mathcal{U}]^{\leq \kappa} \ X = \bigcup \mathcal{V})\}.$

Weight

$$w(X, \tau) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \tau \text{ is a topological base for } \tau\}.$$

Tightness

$$t(X, \tau) = \min\{\kappa : \forall A \subseteq X \ \forall x \in \text{cl}A \ \exists B \subseteq A \ |B| \leq \kappa \wedge x \in \text{cl}B\}.$$

Lindelof number

$$L(X, \tau) = \min\{\kappa : \forall \mathcal{U} \subseteq \tau \ (X = \bigcup \mathcal{U} \rightarrow \exists \mathcal{V} \in [\mathcal{U}]^{\leq \kappa} \ X = \bigcup \mathcal{V})\}.$$

Theorem

Assume that $|A| \leq t(X, \tau)$ implies $A \in \mathcal{I}$. Then

$$\text{cov}(\mathcal{I}) \leq w(X, \tau_{\mathcal{I}}) + L(X, \tau).$$

Theorem

$[X]^{\leq t(X)} \subseteq \mathcal{I}$. Then $\text{cov}(\mathcal{I}) \leq w(X, \tau_{\mathcal{I}}) + L(X, \tau)$.

Proof.

- ▶ $\mathcal{B} = \{U_\alpha \setminus A_\alpha : \alpha < w(X, \tau_{\mathcal{I}})\}$.
- ▶ $\mathcal{A} = \{A_\alpha : \alpha < w(X, \tau_{\mathcal{I}})\}$.
- ▶ $|X \setminus \bigcup \mathcal{A}| < t(X, \tau) + L(X, \tau)$.

Theorem

$[X]^{\leq t(X)} \subseteq \mathcal{I}$. Then $\text{cov}(\mathcal{I}) \leq w(X, \tau_{\mathcal{I}}) + L(X, \tau)$.

Proof.

- ▶ $\mathcal{B} = \{U_{\alpha} \setminus A_{\alpha} : \alpha < w(X, \tau_{\mathcal{I}})\}$.
- ▶ $\mathcal{A} = \{A_{\alpha} : \alpha < w(X, \tau_{\mathcal{I}})\}$.
- ▶ $|X \setminus \bigcup \mathcal{A}| < t(X, \tau) + L(X, \tau)$.
 - ▶ Assume oposite.
 - ▶ there is $E \subseteq X \setminus \bigcup \mathcal{A}$, $x \in cl(E) \setminus E$, $E \in \mathcal{I}$
 - ▶ $X \setminus E = \bigcup \{U_{\alpha} \setminus A_{\alpha} : \alpha \in S\}$.
 - ▶ $U = \bigcup \{U_{\alpha} : \alpha \in S\}$.
 - ▶ $U \cap E = \emptyset$;

$$x' \in U_{\alpha_0} \setminus A_{\alpha_0} \subseteq \bigcup \{U_{\alpha} \setminus A_{\alpha} : \alpha \in S\} \subseteq X \setminus \{x'\}.$$

- ▶ Then $X \setminus E = U$. Contradiction.

Character

$\chi(X, \tau) = \min\{\kappa : (\forall x \in X)(\exists \mathcal{B} \in [\tau]^{\leq \kappa})(\mathcal{U} \text{ is a base at } x)\}.$

Theorem

$t(X, \tau_{\mathcal{I}}) \leq \text{cof}(\mathcal{I}) \cdot \chi(X, \tau).$

Continuous functions

Theorem

Let $\mathcal{I} = [\mathbb{R}]^{\leq\omega}$, τ - standard topology on \mathbb{R} .

If $f : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \tau_{\mathcal{I}})$ is continuous then f is constant.

Proof.

Assume that $a < b$ and $f(a) \neq f(b)$.

$$g(x) = \begin{cases} f(a), & \text{if } x \leq a, \\ f(x), & \text{if } x \in (a, b), \\ f(b), & \text{if } x \geq b. \end{cases}$$

Proof...

- ▶ $x_0 \in \mathbb{R}$ such that $f(a) \neq g(x_0) \neq f(b)$.
 $X_0 = g^{-1}[\{g(x_0)\}], m_0 = \max X_0$.

Proof...

- ▶ $x_0 \in \mathbb{R}$ such that $f(a) \neq g(x_0) \neq f(b)$.
 $X_0 = g^{-1}[\{g(x_0)\}], m_0 = \max X_0$.
- ▶ $x_{n+1} \in (m_n, b)$ such that $f(a) \neq g(x_{n+1}) \neq f(b)$.
 $X_{n+1} = g^{-1}[\{g(x_{n+1})\}], m_{n+1} = \max X_{n+1}$.

Proof...

- ▶ $x_0 \in \mathbb{R}$ such that $f(a) \neq g(x_0) \neq f(b)$.
 $X_0 = g^{-1}[\{g(x_0)\}], m_0 = \max X_0$.
- ▶ $x_{n+1} \in (m_n, b)$ such that $f(a) \neq g(x_{n+1}) \neq f(b)$.
 $X_{n+1} = g^{-1}[\{g(x_{n+1})\}], m_{n+1} = \max X_{n+1}$.
- ▶ $m = \lim_{n \rightarrow \infty} m_n, m \notin \bigcup_{n \in \omega} X_n$.
 $Y = \{f(x_n) : n \in \omega\}, f(m) \notin Y$

Proof...

- ▶ $x_0 \in \mathbb{R}$ such that $f(a) \neq g(x_0) \neq f(b)$.
 $X_0 = g^{-1}[\{g(x_0)\}], m_0 = \max X_0$.
- ▶ $x_{n+1} \in (m_n, b)$ such that $f(a) \neq g(x_{n+1}) \neq f(b)$.
 $X_{n+1} = g^{-1}[\{g(x_{n+1})\}], m_{n+1} = \max X_{n+1}$.
- ▶ $m = \lim_{n \rightarrow \infty} m_n, m \notin \bigcup_{n \in \omega} X_n$.
 $Y = \{f(x_n) : n \in \omega\}, f(m) \notin Y$
- ▶ Y is countable, hence $\tau_{\mathcal{I}}$ -closed, but $f^{-1}[Y]$ is not closed.
Contradiction.

Theorem

Let (X, τ_X) be a Polish space, $\mathcal{I} = \{A \subseteq X : |A| \leq \omega\}$.

Every continuous function $f : (2^\omega, \tau) \rightarrow (X, \tau_{X\mathcal{I}})$ has finitely many values.

Theorem

Let (X, τ_X) be a Polish space, $\mathcal{I} = \{A \subseteq X : |A| \leq \omega\}$.

Every continuous function $f : (2^\omega, \tau) \rightarrow (X, \tau_{\mathcal{I}})$ has finitely many values.

Theorem

Let (X, τ) be a Polish space, $\mathcal{I} = \{A \subseteq X : |A| \leq \omega\}$.

Every continuous function $f : (X, \tau) \rightarrow (X, \tau_{\mathcal{I}})$ has countably many values.

Thank you for your attention!