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m Descriptive set theory: studying the properties of definable
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m Set theory of the reals: studying combinatorial properties of
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This work is at the intersection of:

m Descriptive set theory: studying the properties of definable
subsets of the real line.

m Set theory of the reals: studying combinatorial properties of
subsets of the real line.

Study the definability of combinatorial subsets of reals in various
models of set theory, in particular in models with large continuum
and nontrivial cardinal characteristic constellations.



Descriptive set theory

Definable Fix an uncountable Polish space X (e.g., R, [0, 1], w*, [w]“ ...

Witnesses

).
- The Borel (A1) subsets of X is the o-algebra generated by the open
Millhouse (2(1)) subsets of X.
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Theorem (Godel [G6d39])
If V.= L then there exists a A}-definable wellorder of the reals.

m V=L can be used to produce combinatorially interesting sets
with minimal descriptive complexity: an optimal projective
witness.

Corollary (Godel [God39])

It is consistent that there exists a A} set which is not Lebesgue
measurable nor has the property of Baire, and there exists a 11} set
without the perfect set property.
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It is consistent that ¢ is arbitrarily large and:

m there exists a Aé wellorder of the reals;
u there exists a Hé wellordering of a set of reals of length c;

m MA holds.
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viflllienee Theorem (Harrington, 1977 [Har77

It is consistent that ¢ is arbitrarily large and:

m there exists a Aé wellorder of the reals;
u there exists a Hé wellordering of a set of reals of length c;

u MA holds.

This is optimal:

Theorem (Mansfield)

If R is a ¥} wellordering of a set of reals then R is of length < ;.
Moreover, if there exists a Z% total wellorder of the reals, then R C L.



Our work

Definable

Julia A} wellorder, nice definable combinatorics; all interesting
Millhouse q Q .
combinatorial sets of size ¢ = N;.

Forcing extensions

Projective wellorders with =CH; interesting combinatorial cardinal
characteristic phenomena.



Our work
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Julia A} wellorder, nice definable combinatorics; all interesting
Millhouse o a .
combinatorial sets of size ¢ = N;.

Forcing extensions

Projective wellorders with =CH; interesting combinatorial cardinal
characteristic phenomena.

Questions

How can we obtain optimal definable witnesses as done in L,
but in models of =CH?

With which cardinal characteristic constellations is an N;-sized
definable witness compatible?

How can we obtain definable witnesses of size strictly greater
than N;7?



Coanalytic witnesses in L

e m Objects constructed from a wellordering of the reals are

Witnesses

Julia typically not A{- or ¥{-definable.
Millhouse
AC Xis ¥ = thereis F C X x w” such that

Coanalytic

witnesses €T e A RS Hy (_{E, y) E F

constructed
from S% sets

= Robust coding methods under V= L to produce I1}
witnesses.
m Originates in Erdés, Kunen, and Mauldin [EKM81];
m Streamlined by Arnold Miller, numerous applications
[Mil89];
m Formalized by Vidnyanszky, systematized machinery
[Vid14].

What about their arguments can be extracted and applied to
models of =CH?
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Millhouse Theorem (Mathias, 1969; [Mat77

Coanalytic . g A . .
witnesses If A is an analytic almost disjoint family, then A is not
constructed

from S% sets maX/ma/

Theorem (Miller, 1989:; [Mil89

If V.= L then there exists a II1 mad family.

Theorem (Toérnquist, 2013; [T09

If there exists a ¥:3 mad family, then there exists a I} mad
family.




Coanalytic witnesses from X3 sets
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o A mad family A € V'is P-indestructible for some forcing notion
P if A remains maximal in any P-generic extension over V.

Definition

Coanalytic
witnesses
constructed General strategy:
from 335 sets ) ) ) ) ) 1
m Construct a P-indestructible mad family in L in a 35-way,
where P is some forcing adding reals.

mInIP Aisa E% mad family, so apply Térnquist's theorem.

Corollary

m It is consistent with a < ¢ that there exists a coanalytic
witness of size a = Ny.

m (Brendle, Khomskii [BK13]) It is consistent that
Ny < a = ¢ = K regular cardinal, and there exists a
coanalytic mad family.



