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1 ∆-spaces and ∆1-spaces. First concepts and facts

De�nition 1 (J.K�Leiderman (2021)PAMS)

A topological space X is a ∆-space (∆1-space) if for every

decreasing sequence (Dn)n of (countable) subsets of X with⋂
n Dn = ∅, there is a decreasing sequence (Vn)n of open

subsets of X , Dn ⊂ Vn for every n ∈ ω and
⋂

n Vn = ∅.

2 Its counterpart in R (called ∆-set) (Reed, van Douwen)

.

3 X ⊂ R is a Q-set if each subset of X is Gδ.
4 X ⊂ R is a λ-set if each countable subset of X is Gδ.
5 Q-set ⇒ ∆-set ⇒ λ-set ⇒ ∆1-set.
6 If X is an uncountable Q-set, then |X | < c; so under

(CH) there are no uncountable Q-sets (Hausdor�).
7 (MA) ∧(∼ (CH)): X ⊂ R, |X | < c, then X is a Q-set

(Martin-Solovay (1970), M.E. Rudin (1977)).
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1 Uncountable λ-sets in ZFC exist (Kuratowski), so

uncountable separable metrizable ∆1-spaces do

exist in ZFC.

2 No ∆-set X has cardinality c (Przymusi«ski (1977)).

3 Whether it is consistent that there is a ∆-set which is not

a Q-set seems to be still not well understood.

Theorem 2 (J.K-Leiderman PAMS (2021, 2022))

(1) Every metrizable σ-scattered space is a ∆-space.
(2) Compact ∆-spaces are scattered, [0, ω1] is not a ∆-space.
(3) Compact Eberlein X is a ∆-space i� X is scattered.
(4) No ∆-space with a countable network has cardinality c.
(5) X is a ∆-space i� Cp(X ) is distinguished, i.e. the strong
topological dual of Cp(X ) carries the �nest locally convex
topology.
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Some characterizations of ∆1-spaces

Theorem 3 (J.K�Kurka�Leiderman)

If X is �ech-complete, then X is scattered i� X is a ∆1-space.

Corollary 4

For compact X the following are equivalent:

1 The space X is a ∆1-space.

2 The space X is scattered.

3 The Banach space C (X ) is an Asplund space.

(2) ⇔ (3) is due to Namioka-Phelps.

A Banach space E is an Asplund space if for every convex

continuous function f on E the set of all points of Fréchet

di�erentiability of f is dense and Gδ in E .
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Countably compact regular ∆-spaces are compact

1 Proper Forcing Axiom (PFA) implies that every regular

and countably compact ∆-space is compact

(J.K-Leiderman).

2 J.K�Leiderman asked if (PFA) can be dropped.

Theorem 5 (Juhasz�van Mill�Soukup�Szentmiklossy (2025))

Every regular and countably compact ∆-space is compact.

3 Leiderman-Szeptycki asked whether any countably

compact ∆-space has countable tightness in ZFC.

4 Recall every compact ∆-space is scattered, so it has

countable tightness. Hence Theorem 5 implies

Corollary 6 (Juhasz�van Mill�Soukup�Szentmiklossy (2025))

Regular countably compact ∆-spaces have countable tightness.
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On ω-resolvable ∆-spaces and ∆1-spaces

1 X is crowded, if X does not admit isolated points; X is

resolvable (ω-resolvable), if it can be partitioned into 2

(countably many) dense subsets (Hewitt, Ceder). Arc

connected crowded spaces are ω-resolvable, so every TVS

over R is ω-resolvable.

2 El'kin and Malykhin published papers on these subjects

and their connections with various topological problems.

3 If X has an isolated point, then X is not resolvable.

4 A natural question: Are there crowded spaces which

are not resolvable?

5 Under L=V (i.e. every set is constructible) every Baire

crowded space is resolvable (Kunen-Szyma«ski-Tall).

6 (V=L) ⇒ (AC) ∧ (GCH).
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1 (Under V=L) every crowded Baire space is

ω-resolvable (Pavlov).

2 If X is a Baire ∆-space, the intersection of any

decreasing sequence of dense subsets of X is

non-empty, so X is not ω-resolvable.

Proposition 7 (Leiderman�Szeptycki)

If X is Baire ω-resolvable, then X is not a ∆-space.

Hence, a Lindelöf Baire space which is a ∆-space has isolated
points.

