

A 2 generator free LD-algebra of embeddings

Andrew Brooke-Taylor

University of Leeds

Joint work with Scott Cramer and Sheila Miller Edwards
with improvements thanks to Gabe Goldberg

Winter School
1 February 2026

Large cardinal axioms

Many have the form:

there is a non-trivial elementary embedding from the universe of sets V to a submodel M with suitable closure

i.e. there is $j: V \rightarrow M$ such that for every formula φ in the language of set theory and all parameters a_1, \dots, a_n ,

$$(V, \in) \models \varphi(a_1, \dots, a_n) \quad \text{if and only if} \quad (M, \in) \models \varphi(j(a_1), \dots, j(a_n)).$$

“Non-trivial” here just means not the identity function.

Large cardinal axioms

Many have the form:

there is a non-trivial elementary embedding from the universe of sets V to a submodel M with suitable closure

i.e. there is $j: V \rightarrow M$ such that for every formula φ in the language of set theory and all parameters a_1, \dots, a_n ,

$$(V, \in) \models \varphi(a_1, \dots, a_n) \quad \text{if and only if} \quad (M, \in) \models \varphi(j(a_1), \dots, j(a_n)).$$

“Non-trivial” here just means not the identity function. Henceforth by “elementary embedding” I will mean “non-trivial elementary embedding”.

Large cardinal axioms

Many have the form:

there is a non-trivial elementary embedding from the universe of sets V to a submodel M with suitable closure

i.e. there is $j: V \rightarrow M$ such that for every formula φ in the language of set theory and all parameters a_1, \dots, a_n ,

$$(V, \in) \models \varphi(a_1, \dots, a_n) \quad \text{if and only if} \quad (M, \in) \models \varphi(j(a_1), \dots, j(a_n)).$$

“Non-trivial” here just means not the identity function. Henceforth by “elementary embedding” I will mean “non-trivial elementary embedding”.

“The” large cardinal is then the *critical point* of j ,

$$\text{crit}(j) = \min(\{\alpha \mid j(\alpha) \neq \alpha\}).$$

Kunen's inconsistency

For these large cardinal axioms, the more M looks like V , the stronger the axiom.

Kunen's inconsistency

For these large cardinal axioms, the more M looks like V , the stronger the axiom. So, the ultimate would be an elementary embedding $j: V \rightarrow V$.

Kunen's inconsistency

For these large cardinal axioms, the more M looks like V , the stronger the axiom. So, the ultimate would be an elementary embedding $j: V \rightarrow V$. But

Theorem (Kunen)

There is no elementary embedding $j: V \rightarrow V$.

Kunen's inconsistency

For these large cardinal axioms, the more M looks like V , the stronger the axiom. So, the ultimate would be an elementary embedding $j: V \rightarrow V$. But

Theorem (Kunen)

There is no elementary embedding $j: V \rightarrow V$.

- Multiple proofs are known.
- All rely heavily on the Axiom of Choice.
- There is a lot of exciting recent research on what you get if you keep the embeddings and give up Choice.

Kunen's inconsistency

For these large cardinal axioms, the more M looks like V , the stronger the axiom. So, the ultimate would be an elementary embedding $j: V \rightarrow V$. But

Theorem (Kunen)

There is no elementary embedding $j: V \rightarrow V$.

- Multiple proofs are known.
- All rely heavily on the Axiom of Choice.
- There is a lot of exciting recent research on what you get if you keep the embeddings and give up Choice.

We're interested in a different way to step back from inconsistency.

Kunen: There is no elementary embedding $j: V \rightarrow V$.

Kunen: There is no elementary embedding $j: V \rightarrow V$.

In fact, the proofs show that there is no elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$, where

$$\lambda = \sup_{n \in \omega} (j^n(\text{crit } j)).$$

Kunen: There is no elementary embedding $j: V \rightarrow V$.

In fact, the proofs show that there is no elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$, where

$$\lambda = \sup_{n \in \omega} (j^n(\text{crit } j)).$$

So let's just stay below $\lambda + 2$ to avoid the inconsistency!