A general framework for removing an existential

quantifier

Definable
Witnesses What we do:

o = Survey the literature for implications of the form
¥ =11
C lyti . . ™ .
witnesses = Maximal independent families, towers, maximal eventually
GOSIEE: different families of functions, maximal orthogonal families,

from S% sets

ultrafilter bases.
m Extract a general framework; present the theorems in a
uniform fashion.
m Essential use of II}-uniformization, Spector-Gandy
theorem.
m Apply the framework to produce a new such theorem:
Hausdorff gaps in (P(w), C*).
See also [Mil24].
The framework is potent: has been applied to several other
combinatorial structures (M., Schembecker, 2025 [MS25]).
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Definition

Coanalytic A pre-gap is a pair (A, B) where A, B C [w]“ are wellordered by the
constructed relation C*, and for all a € A and b € B, an b is finite.l. A pre-gap
from >3 sets (A, B) is a gap if there does not exist ¢ € [w]“ such that for all a € A

and b € B, an cis finite and ¢ C b. (Such a c separates A, B).

m Found in work of Hausdorff, Du Bois-Reymond, Hadamard.

Theorem (Todorcevic, 1996; [Tod96

Suppose (A, B) is a pre-gap and A is analytic. Then (A, B) can be
separated.

'We define = C* y if and only if =\ y is finite



Hausdorff Gaps

Wineses
L A Hausdorff gap is a pre-gap (A, B), where A = {a, | a <w;},
B = {b, | @ <ws}, satisfying:

Coanalytic
witnesses

constructed Va < w1Vk < W[{’Y <« | Ay N bfy g k}] iS flnlte

from S% sets

(A, B) is a Hausdorff gap = (A, B) is a gap.

Theorem (M., 2024)

If there exists a Hausdorff gap (A, B) such that both A, B are
Y:1-definable, then there exists a Hausdorff gap (A’, B') such that
A’, B are 11}-definable.

Corollary

It is consistent with ¢ > R; that there exists a Hausdorff gap (4, B),
and (A, B) are coanalytic.
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Cardinal
Characteristic
Constellations
and Definable
Spectra

Cardinal characteristics and definable spectra

= Can we obtain II} small witnesses while also controlling the
values of other cardinal characteristics?

m What about the combinatorial sets of size > N;7?
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= Can we obtain II} small witnesses while also controlling the
values of other cardinal characteristics?

m What about the combinatorial sets of size > N;7?

m How can we control which cardinals s belong to
spec(a) = {|A| | A is mad} and ensure that for each such &
there is a projective mad family with an optimal definition?
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Cardinal
Characteristic
Constellations
and Definable
Spectra

Cardinal characteristics and definable spectra

= Can we obtain II} small witnesses while also controlling the
values of other cardinal characteristics?

m What about the combinatorial sets of size > N;7?

m How can we control which cardinals s belong to
spec(a) = {|A| | A is mad} and ensure that for each such &
there is a projective mad family with an optimal definition?

A definable witness to the value of a is consistent with:
m (Friedman, Zdomskyy, [FZ10] ) b = ¢ =N,

m (Fischer, Friedman, Zdomskyy, [FFZ11]; Brendle, Khomskii ([?])
b=c¢=k > Ng;

m (Fischer, Friedman, Schrittesser, Térnquist [FFST25])
Ny <a<c.



Cardinal characteristics and definable spectra
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values of other cardinal characteristics?

m What about the combinatorial sets of size > N;?

m How can we control which cardinals x belong to
Caliel spec(a) = {|A| | Ais mad} and ensure that for each such s

Characteristic

Constellations there is a projective mad family with an optimal definition?

and Definable
Known

Spectra
= Hechler pioneered the study of spec(a); pursued by Blass
[Bla10], Shelah and Spinas [SS15].

m Substantial control of realizing spec(a) = C for a given subset
of cardinals C.



Cardinal characteristics and definable spectra
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e = Can we obtain I} small witnesses while also controlling the
Millhouse values of other cardinal characteristics?

m What about the combinatorial sets of size > N;7?

m How can we control which cardinals x belong to
Cardinal spec(a) = {|A| | A is mad} and ensure that for each such
S there is a projective mad family with an optimal definition?

