

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Definable Witnesses

Julia Millhouse

TU Wien

Winter School 2026

Introduction

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

This work is at the intersection of:

- Descriptive set theory: studying the properties of definable subsets of the real line.
- Set theory of the reals: studying combinatorial properties of subsets of the real line.

Introduction

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

This work is at the intersection of:

- Descriptive set theory: studying the properties of definable subsets of the real line.
- Set theory of the reals: studying combinatorial properties of subsets of the real line.

Motivation

Study the **definability** of combinatorial subsets of reals in various models of set theory, in particular in models with **large continuum** and nontrivial **cardinal characteristic constellations**.

Descriptive set theory

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

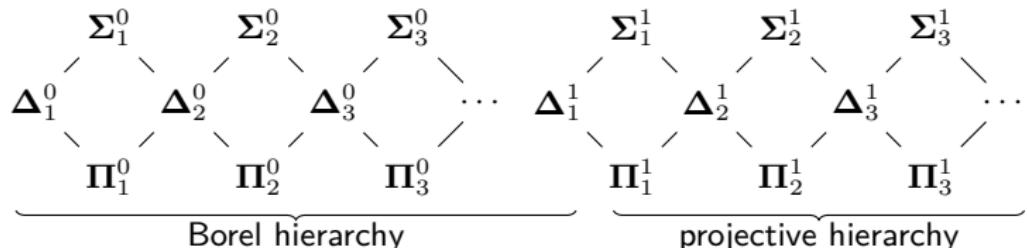
Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Fix an uncountable Polish space X (e.g., \mathbb{R} , $[0, 1]$, ω^ω , $[\omega]^\omega \dots$).
The Borel (Δ_1^1) subsets of X is the σ -algebra generated by the open (Σ_1^0) subsets of X .



The projective hierarchy

Σ_1^1 = analytic sets
(projections of Π_1^0 subsets of
 $X \times \omega^\omega$)

Σ_{n+1}^1 = projections of Π_n^1 sets

Π_1^1 = coanalytic sets
(complements of Σ_1^1 sets)
 Π_{n+1}^1 = complements of Σ_{n+1}^1 sets

$$\Delta_n^1 = \Sigma_n^1 \cap \Pi_n^1$$

The constructible universe L and its definable combinatorics

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Gödel [Göd39])

If $V = L$ then there exists a Δ_2^1 -definable wellorder of the reals.

- $V=L$ can be used to produce combinatorially interesting sets with minimal descriptive complexity: an *optimal projective witness*.

Corollary (Gödel [Göd39])

It is consistent that there exists a Δ_2^1 set which is not Lebesgue measurable nor has the property of Baire, and there exists a Π_1^1 set without the perfect set property.

Forcing and large continuum

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Harrington, 1977 [Har77])

It is consistent that \mathfrak{c} is arbitrarily large and:

- *there exists a Δ_3^1 wellorder of the reals;*
- *there exists a Π_2^1 wellordering of a set of reals of length \mathfrak{c} ;*
- *MA holds.*

Forcing and large continuum

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Harrington, 1977 [Har77])

It is consistent that \mathfrak{c} is arbitrarily large and:

- *there exists a Δ_3^1 wellorder of the reals;*
- *there exists a Π_2^1 wellordering of a set of reals of length \mathfrak{c} ;*
- *MA holds.*

This is optimal:

Theorem (Mansfield)

*If R is a Σ_2^1 wellordering of a set of reals then R is of length $\leq \aleph_1$.
Moreover, if there exists a Σ_2^1 total wellorder of the reals, then $\mathbb{R} \subseteq L$.*

Our work

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ^1_2 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

$V=L$

Δ^1_2 wellorder, nice definable combinatorics; all interesting combinatorial sets of size $\mathfrak{c} = \aleph_1$.

Forcing extensions

Projective wellorders with $\neg\text{CH}$; interesting combinatorial cardinal characteristic phenomena.

Our work

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

$V=L$

Δ_2^1 wellorder, nice definable combinatorics; all interesting combinatorial sets of size $\mathfrak{c} = \aleph_1$.

Forcing extensions

Projective wellorders with $\neg\text{CH}$; interesting combinatorial cardinal characteristic phenomena.