3 If X has an isolated point then, trivially, the intersection

of any family of dense subsets of X is non-empty.
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1 Hence the following problem is well motivated.

Problem 8 (Leiderman-Szeptycki,J.K.-Leiderman-Tkachuk)

Does every Baire ∆-space have an isolated point?

2 Note the following

Theorem 9 (Leiderman�Tkachuk)

Every pseudocompact ∆-space X with c(X ) = ω is separable
and has a dense set of isolated points.

3 Consider some cases for which Problem 8 has a positive

answer.
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1 Under Souslin hypothesis (SH) (i.e. there are no Souslin

lines) if X is crowded and Baire with c(X ) = ω, then X is

ω-resolvable (Casarrubias-Segura, Hernandez-Hernandez,

Tamaris-Mascar) (Recall that (MA)∧ (∼ (CH))⇒ (SH).)

Corollary 10

(SH) If X is a Baire space with c(X ) = ω and X is a ∆-space,
then X has isolated points.

2 The axiom of constructibility, V = L, implies that every

crowded Baire space is ω-resolvable (Pavlov). Hence,

applying Leiderman-Szeptycki theorem, (under V = L)

every ∆-space which is Baire has isolated points.
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1 (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):

Crowded X is ω-resolvable if X is Baire and c(X ) = ω or
X contains a π-network |U| < c of in�nite sets.

Corollary 11

(MA) If X is a Baire ∆-space satisfying one of the properties,
then X has isolated points.

Theorem 12 (Juhasz�van Mill�Soukup�Szentmiklossy (2025))

If there is a crowded Baire ∆-space then there is an inner
model with a measurable cardinal.

2 Uncountable cardinals with a two-valued measure are large

cardinals whose existence cannot be proved from ZFC.

3 Cardinal number κ is measurable if there exists a

κ-additive,nontrivial, 0− 1-valued measure on 2κ.
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1 Every crowded countably compact space is ω-resolvable

(Comfort). This applies to provide the following:

Example 13

There exist crowded ω-resolvable countably compact

∆1-spaces which are not ∆-spaces.

2 Example 13 shows that extending Proposition 7 (due to

Leiderman-Szeptycki) to ∆1-spaces requires some extra

assumption on Baire X .
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1 Note a similar problem related with ∆1-spaces.

Problem 14 (J.K.-Leiderman-Tkachuk)

Does every Baire ∆1-space have an isolated point?

2 Dealing with ∆1-spaces we propose the following

extension of Proposition 7 as follows.

Theorem 15 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

3 Separability of X cannot be removed.
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1 Nevertheless, it turns out that:

Example 16 (J.K.-Leiderman-Tkachuk)

Separable countably compact ∆1-spaces need not be scattered.

Proof.

Juhasz and van Mill showed that there exists a dense

countably compact subspace Z ⊂ βω \ ω in which all

countable subsets are scattered and hence Z is a ∆1-space. If

X = ω ∪ Z , then X is a countably compact separable

∆1-space not scattered.

2 Example 16 shows that Theorem 5 (due to Juhasz-van

Mill...) fails for ∆1-spaces.

3 Recall compact X is scattered i� X is a ∆1-space.
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1 More questions

Problem 17 (Leiderman-Tkachuk)

Suppose that X is a separable pseudocompact ∆-space. Must
X be scattered?

Problem 18 (Leiderman�Tkachuk)

Is it true that every compact ∆-space is the countable union
of Eberlein compact spaces?

Problem 19 (Leiderman-Tkachuk)

Suppose that X is a space and there is a family (Un)n of open
∆-subspaces of X covering X . Is it true that X must be a
∆-space?
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1 One problem more

Theorem 20 (Juhasz�van Mill�Soukup�Szentmiklossy (2025))

If X is a ∆-space and cf (o(X )) > ω, then |X | < o(X ), where
o(X ) means the number of all open sets in X .

2 If X is hereditary Lindelöf of weight ≤ c or if |X | = c and

X is hereditary separable then o(X ) ≤ c .

3 So, if either X is hereditary Lindelöf of weight ≤ c or

hereditary separable then X is a ∆-space implies |X | < c .

4 Thus we have the following problem.

Problem 21 (Juhasz�van Mill�Soukup�Szentmiklossy (2025))

Does every hereditary Lindelöf ∆-space have cardinality < c?
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