Axiom I3: \exists elementary $j: V_\lambda \rightarrow V_\lambda$

Axiom I1: \exists elementary $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$

(So I1 is stronger than I3.) Such embeddings are called *rank-to-rank embeddings*.

Kunen: There is no elementary embedding $j: V \rightarrow V$.

In fact, the proofs show that there is no elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$, where

$$\lambda = \sup_{n \in \omega} (j^n(\text{crit } j)).$$

So let's just stay below $\lambda + 2$ to avoid the inconsistency!

Axiom I3: \exists elementary $j: V_\lambda \rightarrow V_\lambda$

Axiom I1: \exists elementary $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$

(So I1 is stronger than I3.) Such embeddings are called *rank-to-rank embeddings*.

Silly?

Kunen: There is no elementary embedding $j: V \rightarrow V$.

In fact, the proofs show that there is no elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$, where

$$\lambda = \sup_{n \in \omega} (j^n(\text{crit } j)).$$

So let's just stay below $\lambda + 2$ to avoid the inconsistency!

Axiom I3: \exists elementary $j: V_\lambda \rightarrow V_\lambda$

Axiom I1: \exists elementary $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$

(So I1 is stronger than I3.) Such embeddings are called *rank-to-rank embeddings*.

Silly?

- Something even stronger than I1 was used by Woodin in his original work on the consistency of AD (before bringing it way down).
- 50 years of working with them hasn't turned up any more inconsistencies.

Notation

\mathcal{E}_λ := the set of elementary embeddings from V_λ to V_λ .

Notation

\mathcal{E}_λ := the set of elementary embeddings from V_λ to V_λ .

From V_λ to $V_{\lambda+1}$

Given an I1 embedding $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$ and $A \in V_{\lambda+1} \setminus V_\lambda$, we can reconstruct $j(A)$ from the restriction of j to V_λ

Notation

\mathcal{E}_λ := the set of elementary embeddings from V_λ to V_λ .

From V_λ to $V_{\lambda+1}$

Given an I1 embedding $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$ and $A \in V_{\lambda+1} \setminus V_\lambda$, we can reconstruct $j(A)$ from the restriction of j to V_λ : it must be

$$j(A) = \bigcup_{\alpha < \lambda} j(A \cap V_\alpha),$$

since $j(A) \cap V_{j(\alpha)} = j(A \cap V_\alpha)$ by elementarity.

Notation

\mathcal{E}_λ := the set of elementary embeddings from V_λ to V_λ .

From V_λ to $V_{\lambda+1}$

Given an I1 embedding $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$ and $A \in V_{\lambda+1} \setminus V_\lambda$, we can reconstruct $j(A)$ from the restriction of j to V_λ : it must be

$$j(A) = \bigcup_{\alpha < \lambda} j(A \cap V_\alpha),$$

since $j(A) \cap V_{j(\alpha)} = j(A \cap V_\alpha)$ by elementarity.

For *any* $j \in \mathcal{E}_\lambda$, we can treat it as a function from $V_{\lambda+1}$ to $V_{\lambda+1}$ with this definition of $j(A)$ for $A \subseteq V_\lambda$, even though it won't in general be elementary as a function from $V_{\lambda+1}$ to $V_{\lambda+1}$.

Even if the extension of j to $V_{\lambda+1}$ isn't fully elementary, it might have some elementarity.

Even if the extension of j to $V_{\lambda+1}$ isn't fully elementary, it might have some elementarity.

Language

\mathcal{L}_{ST} , extended with second-order variables (capital letters), representing subsets of V_λ .

Even if the extension of j to $V_{\lambda+1}$ isn't fully elementary, it might have some elementarity.

Language

\mathcal{L}_{ST} , extended with second-order variables (capital letters), representing subsets of V_λ .

Say formula φ is

- Σ_0^1 and Π_0^1 if it is first order,

Even if the extension of j to $V_{\lambda+1}$ isn't fully elementary, it might have some elementarity.

Language

\mathcal{L}_{ST} , extended with second-order variables (capital letters), representing subsets of V_λ .