Questions

- 1 How can we obtain optimal definable witnesses as done in L , but in models of $\neg\text{CH}$?
- 2 With which cardinal characteristic constellations is an \aleph_1 -sized definable witness compatible?
- 3 How can we obtain definable witnesses of size strictly greater than \aleph_1 ?

Coanalytic witnesses in L

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Objects constructed from a wellordering of the reals are typically not Δ_1^1 - or Σ_1^1 -definable.

$A \subseteq X$ is $\Sigma_2^1 \Rightarrow$ there is $F \subseteq X \times \omega^\omega$ such that

$$x \in A \Leftrightarrow \exists y (x, y) \in F.$$

- Robust coding methods under $V = L$ to produce Π_1^1 witnesses.
 - Originates in Erdős, Kunen, and Mauldin [EKM81];
 - Streamlined by Arnold Miller, numerous applications [Mil89];
 - Formalized by Vidnyánszky, systematized machinery [Vid14].

Question

What about their arguments can be extracted and applied to models of $\neg\text{CH}$?

Coanalytic witnesses from Σ_2^1 sets

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Mathias, 1969; [Mat77])

If \mathcal{A} is an analytic almost disjoint family, then \mathcal{A} is not maximal.

Theorem (Miller, 1989; [Mil89])

If $V = L$ then there exists a Π_1^1 mad family.

Theorem (Törnquist, 2013; [T09])

If there exists a Σ_2^1 mad family, then there exists a Π_1^1 mad family.

Coanalytic witnesses from Σ_2^1 sets

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Definition

A mad family $\mathcal{A} \in V$ is \mathbb{P} -indestructible for some forcing notion \mathbb{P} if \mathcal{A} remains maximal in any \mathbb{P} -generic extension over V .

General strategy:

- Construct a \mathbb{P} -indestructible mad family in L in a Σ_2^1 -way, where \mathbb{P} is some forcing adding reals.
- In $L^\mathbb{P}$, \mathcal{A} is a Σ_2^1 mad family, so apply Törnquist's theorem.

Corollary

- *It is consistent with $\mathfrak{a} < \mathfrak{c}$ that there exists a coanalytic witness of size $\mathfrak{a} = \aleph_1$.*
- *(Brendle, Khomskii [BK13]) It is consistent that $\aleph_1 < \mathfrak{a} = \mathfrak{c} = \kappa$ regular cardinal, and there exists a coanalytic mad family.*

A general framework for removing an existential quantifier

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

What we do:

- Survey the literature for implications of the form $\Sigma_2^1 \Rightarrow \Pi_1^1$.
 - Maximal independent families, towers, maximal eventually different families of functions, maximal orthogonal families, ultrafilter bases.
- Extract a general framework; present the theorems in a uniform fashion.
 - Essential use of Π_1^1 -uniformization, Spector-Gandy theorem.
- Apply the framework to produce a new such theorem: Hausdorff gaps in $(\mathcal{P}(\omega), \subseteq^*)$.

See also [Mil24].

The framework is potent: has been applied to several other combinatorial structures (M., Schembecker, 2025 [MS25]).

Hausdorff gaps

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Definition

A *pre-gap* is a pair (A, B) where $A, B \subseteq [\omega]^\omega$ are wellordered by the relation \subseteq^* , and for all $a \in A$ and $b \in B$, $a \cap b$ is finite.¹. A pre-gap (A, B) is a *gap* if there does not exist $c \in [\omega]^\omega$ such that for all $a \in A$ and $b \in B$, $a \cap c$ is finite and $c \subseteq b$. (Such a c *separates* A, B).

- Found in work of Hausdorff, Du Bois-Reymond, Hadamard.

Theorem (Todorcevic, 1996; [Tod96])

Suppose (A, B) is a pre-gap and A is analytic. Then (A, B) can be separated.

¹We define $x \subseteq^* y$ if and only if $x \setminus y$ is finite

Hausdorff Gaps

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Definition

A *Hausdorff gap* is a pre-gap (A, B) , where $A = \{a_\alpha \mid \alpha < \omega_1\}$, $B = \{b_\alpha \mid \alpha < \omega_1\}$, satisfying:

$$\forall \alpha < \omega_1 \forall k < \omega [\{\gamma < \alpha \mid a_\alpha \cap b_\gamma \subseteq k\}] \text{ is finite.}$$

(A, B) is a Hausdorff gap $\Rightarrow (A, B)$ is a gap.

