

Ideal zoo in the Baire space 1

Łukasz Mazurkiewicz
Marcin Michalski
Szymon Żeberski

Wrocław University of Science and Technology
lukasz.mazurkiewicz@pwr.edu.pl

Winter School in Abstract Analysis 2026
04.02.2026

Fake category

Fake meager

Theorem (Bartoszyński, Judah)

Let $F \subseteq 2^\omega$. $F \in \mathcal{M}$ if there are $x_F \in 2^\omega$ and a partition of ω into intervals $(I_n)_{n \in \omega}$ such that

$$F \subseteq \{x \in 2^\omega : (\forall^\infty n)(x \upharpoonright I_n \neq x_F \upharpoonright I_n)\}.$$

Definition

Let $F \subseteq \omega^\omega$. $F \in \mathcal{M}_-$ if there are $x_F \in \omega^\omega$ and a partition of ω into intervals $(I_n)_{n \in \omega}$ such that

$$F \subseteq \{x \in \omega^\omega : (\forall^\infty n)(x \upharpoonright I_n \neq x_F \upharpoonright I_n)\}.$$

Observations

- \mathcal{M}_- is a translation invariant σ –ideal
- $\mathcal{M}_- \subsetneq \mathcal{M}$

Chain conditions

Definition

\mathcal{I} is κ -cc if for every family of Borel \mathcal{I} -positive sets $\{A_\alpha : \alpha < \kappa\}$ there are $\alpha \neq \beta$ such that $A_\alpha \cap A_\beta \notin \mathcal{I}$.

Theorem

\mathcal{M}_- is not $\text{add}(\mathcal{M})$ -cc.

Chain conditions

Definition

\mathcal{I} is κ -cc if for every family of Borel \mathcal{I} -positive sets $\{A_\alpha : \alpha < \kappa\}$ there are $\alpha \neq \beta$ such that $A_\alpha \cap A_\beta \notin \mathcal{I}$.

Theorem

\mathcal{M}_- is not $\text{add}(\mathcal{M})$ -cc.

Lemma

For every $A \in \mathcal{M}$ there is a nowhere dense set $B \notin \mathcal{M}_-$ such that $A \cap B = \emptyset$.

Question

Is \mathcal{M}_- \mathfrak{c} -cc?

Another meager-like ideals

Definition (Newelski, Rosłanowski)

For $f : \omega^{<\omega} \rightarrow \omega$ let

$$D_f = \{x \in \omega^\omega : (\forall^\infty n)(x(n) \neq f(x \upharpoonright n))\}.$$

Denote $\mathcal{D}_\omega = \{A \subseteq \omega^\omega : A \subseteq D_f \text{ for some } f\}.$

Definition (Spinas)

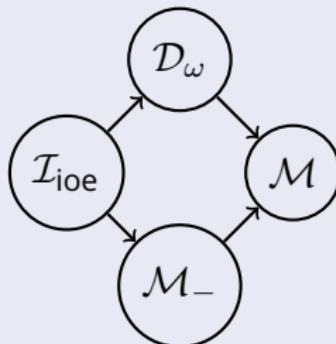
For $y \in \omega^\omega$ let

$$K_y = \{x \in \omega^\omega : (\forall^\infty n)(y(n) \neq x(n))\}.$$

Denote by \mathcal{I}_{ioe} the σ -ideal generated by K_y .

Cardinal invariants

Theorem



Theorem (Khomskii, Laguzzi)

$\text{cov}(\mathcal{I}_{\text{ioe}}) = \text{cov}(\mathcal{D}_\omega) = \text{cov}(\mathcal{M})$ and
 $\text{non}(\mathcal{I}_{\text{ioe}}) = \text{non}(\mathcal{D}_\omega) = \text{non}(\mathcal{M}).$

Corollary

$\text{cov}(\mathcal{M}_-) = \text{cov}(\mathcal{M})$ and $\text{non}(\mathcal{M}_-) = \text{non}(\mathcal{M}).$

Fake measure

Measure in the Cantor space

Definition

Let $F \subseteq 2^\omega$. F is null if

$$(\forall \varepsilon > 0) (\exists (\sigma_n)_{n \in \omega}) \left(\sum_{n \in \omega} \frac{1}{2^{|\sigma_n|}} < \varepsilon \wedge F \subseteq \bigcup_{n \in \omega} [\sigma_n] \right).$$

Lemma (Bartoszyński, Judah)

Let $F \subseteq 2^\omega$ be a null set. Then there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq 2^n$, $\sum \frac{|S_n|}{2^n} < \infty$, satisfying a condition

$$F \subseteq \{x \in 2^\omega : (\exists^\infty n)(x \upharpoonright n \in S_n)\}.$$

