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Large cardinal axioms

Many have the form:

there is a non-trivial elementary embedding from the universe of sets V
to a submodel M with suitable closure

i.e. there is j : V → M such that for every formula φ in the language of set theory
and all parameters a1, . . . , an,

(V ,∈) ⊨ φ(a1, . . . , an) if and only if (M,∈) ⊨ φ(j(a1), . . . , j(an)).

“Non-trivial” here just means not the identity function.

Henceforth by
“elementary embedding” I will mean “non-trivial elementary embedding”.

“The” large cardinal is then the critical point of j ,

crit(j) = min({α | j(α) ̸= α}).
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Kunen’s inconsistency

For these large cardinal axioms, the more M looks like V , the stronger the axiom.

So, the ultimate would be an elementary embedding j : V → V . But

Theorem (Kunen)

There is no elemetary embedding j : V → V .

Multiple proofs are known.

All rely heavily on the Axiom of Choice.

There is a lot of exciting recent research on what you get if you keep the
embeddings and give up Choice.

We’re interested in a different way to step back from inconsistency.
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Kunen: There is no elemetary embedding j : V → V .

In fact, the proofs show that there is no elementary embedding j : Vλ+2 → Vλ+2,
where

λ = sup
n∈ω

(jn(crit j)).

So let’s just stay below λ+ 2 to avoid the inconsistency!

Axiom I3: ∃ elementary j : Vλ → Vλ

Axiom I1: ∃ elementary j : Vλ+1 → Vλ+1

(So I1 is stronger than I3.) Such embeddings are called rank-to-rank embeddings.

Silly?

Something even stronger than I1 was used by Woodin in his original work on
the consistency of AD (before bringing it way down).

50 years of working with them hasn’t turned up any more inconsistencies.
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Notation

Eλ := the set of elementary embeddings from Vλ to Vλ.

From Vλ to Vλ+1

Given an I1 embedding j : Vλ+1 → Vλ+1 and A ∈ Vλ+1 \ Vλ, we can reconstruct
j(A) from the restriction of j to Vλ: it must be

j(A) =
⋃
α<λ

j(A ∩ Vα),

since j(A) ∩ Vj(α) = j(A ∩ Vα) by elementarity.

For any j ∈ Eλ, we can treat it as a function from Vλ+1 to Vλ+1 with this
definition of j(A) for A ⊆ Vλ, even though it won’t in general be elementary as a
function from Vλ+1 to Vλ+1.
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Even if the extension of j to Vλ+1 isn’t fully elementary, it might have some
elementarity.

Language

LST , extended with second-order variables (capital letters), representing subsets of
Vλ.

Say formula φ is

Σ1
0 and Π1

0 if it is first order,

Σ1
n+1 if it is equivalent to one of the form ∃Xψ, where ψ is Π1

n,

Π1
n+1 if it is equivalent to the negation of a Σ1

n+1 formula.

We say that j : Vλ → Vλ is Σ1
m-elementary if for all Σ1

m formulas φ and
parameters a1, . . . , an0 ,A1, . . . ,An1 ,

Vλ ⊨ φ(a1, . . . , an0 ,A1, . . . ,An1)

if and only if
Vλ ⊨ φ(j(a1), . . . , j(an0), j(A1), . . . , j(An1))
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This gives another standard large cardinal axiom:

I2: ∃ Σ1
1-elementary j : Vλ → Vλ.

We’ll come back to this.
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If j and k are elements of Eλ, then with the usual encoding of functions as sets of
pairs, k ⊂ Vλ.

So we have a definition of j(k)!

j(k) =
⋃
α<λ

j(k ↾Vα).

Lemma

For any j , k ∈ Eλ, j(k) ∈ Eλ. Moreover, if j and k are Σ1
m, so is j(k) (Laver).

Proof outline.
Elementarity of k can be expressed by: for every formula φ and α < λ,

Vλ ⊨ ∀a1, . . . , an ∈ Vα(φ(a1, . . . , an) ↔ φ((k ↾Vα)(a1), . . . , (k ↾Vα)(an)).

By elementarity of j we then have

Vλ ⊨ ∀a1, . . . , an ∈ Vj(α)(φ(a1, . . . , an) ↔ φ(j(k ↾Vα)(a1), . . . , j(k ↾Vα)(an)).
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Let’s write j ∗ k for j(k).

Note
j ∗ k is very different from j ◦ k. E.g.,

crit(j ∗ k) = j(crit(k)), but crit(j ◦ k) = min(crit(j), crit(k)).

For any j , k, ℓ ∈ Eλ, we have by elementarity that

j ∗ (k ∗ ℓ) = (j ∗ k) ∗ (j ∗ ℓ).

Definition

A set with a binary operation ∗ satisfying a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) is an
LD-algebra or shelf.
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Let j : Vλ → Vλ be a rank-to-rank embedding and let Aj be the structure
consisting of embeddings generated by j under the ∗ operation.