Theorem (M., 2024)

If there exists a Hausdorff gap (A, B) such that both A, B are Σ_2^1 -definable, then there exists a Hausdorff gap (A', B') such that A', B' are Π_1^1 -definable.

Corollary

It is consistent with $\mathfrak{c} > \aleph_1$ that there exists a Hausdorff gap (A, B) , and (A, B) are coanalytic.

Cardinal characteristics and definable spectra

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Can we obtain Π_1^1 small witnesses while also controlling the values of other cardinal characteristics?
- What about the combinatorial sets of size $> \aleph_1$?

Cardinal characteristics and definable spectra

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Can we obtain Π_1^1 small witnesses while also controlling the values of other cardinal characteristics?
- What about the combinatorial sets of size $> \aleph_1$?
- How can we control which cardinals κ belong to $\text{spec}(\alpha) = \{|\mathcal{A}| \mid \mathcal{A} \text{ is mad}\}$ and ensure that for each such κ there is a projective mad family with an optimal definition?

Cardinal characteristics and definable spectra

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ^1_2 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Can we obtain Π^1_1 small witnesses while also controlling the values of other cardinal characteristics?
- What about the combinatorial sets of size $> \aleph_1$?
- How can we control which cardinals κ belong to $\text{spec}(\alpha) = \{|\mathcal{A}| \mid \mathcal{A} \text{ is mad}\}$ and ensure that for each such κ there is a projective mad family with an optimal definition?

Known

A definable witness to the value of α is consistent with:

- (Friedman, Zdomskyy, [FZ10]) $\mathfrak{b} = \mathfrak{c} = \aleph_2$
- (Fischer, Friedman, Zdomskyy, [FFZ11]; Brendle, Khomskii ([?])) $\mathfrak{b} = \mathfrak{c} = \kappa \geq \aleph_3$;
- (Fischer, Friedman, Schrittesser, Törnquist [FFST25]) $\aleph_1 < \alpha < \mathfrak{c}$.

Cardinal characteristics and definable spectra

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ^1_2 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Can we obtain \mathbb{I}^1_1 small witnesses while also controlling the values of other cardinal characteristics?
- What about the combinatorial sets of size $> \aleph_1$?
- How can we control which cardinals κ belong to $\text{spec}(\alpha) = \{|\mathcal{A}| \mid \mathcal{A} \text{ is mad}\}$ and ensure that for each such κ there is a projective mad family with an optimal definition?

Known

- Hechler pioneered the study of $\text{spec}(\alpha)$; pursued by Blass [Bla10], Shelah and Spinas [SS15].
- Substantial control of realizing $\text{spec}(\alpha) = C$ for a given subset of cardinals C .

Cardinal characteristics and definable spectra

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Can we obtain Π_1^1 small witnesses while also controlling the values of other cardinal characteristics?
- What about the combinatorial sets of size $> \aleph_1$?
- How can we control which cardinals κ belong to $\text{spec}(\alpha) = \{|\mathcal{A}| \mid \mathcal{A} \text{ is mad}\}$ and ensure that for each such κ there is a projective mad family with an optimal definition?

Theorem (Fischer, M., 2025)

It is consistent with $\alpha = \aleph_1 < \mathfrak{s} = \mathfrak{c} = \aleph_2$ that there exists:

- A Δ_3^1 wellorder of the reals;
- A coanalytic tight mad family of size \aleph_1 ;
- A Π_2^1 tight mad family of size \aleph_2 .

Proof strategy

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ^1_2 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Fischer, M., 2025)

It is consistent with $\mathfrak{a} = \aleph_1 < \mathfrak{s} = \mathfrak{c} = \aleph_2$ that there exists:

- *A Δ^1_3 wellorder of the reals;*
- *A coanalytic tight mad family of size \aleph_1 ;*
- *A Π^1_2 tight mad family of size \aleph_2 .*

Fixing a Π^1_1 tight mad family \mathcal{A} in L , there are three tasks:

- 1 Increase the size of \mathfrak{s} ;
- 2 Add a Δ^1_3 wellorder of the reals;
- 3 Add a Π^1_2 tight mad family of size \mathfrak{c} .

