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Let (X ,+) be an abelian group. For A,B ⊆ X we write

A+ B = {a+ b : a ∈ A, b ∈ B}.

Definition

For a family F ⊆ P(X ) let:

F∗ = {A ⊆ X : ∀F∈FA+ F ̸= X}.
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Definition

M(x , I ) = {y : ∀∞n x ↾ In ̸= y ↾ In}, where x is some real and I is some
interval partition.

Theorem

For every meager set X we have X ⊆ M(x , I ) for some x ∈ 2ω and interval
partition I .

• We say that for interval partitions I , J we have I ⊑∗ J if for almost
every n there exists k such that Ik ⊆ Jn.

• If I ⊑∗ J, then M(x , I ) ⊆ M(x , J).

• If M(y , I ) ⊆ M(z , J), then I ⊑∗ J.
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Theorem

Set X ⊆ 2ω has strong measure zero if and only if for every interval
partition I there exists z ∈ 2ω such that:

∀x ∈ X ∃∞n x ↾ In = z ↾ In

Theorem (Galvin-Mycielski-Solovay)

A set X ⊆ 2ω has strong measure zero if and only if for every meager set
H it holds that X + H ̸= 2ω.

So using *operation we can write

SMZ = M∗

Borel Conjecture

SMZ = Count

Corollary

Borel Conjecture =⇒ M ̸= M∗∗
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What about the Baire space?

Theorem

Galvin-Mycielski-Solovay Theorem doesn’t hold in the Baire space.

Definition

A set X ⊆ ωω is M− if X ⊆ M(x , I ) for some interval partition I and
x ∈ ωω

Definition

Set X ⊆ ωω is SMZ+ if for every interval partition I ∈ IP there exists
z ∈ ωω such that:

∀x ∈ X ∃∞n x ↾ In = z ↾ In

5 / 12



What about the Baire space?

Theorem

Galvin-Mycielski-Solovay Theorem doesn’t hold in the Baire space.

Definition

A set X ⊆ ωω is M− if X ⊆ M(x , I ) for some interval partition I and
x ∈ ωω

Definition

Set X ⊆ ωω is SMZ+ if for every interval partition I ∈ IP there exists
z ∈ ωω such that:

∀x ∈ X ∃∞n x ↾ In = z ↾ In

5 / 12



M− ⊆ M

SMZ ⊆ SMZ+

M∗
− = SMZ+

X∈ SMZ+ ⇐⇒ for every H ∈ M− we have X + H ̸= ωω

Proof.

(⇐=) Assume X + H ̸= ωω for any H ∈ M−. Take any partition I ∈ IP
and take H ⊆ M(0, I ). Since X + H ̸= ωω, there exists
z /∈ X + H ⊆

⋃
x∈X M(x , I ). So for every x ∈ X , there exist infinitely

many n such that z ↾ In = x ↾ In. So we get:

X ⊆ {x ∈ ωω : ∃∞n x ↾ In = z ↾ In} ∈ SMZ
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Proof.

(=⇒) Take any X ∈ SMZ and any H ∈ M−, where H ⊆ M(y , I ) and
X ⊆ {x : ∃∞n x ↾ In = z ↾ In}. We have X + H ⊆

⋃
x∈X M(y + x , I ).

We have to find a /∈ X + H. Let a = y + z
Assume that y + z ∈ X + H, then for some x ∈ X and almost all n we
have y + x ↾ In ̸= y + z ↾ In , so x ↾ In ̸= z ↾ In.
We get a contradiction, because X ∈ SMZ+, so for infinitely many n we
have x ↾ In = z ↾ In
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Cardinal invariants of M−

add(M−) = add(M)

cov(M−) = cov(M)

cof (M−) = cof (M)

non(M−) = non(M)
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add(M−) = add(M)

cov(M) = min{|F| : F ⊆ ωω ∧ ∀y ∈ ωω ∃x ∈ F x ̸=∗ y}

For interval partitions we have:

b = min{|F| : F ⊆ IP ∧ ¬∃J ∈ IP ∀I ∈ F I ⊑∗ J}

Theorem

add(M−) ⩽ add(M) = min{b, cov(M)}

Proof.
• add(M−) ≤ cov(M)

Since cov(M−) = cov(M) we have that
add(M−) ≤ cov(M−) = cov(M).

9 / 12



add(M−) = add(M)

cov(M) = min{|F| : F ⊆ ωω ∧ ∀y ∈ ωω ∃x ∈ F x ̸=∗ y}

For interval partitions we have:

b = min{|F| : F ⊆ IP ∧ ¬∃J ∈ IP ∀I ∈ F I ⊑∗ J}

Theorem

add(M−) ⩽ add(M) = min{b, cov(M)}

Proof.
• add(M−) ≤ cov(M)

Since cov(M−) = cov(M) we have that
add(M−) ≤ cov(M−) = cov(M).

9 / 12



add(M−) = add(M)

cov(M) = min{|F| : F ⊆ ωω ∧ ∀y ∈ ωω ∃x ∈ F x ̸=∗ y}

For interval partitions we have:

b = min{|F| : F ⊆ IP ∧ ¬∃J ∈ IP ∀I ∈ F I ⊑∗ J}

Theorem

add(M−) ⩽ add(M) = min{b, cov(M)}

Proof.
• add(M−) ≤ cov(M)

Since cov(M−) = cov(M) we have that
add(M−) ≤ cov(M−) = cov(M).

9 / 12



add(M−) = add(M)

cov(M) = min{|F| : F ⊆ ωω ∧ ∀y ∈ ωω ∃x ∈ F x ̸=∗ y}

For interval partitions we have:

b = min{|F| : F ⊆ IP ∧ ¬∃J ∈ IP ∀I ∈ F I ⊑∗ J}

Theorem

add(M−) ⩽ add(M) = min{b, cov(M)}

Proof.
• add(M−) ≤ cov(M)
Since cov(M−) = cov(M) we have that
add(M−) ≤ cov(M−) = cov(M).

9 / 12



Proof.
• add(M−) ≤ b
We want to construct family {Mα : α < b} ⊆ M− such that⋃

αMα /∈ M−.

For every Mα let Mα ⊆ M(xα,P
α) where Pα is unbounded family of

interval partitions.
Assume that there exist X ∈ M− such that

⋃
αMα ⊆ X and

X ⊆ M(y ,Q). Then for every α we have M(xα,P
α) ⊆ M(y ,Q).

From that for all α we have Pα ⊑∗ Q. That is contradiction, because
Pα was unbounded.
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Theorem

add(M−) ⩾ add(M) = min{b, cov(M)}

Proof.

Assume add(M−) < add(M) = min{b, cov(M)}. Take
(Mα : α < κ < add(M)) and Mα ⊆ M(xα, I

α). We will show that⋃
Mα ∈ M−

Since κ < cov(M) there exists z /∈
⋃
Mα so ∀α∃∞n z ↾ Iαn = xα ↾ Iαn .

Take (Jα : α < κ) such that ∀n∃k(Iαk ⊆ Jαn ∧ z ↾ Iαk = xα ↾ Iαn ).
Take R ∈ IP such that ∀α Jα ⊑∗ R.
So

⋃
α<κMα ⊆ M(z ,R)
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Moje kočka
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