Fake measure in the Baire space

Definition

Let $F \subseteq \omega^\omega$. $F \in f\mathcal{N}(h)$ if

$$(\forall \varepsilon > 0) (\exists (\sigma_n)_{n \in \omega}) \left(\sum_{n \in \omega} \frac{1}{h(|\sigma_n|)} < \varepsilon \wedge F \subseteq \bigcup_{n \in \omega} [\sigma_n] \right).$$

Lemma

Let $F \subseteq \omega^\omega$, $F \in f\mathcal{N}(h)$. Then there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq \omega^n$, $\sum \frac{|S_n|}{h(n)} < \infty$, satisfying a condition

$$F \subseteq \{x \in \omega^\omega : (\exists^\infty n)(x \upharpoonright n \in S_n)\}.$$

Fake small and closed null sets

Definition

$F \in f\mathcal{E}(h)$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \omega^{I_n}$, $\sum \frac{|J_n|}{h(|I_n|)} < \infty$

$$F \subseteq \{x \in \omega^\omega : (\forall^\infty n)(x \upharpoonright I_n \in J_n)\}.$$

Definition

$F \in f\mathcal{S}(h)$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \omega^{I_n}$, $\sum \frac{|J_n|}{h(|I_n|)} < \infty$

$$F \subseteq \{x \in \omega^\omega : (\exists^\infty n)(x \upharpoonright I_n \in J_n)\}.$$

Observations

- $f\mathcal{N}(h)$ is a translation-invariant σ -ideal
- $h \leq g \implies f\mathcal{N}(h) \subseteq f\mathcal{N}(g)$, $f\mathcal{E}(h) \subseteq f\mathcal{E}(g)$, $f\mathcal{S}(h) \subseteq f\mathcal{S}(g)$
- $f\mathcal{E}(h) \subsetneq f\mathcal{S}(h)$
- $f\mathcal{N}(h) \perp \mathcal{M}$
- $f\mathcal{N}(h) \not\subseteq \mathcal{K}_\sigma$, $\mathcal{K}_\sigma \not\subseteq f\mathcal{N}(h)$

Are they surely ideals?

Theorem

Let $h \in \omega^\omega$ be increasing. Then $f\mathcal{E}(h)$ is not an ideal.

Question

Is there a function $h \in \omega^\omega$ such that $f\mathcal{S}(h)$ is an ideal?

Alternative characterization of $f\mathcal{E}(h)$

Theorem

Let $h \in \omega^\omega$ satisfy $h(a + b) \geq h(a)h(b)$ for any $a, b \in \omega$ and $c \in (0, 1)$. Then we can replace the condition $\sum_{n \in \omega} \frac{|J_n|}{h(|I_n|)} < \infty$ in the definition of $f\mathcal{E}(h)$ with $(\forall n)(\frac{|J_n|}{h(|I_n|)} < c)$.

Fin-versions

Definition

We will say that

- $F \in f\mathcal{N}(\text{Fin})$ if there is $(S_n)_{n \in \omega}$, $S_n \subseteq \omega^n$, $|S_n| < \omega$ such that

$$F \subseteq \{x \in \omega^\omega : (\exists^\infty n)(x \upharpoonright n \in S_n)\}.$$

- $F \in f\mathcal{S}(\text{Fin})$ if there is a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \omega^{I_n}$, $|J_n| < \omega$, such that

$$F \subseteq \{x \in \omega^\omega : (\exists^\infty n)(x \upharpoonright I_n \in J_n)\}.$$

- $F \in f\mathcal{E}(\text{Fin})$ if there is a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \omega^{I_n}$, $|J_n| < \omega$, such that

$$F \subseteq \{x \in \omega^\omega : (\forall^\infty n)(x \upharpoonright I_n \in J_n)\}.$$

Observations

- $f\mathcal{E}(\text{Fin}) = \mathcal{K}_\sigma \subsetneq f\mathcal{N}(\text{Fin})$
- $f\mathcal{N}(\text{Fin}) \subseteq f\mathcal{S}(\text{Fin})$ and both are σ –ideals

Chain conditions and cardinal invariants

Theorem

$f\mathcal{N}(\text{Fin})$ is not \mathfrak{c} -cc.

Theorem

$\mathfrak{b} \leq \text{add}(f\mathcal{N}(\text{Fin}))$ and $\text{cof}(f\mathcal{N}(\text{Fin})) \leq \mathfrak{d}$.

References

- **Yuriii Khomskii, Giorgio Laguzzi (2017)**
Full-splitting Miller trees and infinitely often equal reals
Annals of Pure and Applied Logic Volume 168, Issue 8, Pages 1491-1506
- **Ł. M., Marcin Michalski, Robert Rałowski, Szymon Żeberski (2025)**
On algebraic sums, trees and ideals in the Baire space
Archive for Mathematical Logic Volume 64, Pages 843-855
- **Ł. M., Marcin Michalski, Szymon Żeberski (2025)**
An Ideal Zoo in the Baire Space
<https://arxiv.org/abs/2510.27435>

Thank You for attention