Crucially, we ensure this can be done without destroying the maximality of \mathcal{A} , so cannot add dominating reals.

Tight mad families

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Definition

- For an almost disjoint family \mathcal{A} , the *ideal generated by \mathcal{A}* is the set

$$\mathcal{I}(\mathcal{A}) := \{b \in [\omega]^\omega \mid b \subseteq^* \bigcup F \text{ for some finite } F \subseteq \mathcal{A}\}.$$

- An almost disjoint family \mathcal{A} is *tight* if for all countable $\mathcal{B} \subseteq \mathcal{I}(\mathcal{A})^+ = [\omega]^\omega \setminus \mathcal{I}(\mathcal{A})$, there exists a single $a \in \mathcal{A}$ such that $a \cap b$ is infinite for each $b \in \mathcal{B}$.

\mathcal{A} is tight \Rightarrow \mathcal{A} is maximal.

- Exist under CH and $\mathfrak{b} = \mathfrak{c}$. Their existence under ZFC is a long standing open problem.
- Introduced by Malykhin [Mal89]; are Cohen-indestructible [Kur01].

Preservation of tight mad families

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- 2020: Guzman, Hrusak, and Tellez [GHT20] introduce a preservation notion for tight mad families: *strong preservation of tightness*.
Crucially:

Theorem (Guzman, Hrušák, Tellez, 2020; [GHT20])

If \mathbb{P} is a countable support iteration of length $\delta \leq \omega_2$ of forcings which strongly preserve the tightness of \mathcal{A} , then \mathbb{P} strongly preserves the tightness of \mathcal{A} .

- Examples: Sacks forcing, Miller forcing, Miller partition forcing.

Creature forcing

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

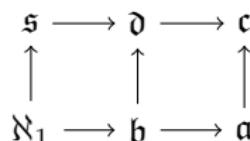
Projective
wellorders

Conclusion,
Open
Questions

Task 1

Increase \mathfrak{s} , but do not increase \mathfrak{a} .

ZFC proves the following:



- (Balcar, Simon [BPS80]) Consistency of $\mathfrak{s} < \mathfrak{b}$; also holds in Hechler model.
- \mathfrak{d} and \mathfrak{a} are independent.
- Shelah [She84] introduces first *creature forcing* to show $\mathfrak{b} < \mathfrak{s}$ is consistent.

Creature forcing

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Task 1

Increase \mathfrak{s} , but do not increase \mathfrak{a} .

- Mathias forcing: increases \mathfrak{s} by adding an unsplit real, but also increases \mathfrak{b} , since it adds a dominating real.
- Shelah's creature forcing \mathbb{Q} of [She84] increases \mathfrak{s} , but is *almost ω^ω -bounding*, meaning \mathbb{Q} (and its iterations) keep \mathfrak{b} small.
- almost ω^ω -bounding $\not\Rightarrow$ preserves mad families.
- Original proof of the consistency of $\mathfrak{b} = \mathfrak{a} < \mathfrak{s}$ was by directly constructing a mad family in the ground model.
- Alan Dow [Dow95] uses a similar approach to show $\mathfrak{a} = \aleph_1$ in the Miller model.

A creature forcing preserves tightness

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ^1_2 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Proposition (Fischer, M., 2025)

Let \mathbb{Q} be Shelah's creature forcing [She84], let $\mathcal{A} \in V$ be a tight mad family. Then \mathbb{Q} strongly preserves the tightness of \mathcal{A} .

This reveals that \mathbb{Q} has a stronger combinatorial property than almost ω^ω -bounding, and it follows:

Theorem (Shelah, [She84])

Assume CH, and let \mathbb{P} be an ω_2 -length countable support iteration of \mathbb{Q} , and let G be \mathbb{P} -generic over V . Then $V[G] \models \aleph_1 = \mathfrak{a} < \mathfrak{s} = \aleph_2$.

Therefore, also in this model $\mathfrak{b} < \mathfrak{s}$.