Constellations
and Definable
Spectra

Theorem (Fischer, M., 2025)

It is consistent with a = Xy < § = ¢ = Ny that there exists:
u A Al wellorder of the reals;
m A coanalytic tight mad family of size Ny;

m AL tight mad family of size N.



Proof strategy
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It is consistent with a = Ny < § = ¢ = Ny that there exists:
u A A} wellorder of the reals;

m A coanalytic tight mad family of size Ny;
Cardinal

Characteristic m AL tight mad family of size N,.

i Defnanie

- Fixing a I} tight mad family A in L, there are three tasks:
Increase the size of s;
Add a Al wellorder of the reals;
Add a H% tight mad family of size c.

Crucially, we ensure this can be done without destroying the
maximality of A, so cannot add dominating reals.



Tight mad families
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m For an almost disjoint family A, the ideal generated by A is the
set

IZ(A):={bew]*|bC" UF for some finite F C A}.

Cardinal
Characteristic

Constellations m An almost disjoint family A is tight if for all countable
i B CI(A)"T = [w]* \Z(A), there exists a single a € A such that
aN b is infinite for each b € B.

A is tight = A is maximal.

m Exist under CH and b = ¢. Their existence under ZFC is a long
standing open problem.

= Introduced by Malykhin [Mal89]; are Cohen-indestructible
[Kur01].



Preservation of tight mad families
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MRS ® 2020: Guzman, Hrusak, and Tellez [GHT20] introduce a
preservation notion for tight mad families: strong
preservation of tightness.

Crucially:
Cardinal ruci y
Characteristic
cQ Theorem (Guzman, Hrugak, Tellez, 2020; [GHT20
and Definable
Spectra If P is a countable support iteration of length 6 < ws of

forcings which strongly preserve the tightness of A, then P
strongly preserves the tightness of A.

m Examples: Sacks forcing, Miller forcing, Miller partition
forcing.
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Creature

forcing,
tightness

Creature forcing

Increase s, but do not increase a.

ZFC proves the following:

— 0 —

T

N1—>

|

Qa— o

—

= (Balcar, Simon [BPS80]) Consistency of s < b; also holds in
Hechler model.

m 0 and a are independent.

m Shelah [She84] introduces first creature forcing to show b < s is
consistent.



Creature forcing
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Increase s, but do not increase a.

m Mathias forcing: increases s by adding an unsplit real, but also
increases b, since it adds a dominating real.

m Shelah's creature forcing Q of [She84] increases s, but is almost
w*-bounding, meaning Q (and its iterations) keep b small.

Creature
forcing,

m almost w*-bounding # preserves mad families.

tightness

m Original proof of the consistency of b = a < s was by directly
constructing a mad family in the ground model.

= Alan Dow [Dow95] uses a similar approach to show a = &y in
the Miller model.



A creature forcing preserves tightness
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Let Q be Shelah’s creature forcing [She84], let A € V be a
tight mad family. Then Q strongly preserves the tightness of A.

This reveals that Q has a stronger combinatorial property than
almost w“-bounding, and it follows:

Creature Theorem Shelah, She84

ehtnes Assume CH, and let P be an wo-length countable support
iteration of Q, and let G be P-generic over V. Then

V[G] ):N1:G<EZN2.

Therefore, also in this model b < s.



Projective wellorders and cardinal characteristics
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Add a Al wellordering of the reals, while preserving a tight mad
family in the ground model.

The existence of definable wellorders is a central question in set
theory. Projective wellorderings of the reals indicate to what extent
regularity properties hold for the projective classes.

m V= L = there exists a Al wellorder of the reals.

= (Harrington, 1977) A Al wellorder of the reals is consistent
with ¢ arbitrarily large, and Martin's Axiom.

Projective

SR = (Caicedo, Friedman, 2011 [CF11]) Under the Bounded Proper
Forcing Axiom and an anti-large cardinal hypothesis, there
exists a A} wellorder of the reals.