Theorem (Laver)

Aj is the free LD-algebra on the single generator j .
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Some elements of Aj

Definition

For n ∈ ω we define recursively j (n), the nth right power of j , by

j (0) = j

j (n+1) = j ∗ j (n)

So j (n) = j(j(· · · (j(j)) · · · )) with n + 1 “j”s.

That notation seems terrible!
By induction using distributivity, for all n we have

j (n+1) = j (n)j (n),

expanding all the way out to an expression with 2n “j”s.

Andrew Brooke-Taylor A 2-gen free algebra of embeddings Winter School 2026 11 / 17



Some elements of Aj

Definition

For n ∈ ω we define recursively j (n), the nth right power of j , by

j (0) = j

j (n+1) = j ∗ j (n)

So j (n) = j(j(· · · (j(j)) · · · )) with n + 1 “j”s.

That notation seems terrible!

By induction using distributivity, for all n we have

j (n+1) = j (n)j (n),

expanding all the way out to an expression with 2n “j”s.

Andrew Brooke-Taylor A 2-gen free algebra of embeddings Winter School 2026 11 / 17



Some elements of Aj

Definition

For n ∈ ω we define recursively j (n), the nth right power of j , by

j (0) = j

j (n+1) = j ∗ j (n)

So j (n) = j(j(· · · (j(j)) · · · )) with n + 1 “j”s.
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Also. . .

Critical points

We define
κ0 = crit(j), κn+1 = j(κn).

Then crit(j (n)) = κn.

Note: not every critical point of an embedding in Eλ, or even in Aj , is of this
form. For example

κ2 < crit(((jj)j)(jj)) < κ3!
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There are lots of other elements of Eλ that you can create from a single element j .

Inverse limits

If (kn)n∈ω is a sequence of elements of Eλ with critical points increasing with
supremum λ, then k : Vλ → Vλ defined by

k(a) = k0 ◦ k1 ◦ · · · ◦ km(a),

where m is sufficiently large that kp(a) = a for all p > m, is called the inverse
limit of the kn.

It turns out (see Laver) that this is also in Eλ, and if all the kn are Σ1
m-elementary,

so is k.
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So given there are so many embeddings in Eλ \ Aj , can we push Laver’s freeness
result further?

Question
Can we find two embeddings k and ℓ in Eλ such that the algebra Ak,ℓ generated
by k and ℓ is the free LD-algebra on 2 generators?

Answer (B-T, Cramer, Miller Edwards)

Assuming I2, yes!

Theorem

Suppose there is a Σ1
1-elementary embedding j : Vλ → Vλ. Then in Eλ there are

embeddings k and ℓ such that the LD-subalgebra Ak,ℓ of Eλ generated by k and ℓ
under ∗ is free on the two generators k and ℓ.

Improvement (Goldberg)

In fact, I3 suffices.
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Proof sketch
We use the embeddings

k = j ◦ j (1) ◦ j (2) ◦ j (3) ◦ · · ·

and
ℓ = j (1) ◦ j (2) ◦ j (3) ◦ · · ·

It is straightforward to check that for every n ∈ ω,

[κ2n, κ2n+1) ∩ rng(k) = ∅

and
[κ2n+1, κ2n+2) ∩ rng(ℓ) = ∅.

Central idea: push this harder, making their “iterated ranges” disjoint, to make
the choice of k or ℓ detectable from what the embedding does to ordinals.
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A tool from algebra

Theorem (Dehornoy)

For two words u and v in the free 2 generator LD-algebra (built as a term algebra)
we have a quadrichotomy: one of the following holds.

They are equivalent.

u is equivalent to a left subterm of v .

v is equivalent to a left subterm of u.

They have a variable clash: they have a common left-most component,
followed by a different choice between the two generators, possibly followed
by more.

Having strongly disjoint iterated ranges of the generators k and ℓ means that in
the variable clash case, the words u and v yield different embeddings.
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How do we get that the ranges of k and ℓ are disjoint in a sufficiently strong sense
to be able to detect a variable clash?

By assuming j is Σ1
1 elementary, we get that it has square roots, and then there is

enough elementarity floating around to in fact give that

[κ2n, κ2n+1) ∩ Def Vλ(rng(k) ∪ Vκ2n) = ∅ (†)

and
[κ2n+1, κ2n+2) ∩ Def Vλ(rng(ℓ) ∪ Vκ2n+1) = ∅ (‡)

for every n. This is enough to separate the iterated ranges and so deal with the
variable clash case of the quadrichotomy.

Observation (Goldberg): actually, j an I3 embedding suffices to get (†) and (‡).
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Question: what about more than 2 generators?

Answer:
Sheila and I are pretty sure we can use the same methods to get an LD-subalgebra
of Eλ that is free with continuum many generators (but we’re still writing it up).
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