Projective wellorders and cardinal characteristics

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ^1_2 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Task 2

Add a Δ^1_3 wellordering of the reals, while preserving a tight mad family in the ground model.

The existence of definable wellorders is a central question in set theory. Projective wellorderings of the reals indicate to what extent regularity properties hold for the projective classes.

- $V = L \Rightarrow$ there exists a Δ^1_2 wellorder of the reals.
- (Harrington, 1977) A Δ^1_3 wellorder of the reals is consistent with \mathfrak{c} arbitrarily large, and Martin's Axiom.
- (Caicedo, Friedman, 2011 [CF11]) Under the Bounded Proper Forcing Axiom and an anti-large cardinal hypothesis, there exists a Δ^1_3 wellorder of the reals.

Projective wellorders and cardinal characteristics

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Fischer, Friedman, 2010 [FF10])

Each of the following cardinal inequalities is consistent with $\mathfrak{c} = \aleph_2$ and the existence of a Δ_3^1 wellordering of the reals:
 $\mathfrak{d} < \mathfrak{c}$, $\mathfrak{b} < \mathfrak{g}$, and $\mathfrak{b} < \mathfrak{a} = \mathfrak{s}$.

- Countable support iteration of S -proper forcings, where $S \in L$ is a fixed stationary subset of ω_1 .
- Generic reals originate from *Sacks coding*: this gives a way of coding with reals via an ω^ω -bounding forcing.
- Coding apparatus: club shooting patterns through an ω_2 -length sequence of stationary costationary sets from the ground model; David's trick [Dav82].
- “Flexible”: any proper forcing notion of size at most \aleph_1 may be woven in.

Projective wellorders and tight mad families

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Lemma (Bergfalk, Fischer, Switzer, 2022; [BFB22])

The Sacks coding forcing strongly preserves the tightness of ground model coanalytic tight mad families \mathcal{A} such that ZFC proves $\mathcal{A} \subseteq L$.

By weaving in the creature forcing to the Fischer-Friedman construction:

Theorem (Fischer, M., 2025)

It is consistent that there is a Δ_3^1 wellorder of the reals, $\aleph_1 = \mathfrak{a} < \mathfrak{s} = \mathfrak{c} = \aleph_2$, and there is a coanalytic mad family of size \aleph_1 .

The Friedman-Zdomskyy Forcing

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Task 3

Add a Π_2^1 mad family of size $\mathfrak{c} = \aleph_2$, while preserving a tight mad family in the ground model.

Theorem (Friedman, Zdomskyy (2010) [FZ10])

It is consistent with $\mathfrak{b} = \mathfrak{c} = \aleph_2$ that there exists a Π_2^1 tight mad family.

- Countable support iteration of S -proper forcings.
- Appropriate bookkeeping to take care of all $\mathcal{B} \in [\mathcal{I}(\mathcal{A}_\alpha)^+]^\omega$, where \mathcal{A}_α is the family constructed up to stage α .
- Generic reals arise from *almost-disjoint coding*, a technique of Solovay and Jensen [SJ70], crucial to Harrington's work.
- [FZ10] also adds ω_2 -many Hechler reals to ensure $\mathfrak{a} = \mathfrak{c}$.

Definability of tight mad families

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Raghavan, [Rag09])

If \mathcal{A} is a tight mad family, then \mathcal{A} does not contain a perfect set.

Theorem (Mansfield, Solovay, 1950)

Suppose A is a Σ_2^1 set of reals such that there exists $a \in A$ with $a \notin L$. Then A contains a perfect set of nonconstructible reals.

Hence, the minimal complexity of a projective tight mad family of size $\geq \aleph_2$ is Π_2^1 .

A preservation theorem

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Proposition

Let \mathbb{K} be the Friedman-Zdomskyy forcing for adding a Π_2^1 tight mad family of size \mathfrak{c} . Then \mathbb{K} strongly preserves the tightness of ground model tight mad families.

Thus, \mathbb{K} above does not add dominating reals.

Theorem (Fischer, M., 2025)

It is consistent with $\aleph_1 = \mathfrak{a} < \mathfrak{c} = \aleph_2$ that there exists a coanalytic tight mad family of size \aleph_1 and a Π_2^1 tight mad family of size \aleph_2 .