Say formula φ is

- Σ_0^1 and Π_0^1 if it is first order,
- Σ_{n+1}^1 if it is equivalent to one of the form $\exists X\psi$, where ψ is Π_n^1 ,

Even if the extension of j to $V_{\lambda+1}$ isn't fully elementary, it might have some elementarity.

Language

\mathcal{L}_{ST} , extended with second-order variables (capital letters), representing subsets of V_λ .

Say formula φ is

- Σ_0^1 and Π_0^1 if it is first order,
- Σ_{n+1}^1 if it is equivalent to one of the form $\exists X\psi$, where ψ is Π_n^1 ,
- Π_{n+1}^1 if it is equivalent to the negation of a Σ_{n+1}^1 formula.

Even if the extension of j to $V_{\lambda+1}$ isn't fully elementary, it might have some elementarity.

Language

\mathcal{L}_{ST} , extended with second-order variables (capital letters), representing subsets of V_λ .

Say formula φ is

- Σ_0^1 and Π_0^1 if it is first order,
- Σ_{n+1}^1 if it is equivalent to one of the form $\exists X\psi$, where ψ is Π_n^1 ,
- Π_{n+1}^1 if it is equivalent to the negation of a Σ_{n+1}^1 formula.

We say that $j: V_\lambda \rightarrow V_\lambda$ is Σ_m^1 -elementary if for all Σ_m^1 formulas φ and parameters $a_1, \dots, a_{n_0}, A_1, \dots, A_{n_1}$,

$$V_\lambda \models \varphi(a_1, \dots, a_{n_0}, A_1, \dots, A_{n_1})$$

if and only if

$$V_\lambda \models \varphi(j(a_1), \dots, j(a_{n_0}), j(A_1), \dots, j(A_{n_1}))$$

This gives another standard large cardinal axiom:

I2: $\exists \Sigma_1^1\text{-elementary } j: V_\lambda \rightarrow V_\lambda$.

We'll come back to this.

If j and k are elements of \mathcal{E}_λ , then with the usual encoding of functions as sets of pairs, $k \subset V_\lambda$.

If j and k are elements of \mathcal{E}_λ , then with the usual encoding of functions as sets of pairs, $k \subset V_\lambda$. So we have a definition of $j(k)$!

$$j(k) = \bigcup_{\alpha < \lambda} j(k \upharpoonright V_\alpha).$$

If j and k are elements of \mathcal{E}_λ , then with the usual encoding of functions as sets of pairs, $k \subset V_\lambda$. So we have a definition of $j(k)$!

$$j(k) = \bigcup_{\alpha < \lambda} j(k \upharpoonright V_\alpha).$$

Lemma

For any $j, k \in \mathcal{E}_\lambda$, $j(k) \in \mathcal{E}_\lambda$. Moreover, if j and k are Σ_m^1 , so is $j(k)$ (Laver).

If j and k are elements of \mathcal{E}_λ , then with the usual encoding of functions as sets of pairs, $k \subset V_\lambda$. So we have a definition of $j(k)$!

$$j(k) = \bigcup_{\alpha < \lambda} j(k \upharpoonright V_\alpha).$$

Lemma

For any $j, k \in \mathcal{E}_\lambda$, $j(k) \in \mathcal{E}_\lambda$. Moreover, if j and k are Σ_m^1 , so is $j(k)$ (Laver).

Proof outline.

Elementarity of k can be expressed by: for every formula φ and $\alpha < \lambda$,

$$V_\lambda \models \forall a_1, \dots, a_n \in V_\alpha (\varphi(a_1, \dots, a_n) \leftrightarrow \varphi((k \upharpoonright V_\alpha)(a_1), \dots, (k \upharpoonright V_\alpha)(a_n))).$$

If j and k are elements of \mathcal{E}_λ , then with the usual encoding of functions as sets of pairs, $k \subset V_\lambda$. So we have a definition of $j(k)$!

$$j(k) = \bigcup_{\alpha < \lambda} j(k \upharpoonright V_\alpha).$$

Lemma

For any $j, k \in \mathcal{E}_\lambda$, $j(k) \in \mathcal{E}_\lambda$. Moreover, if j and k are Σ_m^1 , so is $j(k)$ (Laver).