Projective wellorders and cardinal characteristics

Definable

WSS Theorem (Fischer, Friedman, 2010 [FF10

Julia

MIRSEES Each of the following cardinal inequalities is consistent with
¢ = Ny and the existence of a A} wellordering of the reals:
0<c¢ b<g andb<a=s.

m Countable support iteration of S-proper forcings, where
S € L is a fixed stationary subset of w.

m Generic reals originate from Sacks coding: this gives a way
of coding with reals via an w“-bounding forcing.

m Coding apparatus: club shooting patterns through an

Projective

MEIGEE wo-length sequence of stationary costationary sets from
the ground model; David's trick [Dav82].

m “Flexible”: any proper forcing notion of size at most N
may be woven in.
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Projective
wellorders

Projective wellorders and tight mad families

Lemma (Bergfalk, Fischer, Switzer, 2022; [BFB22

The Sacks coding forcing strongly preserves the tightness of ground
model coanalytic tight mad families A such that ZFC proves A C L.

By weaving in the creature forcing to the Fischer-Friedman
construction:

Theorem (Fischer, M., 2025)

It is consistent that there is a A} wellorder of the reals,
N; =a < s=c= Ny, and there is a coanalytic mad family of size N;.
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Projective
wellorders

onclusion,

The Friedman-Zdomskyy Forcing

Add a I1} mad family of size ¢ = Ny, while preserving a tight mad
family in the ground model.

Theorem (Friedman, Zdomskyy (2010) [FZ10])

It is consistent with b = ¢ = Ry that there exists a 11} tight mad
family.
m Countable support iteration of S-proper forcings.

= Appropriate bookkeeping to take care of all B € [Z(A,)"]“,
where A, is the family constructed up to stage a.

m Generic reals arise from almost-disjoint coding, a technique of
Solovay and Jensen [SJ70], crucial to Harrington’s work.

[FZ10] also adds wy-many Hechler reals to ensure a = ¢.



Definability of tight mad families
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Theorem (Raghavan, [Rag09

If A is a tight mad family, then A does not contain a perfect
set.

Theorem (Mansfield, Solovay, 1950)

Suppose A is a X1 set of reals such that there exists a € A with
a ¢ L. Then A contains a perfect set of nonconstructible reals.

Projective

weliorders Hence, the minimal complexity of a projective tight mad family
of size > Ny is I13.



A preservation theorem
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Proposition

Let K be the Friedman-Zdomskyy forcing for adding a 11} tight
mad family of size ¢. Then K strongly preserves the tightness
of ground model tight mad families.

Thus, K above does not add dominating reals.

Theorem (Fischer, M., 2025)

It is consistent with N1 = a < ¢ = Ny that there exists a

Projective

wellorders coanalytic tight mad family of size Ny and a 113 tight mad
family of size Ns.



Orchestrating a symphony

Winece I Theorem (Fischer, M., 2025, [FM25

o It is consistent with a = Ry < § = ¢ = Ry that there exists:

Millhouse

m A Al wellorder of the reals;
m A coanalytic tight mad family of size Ny;
m AL tight mad family of size Ns.

Proof.

Beginning in a model of V' = L, use the template for adding a
Aé wellorder, weaving in either:

el Shelah’s forcing Q;

wellorders

The Friedman-Zdomskyy forcing K.

(1)=a=N; <s=2Ny
(2)= there exists I} tight mad family of size ¢
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Remark

Some combinatorial families can be analytic, even Borel. This is the
case for maximal eventually different families and maximal cofinitary
groups ([HS24], [HS25]). Such Borel witnesses are always of size c.

and Def

Spectra u (Fischer, Schrittesser; [FS21]) It is consistent with a. = X; < ¢
that there exists a coanalytic maximal eventually different family
of size N

m (Fischer, Schrittesser, Térnquist; [FST17]) It is consistent with
a, = Ny < c that there exists a coanalytic maximal cofinitary

Conclusion, i
Open group of size N;.

Questions
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Open questions:

Can the proofs of the form “if there exists a 33 family of type P
then there exists a I} family of type P" be lifted to the levels
Y. and I}, n > 27

nt

= Joint work with Fischer, Khomskii, Li.

Can we have a model with spec(a) > 2 and for every

Kk € spec(a) there exists a mad family of size k with an optimal
projective definition?

m Not known how to obtain the above while also demanding

Conclusion, N1 S SPGC(a).

Open
Questions



The end

Thank you! Dziekuje! Merci!
Vielen Dank! Arigato! Gracias!
Grazi! Dank je! Hvala! Dakujem!
Kiitos! Koszonom!
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