Orchestrating a symphony

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Theorem (Fischer, M., 2025, [FM25])

It is consistent with $\mathfrak{a} = \aleph_1 < \mathfrak{s} = \mathfrak{c} = \aleph_2$ that there exists:

- *A Δ_3^1 wellorder of the reals;*
- *A coanalytic tight mad family of size \aleph_1 ;*
- *A Π_2^1 tight mad family of size \aleph_2 .*

Proof.

Beginning in a model of $V = L$, use the template for adding a Δ_3^1 wellorder, weaving in either:

- 1 Shelah's forcing \mathbb{Q} ;
- 2 The Friedman-Zdomskyy forcing \mathbb{K} .

$(1) \Rightarrow \mathfrak{a} = \aleph_1 < \mathfrak{s} = \aleph_2$

$(2) \Rightarrow$ there exists Π_2^1 tight mad family of size \mathfrak{c}

Closing remarks and open questions

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Remark

Some combinatorial families can be analytic, even Borel. This is the case for maximal eventually different families and maximal cofinitary groups ([HS24], [HS25]). Such Borel witnesses are always of size \mathfrak{c} .

Theorem

- (Fischer, Schrittesser; [FS21]) *It is consistent with $\mathfrak{a}_e = \aleph_1 < \mathfrak{c}$ that there exists a coanalytic maximal eventually different family of size \aleph_1*
- (Fischer, Schrittesser, Törnquist; [FST17]) *It is consistent with $\mathfrak{a}_g = \aleph_1 < \mathfrak{c}$ that there exists a coanalytic maximal cofinitary group of size \aleph_1 .*

Closing remarks and open questions

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Open questions:

- 1 Can the proofs of the form “if there exists a Σ_2^1 family of type P then there exists a Π_1^1 family of type P ” be lifted to the levels Σ_{n+1}^1 and Π_n^1 , $n \geq 2$?
 - Joint work with Fischer, Khomskii, Li.
- 2 Can we have a model with $\text{spec}(\alpha) > 2$ and for every $\kappa \in \text{spec}(\alpha)$ there exists a mad family of size κ with an optimal projective definition?
 - Not known how to obtain the above while also demanding $\aleph_1 \in \text{spec}(\alpha)$.

The end

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Thank you! Dziekuje! Merci!
Vielen Dank! Arigato! Gracias!
Grazi! Dank je! Hvala! Ďakujem!
Kiitos! Köszönöm!

References I

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Jeffrey Bergfalk, Vera Fischer Fischer, and Corey Bacal Switzer, *Projective well orders and coanalytic witnesses*, Annals of Pure and Applied Logic **173** (2022), no. 8, 103135.
- Jörg Brendle and Yurii Khomskii, *Mad Families Constructed from Perfect Almost Disjoint Families*, The Journal of Symbolic Logic **78** (2013), no. 4, 1164–1180.
- Andreas Blass, *Combinatorial cardinal characteristics of the continuum*, Handbook of set theory (Matthew Foreman and Akihiro Kanamori, eds.), Springer, Dordrecht, 2010, pp. 395–489.
- Bohuslav Balcar, Jan Pelant, and Petr Simon, *The space of ultrafilters on \mathbb{N} covered by nowhere dense sets*, Fundamenta Mathematicae **110** (1980), no. 1, 11–24.
- Andrés Eduardo Caicedo and Sy-David Friedman, *BPFA and Projective Well-orderings of the Reals*, The Journal of Symbolic Logic **76** (2011), no. 4, 1126–1136.

References II

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- René David, *A very absolute Π_2^1 real singleton*, Annals of Mathematical Logic **23** (1982), no. 2, 101–120.
- Alan Dow, *More set-theory for topologists*, Topology and its Applications **64** (1995), no. 3, 243–300.
- Paul Erdős, Kenneth Kunen, and R. Daniel Mauldin, *Some additive properties of sets of real numbers*, Fundamenta Mathematicae **113** (1981), no. 3, 187–199.
- Vera Fischer and Sy David Friedman, *Cardinal characteristics and projective wellorders*, Annals of Pure and Applied Logic **161** (2010), no. 7, 916–922.
- Vera Fischer, Sy David Friedman, David Schrittesser, and Asger Törnquist, *Good projective witnesses*, Annals of Pure and Applied Logic **176** (2025), no. 8, Paper No. 103606.