Proof outline.

Elementarity of k can be expressed by: for every formula φ and $\alpha < \lambda$,

$$V_\lambda \models \forall a_1, \dots, a_n \in V_\alpha (\varphi(a_1, \dots, a_n) \leftrightarrow \varphi((k \upharpoonright V_\alpha)(a_1), \dots, (k \upharpoonright V_\alpha)(a_n))).$$

By elementarity of j we then have

$$V_\lambda \models \forall a_1, \dots, a_n \in V_{j(\alpha)} (\varphi(a_1, \dots, a_n) \leftrightarrow \varphi(j(k \upharpoonright V_\alpha)(a_1), \dots, j(k \upharpoonright V_\alpha)(a_n))).$$

Let's write $j * k$ for $j(k)$.

Let's write $j * k$ for $j(k)$.

Note

$j * k$ is very different from $j \circ k$. E.g.,

$$\text{crit}(j * k) = j(\text{crit}(k)), \quad \text{but} \quad \text{crit}(j \circ k) = \min(\text{crit}(j), \text{crit}(k)).$$

Let's write $j * k$ for $j(k)$.

Note

$j * k$ is very different from $j \circ k$. E.g.,

$$\text{crit}(j * k) = j(\text{crit}(k)), \quad \text{but} \quad \text{crit}(j \circ k) = \min(\text{crit}(j), \text{crit}(k)).$$

For any $j, k, \ell \in \mathcal{E}_\lambda$, we have by elementarity that

$$j * (k * \ell) = (j * k) * (j * \ell).$$

Let's write $j * k$ for $j(k)$.

Note

$j * k$ is very different from $j \circ k$. E.g.,

$$\text{crit}(j * k) = j(\text{crit}(k)), \quad \text{but} \quad \text{crit}(j \circ k) = \min(\text{crit}(j), \text{crit}(k)).$$

For any $j, k, \ell \in \mathcal{E}_\lambda$, we have by elementarity that

$$j * (k * \ell) = (j * k) * (j * \ell).$$

Definition

A set with a binary operation $*$ satisfying $a * (b * c) = (a * b) * (a * c)$ is an *LD-algebra* or *shelf*.

Let $j: V_\lambda \rightarrow V_\lambda$ be a rank-to-rank embedding and let \mathcal{A}_j be the structure consisting of embeddings generated by j under the $*$ operation.

Let $j: V_\lambda \rightarrow V_\lambda$ be a rank-to-rank embedding and let \mathcal{A}_j be the structure consisting of embeddings generated by j under the $*$ operation.

Theorem (Laver)

\mathcal{A}_j is the free LD-algebra on the single generator j .

Some elements of \mathcal{A}_j

Definition

For $n \in \omega$ we define recursively $j^{(n)}$, the *nth right power of j*, by

$$\begin{aligned} j^{(0)} &= j \\ j^{(n+1)} &= j * j^{(n)} \end{aligned}$$

So $j^{(n)} = j(j(\cdots(j(j))\cdots))$ with $n+1$ “j”s.

Some elements of \mathcal{A}_j

Definition

For $n \in \omega$ we define recursively $j^{(n)}$, the *nth right power of j*, by

$$\begin{aligned} j^{(0)} &= j \\ j^{(n+1)} &= j * j^{(n)} \end{aligned}$$

So $j^{(n)} = j(j(\cdots(j(j))\cdots))$ with $n+1$ “j”s.

That notation seems terrible!

Some elements of \mathcal{A}_j

Definition

For $n \in \omega$ we define recursively $j^{(n)}$, the *nth right power of j*, by

$$\begin{aligned} j^{(0)} &= j \\ j^{(n+1)} &= j * j^{(n)} \end{aligned}$$

So $j^{(n)} = j(j(\cdots(j(j))\cdots))$ with $n+1$ “j”s.

That notation seems terrible!

By induction using distributivity, for all n we have

$$j^{(n+1)} = j^{(n)}j^{(n)},$$

expanding all the way out to an expression with 2^n “j”s.

Also . . .