References III

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Vera Fischer, Sy-David Friedman, and Lyubomyr Zdomskyy, *Projective wellorders and mad families with large continuum*, Annals of Pure and Applied Logic **162** (2011), no. 11, 853–862.
- Vera Fischer and Julia Millhouse, *Strong Projective Witnesses*, 2025, submitted.
- Vera Fischer and David Schrittesser, *A Sacks indestructible co-analytic maximal eventually different family*, Fundamenta Mathematicae **252** (2021), no. 2, 179–201.
- Vera Fischer, David Schrittesser, and Asger Törnquist, *A co-analytic Cohen-indestructible maximal cofinitary group*, The Journal of Symbolic Logic **82** (2017), no. 2, 629–647.
- Sy-David Friedman and Lyubomyr Zdomskyy, *Projective mad families*, Annals of Pure and Applied Logic **161** (2010), no. 12, 1581–1587.

References IV

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

Osvaldo Guzman, Michael Hrušák, and Osvaldo Tellez, *Restricted MAD families*, The Journal of Symbolic Logic **85** (2020), no. 1, 149–165.

Kurt Gödel, *Consistency-proof for the generalized continuum-hypothesis*, Proceedings of the National Academy of Sciences **25** (1939), no. 4, 220–224.

Leo Harrington, *Long projective wellorderings*, Annals of Mathematical Logic **12** (1977), no. 1, 1–24.

Haim Horowitz and Saharon Shelah, *A Borel maximal eventually different family*, Annals of Pure and Applied Logic **175** (2024), no. 1, part B, 10334.

Haim Horowitz and Saharon Shelah, *A Borel Maximal Cofinitary Group*, The Journal of Symbolic Logic **90** (2025), no. 2, 808–821.

Miloš S. Kurilić, *Cohen-Stable families of Subsets of Integers*, The Journal of Symbolic Logic **66** (2001), no. 1, 257–270.

References V

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- V. I. Malykhin, *Topological properties of Cohen generic extensions*, Trudy Moskovskogo Matematicheskogo Obshchestva **52** (1989), 3–33, 247.
- Adrian R. D. Mathias, *Happy families*, Annals of Mathematical Logic **12** (1977), no. 1, 59–111.
- Arnold W. Miller, *Infinite combinatorics and definability*, Annals of Pure and Applied Logic **41** (1989), no. 2, 179–203.
- Julia Millhouse, *Reducing projective complexity: an overview*, RIMS Kôkyûroku, vol. 2315, Kyoto University, 2024.
- Julia Millhouse and Lukas Schembecker, *Coanalytic families of functions*, 2025.
- Dilip Raghavan, *Maximal almost disjoint families of functions*, Fundamenta Mathematicae **204** (2009), no. 3, 241–282.

References VI

Definable
Witnesses

Julia
Millhouse

Coanalytic
witnesses
constructed
from Σ_2^1 sets

Cardinal
Characteristic
Constellations
and Definable
Spectra

Creature
forcing,
tightness

Projective
wellorders

Conclusion,
Open
Questions

- Saharon Shelah, *On cardinal invariants of the continuum*, Axiomatic set theory (Boulder, Colo., 1983), Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, RI, 1984, pp. 183–207.
- Robert B. Solovay and Ronald M. Jensen, *Some applications of almost disjoint sets*, Mathematical Logic and Formulations of Set Theory (1970), 84–104.
- Saharon Shelah and Otmar Spinas, *MAD spectra*, Journal of Symbolic Logic (2015), no. 80, 243–262.
- Asger Törnquist, Σ_2^1 and Π_1^1 Mad Families, The Journal of Symbolic Logic **78** (2009), no. 4, 1181–1182.
- Stevo Todorčević, *Analytic gaps*, Fundamenta Mathematicae **150** (1996), no. 1, 55–66.
- Zoltán Vidnyánszky, *Transfinite inductions producing coanalytic sets*, Fundamenta Mathematicae **224** (2014), no. 2, 155–174.