Critical points

We define

$$\kappa_0 = \text{crit}(j), \quad \kappa_{n+1} = j(\kappa_n).$$

Then $\text{crit}(j^{(n)}) = \kappa_n$.

Also . . .

Critical points

We define

$$\kappa_0 = \text{crit}(j), \quad \kappa_{n+1} = j(\kappa_n).$$

Then $\text{crit}(j^{(n)}) = \kappa_n$.

Note: not every critical point of an embedding in \mathcal{E}_λ , or even in \mathcal{A}_j , is of this form. For example

$$\kappa_2 < \text{crit}(((jj)j)(jj)) < \kappa_3!$$

There are *lots* of other elements of \mathcal{E}_λ that you can create from a single element j .

There are *lots* of other elements of \mathcal{E}_λ that you can create from a single element j .

Inverse limits

If $(k_n)_{n \in \omega}$ is a sequence of elements of \mathcal{E}_λ with critical points increasing with supremum λ , then $k: V_\lambda \rightarrow V_\lambda$ defined by

$$k(a) = k_0 \circ k_1 \circ \cdots \circ k_m(a),$$

where m is sufficiently large that $k_p(a) = a$ for all $p > m$, is called the *inverse limit* of the k_n .

There are *lots* of other elements of \mathcal{E}_λ that you can create from a single element j .

Inverse limits

If $(k_n)_{n \in \omega}$ is a sequence of elements of \mathcal{E}_λ with critical points increasing with supremum λ , then $k: V_\lambda \rightarrow V_\lambda$ defined by

$$k(a) = k_0 \circ k_1 \circ \cdots \circ k_m(a),$$

where m is sufficiently large that $k_p(a) = a$ for all $p > m$, is called the *inverse limit* of the k_n .

It turns out (see Laver) that this is also in \mathcal{E}_λ , and if all the k_n are Σ_m^1 -elementary, so is k .

So given there are so many embeddings in $\mathcal{E}_\lambda \setminus \mathcal{A}_j$, can we push Laver's freeness result further?

Question

Can we find two embeddings k and ℓ in \mathcal{E}_λ such that the algebra $\mathcal{A}_{k,\ell}$ generated by k and ℓ is the free LD-algebra on 2 generators?

So given there are so many embeddings in $\mathcal{E}_\lambda \setminus \mathcal{A}_j$, can we push Laver's freeness result further?

Question

Can we find two embeddings k and ℓ in \mathcal{E}_λ such that the algebra $\mathcal{A}_{k,\ell}$ generated by k and ℓ is the free LD-algebra on 2 generators?

Answer (B-T, Cramer, Miller Edwards)

Assuming I2, yes!

Theorem

Suppose there is a Σ_1^1 -elementary embedding $j: V_\lambda \rightarrow V_\lambda$. Then in \mathcal{E}_λ there are embeddings k and ℓ such that the LD-subalgebra $\mathcal{A}_{k,\ell}$ of \mathcal{E}_λ generated by k and ℓ under $*$ is free on the two generators k and ℓ .

So given there are so many embeddings in $\mathcal{E}_\lambda \setminus \mathcal{A}_j$, can we push Laver's freeness result further?

Question

Can we find two embeddings k and ℓ in \mathcal{E}_λ such that the algebra $\mathcal{A}_{k,\ell}$ generated by k and ℓ is the free LD-algebra on 2 generators?

Answer (B-T, Cramer, Miller Edwards)

Assuming I2, yes!

Theorem

Suppose there is a Σ_1^1 -elementary embedding $j: V_\lambda \rightarrow V_\lambda$. Then in \mathcal{E}_λ there are embeddings k and ℓ such that the LD-subalgebra $\mathcal{A}_{k,\ell}$ of \mathcal{E}_λ generated by k and ℓ under $*$ is free on the two generators k and ℓ .

Improvement (Goldberg)

In fact, I3 suffices.

Proof sketch

We use the embeddings

$$k = j \circ j^{(1)} \circ j^{(2)} \circ j^{(3)} \circ \dots$$

and

$$\ell = j^{(1)} \circ j^{(2)} \circ j^{(3)} \circ \dots$$

Proof sketch

We use the embeddings

$$k = j \circ j^{(1)} \circ j^{(2)} \circ j^{(3)} \circ \dots$$

and

$$\ell = j^{(1)} \circ j^{(2)} \circ j^{(3)} \circ \dots$$

It is straightforward to check that for every $n \in \omega$,

$$[\kappa_{2n}, \kappa_{2n+1}) \cap \text{rng}(k) = \emptyset$$

and

$$[\kappa_{2n+1}, \kappa_{2n+2}) \cap \text{rng}(\ell) = \emptyset.$$

Proof sketch

We use the embeddings

$$k = j \circ j^{(1)} \circ j^{(2)} \circ j^{(3)} \circ \dots$$

and

$$\ell = j^{(1)} \circ j^{(2)} \circ j^{(3)} \circ \dots$$

It is straightforward to check that for every $n \in \omega$,

$$[\kappa_{2n}, \kappa_{2n+1}) \cap \text{rng}(k) = \emptyset$$

and

$$[\kappa_{2n+1}, \kappa_{2n+2}) \cap \text{rng}(\ell) = \emptyset.$$

Central idea: push this harder, making their “iterated ranges” disjoint, to make the choice of k or ℓ detectable from what the embedding does to ordinals.

A tool from algebra

Theorem (Dehornoy)

For two words u and v in the free 2 generator LD-algebra (built as a term algebra) we have a quadrichotomy: one of the following holds.

- They are equivalent.
- u is equivalent to a left subterm of v .
- v is equivalent to a left subterm of u .
- They have a variable clash: they have a common left-most component, followed by a different choice between the two generators, possibly followed by more.

A tool from algebra

Theorem (Dehornoy)

For two words u and v in the free 2 generator LD-algebra (built as a term algebra) we have a quadrichotomy: one of the following holds.

- They are equivalent.
- u is equivalent to a left subterm of v .
- v is equivalent to a left subterm of u .
- They have a variable clash: they have a common left-most component, followed by a different choice between the two generators, possibly followed by more.

Having strongly disjoint iterated ranges of the generators k and ℓ means that in the variable clash case, the words u and v yield different embeddings.

How do we get that the ranges of k and ℓ are disjoint in a sufficiently strong sense to be able to detect a variable clash?

How do we get that the ranges of k and ℓ are disjoint in a sufficiently strong sense to be able to detect a variable clash?

By assuming j is Σ_1^1 elementary, we get that it has *square roots*, and then there is enough elementarity floating around to in fact give that

$$[\kappa_{2n}, \kappa_{2n+1}) \cap \text{Def}^{V_\lambda}(\text{rng}(k) \cup V_{\kappa_{2n}}) = \emptyset \quad (\dagger)$$

and

$$[\kappa_{2n+1}, \kappa_{2n+2}) \cap \text{Def}^{V_\lambda}(\text{rng}(\ell) \cup V_{\kappa_{2n+1}}) = \emptyset \quad (\ddagger)$$

for every n . This is enough to separate the iterated ranges and so deal with the variable clash case of the quadrichotomy.

How do we get that the ranges of k and ℓ are disjoint in a sufficiently strong sense to be able to detect a variable clash?

By assuming j is Σ_1^1 elementary, we get that it has *square roots*, and then there is enough elementarity floating around to in fact give that

$$[\kappa_{2n}, \kappa_{2n+1}) \cap \text{Def}^{V_\lambda}(\text{rng}(k) \cup V_{\kappa_{2n}}) = \emptyset \quad (\dagger)$$

and

$$[\kappa_{2n+1}, \kappa_{2n+2}) \cap \text{Def}^{V_\lambda}(\text{rng}(\ell) \cup V_{\kappa_{2n+1}}) = \emptyset \quad (\ddagger)$$

for every n . This is enough to separate the iterated ranges and so deal with the variable clash case of the quadrichotomy.

Observation (Goldberg): actually, j an I3 embedding suffices to get (\dagger) and (\ddagger) .

Question: what about more than 2 generators?

Answer:

Sheila and I are pretty sure we can use the same methods to get an LD-subalgebra of \mathcal{E}_λ that is free with continuum many generators (but we're still writing it up).