

New results and problems related with Δ -spaces and Δ_1 -spaces

JERZY KĄKOL

A. MICKIEWICZ UNIVERSITY, POZNAŃ

Set Theory and Topology
Hejnice, Jan. 31 – Feb. 7, 2026

① Δ -spaces and Δ_1 -spaces. First concepts and facts

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

② Its counterpart in \mathbb{R} (called Δ -set) (Reed, van Douwen).

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- ② Its counterpart in \mathbb{R} (called Δ -set) (Reed, van Douwen).
- ③ $X \subset \mathbb{R}$ is a Q -set if each subset of X is G_δ .

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- ② Its counterpart in \mathbb{R} (called Δ -set) (Reed, van Douwen).
- ③ $X \subset \mathbb{R}$ is a Q -set if each subset of X is G_δ .
- ④ $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_δ .

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- ② Its counterpart in \mathbb{R} (called Δ -set) (Reed, van Douwen).
- ③ $X \subset \mathbb{R}$ is a Q -set if each subset of X is G_δ .
- ④ $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_δ .
- ⑤ Q -set $\Rightarrow \Delta$ -set $\Rightarrow \lambda$ -set $\Rightarrow \Delta_1$ -set.

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- ② Its counterpart in \mathbb{R} (called Δ -set) (Reed, van Douwen).
- ③ $X \subset \mathbb{R}$ is a Q -set if each subset of X is G_δ .
- ④ $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_δ .
- ⑤ Q -set $\Rightarrow \Delta$ -set $\Rightarrow \lambda$ -set $\Rightarrow \Delta_1$ -set.
- ⑥ If X is an uncountable Q -set, then $|X| < \mathfrak{c}$; so under (CH) there are no uncountable Q -sets (Hausdorff).

① Δ -spaces and Δ_1 -spaces. First concepts and facts

Definition 1 (J.K-Leiderman (2021)PAMS)

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence $(D_n)_n$ of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X , $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- ② Its counterpart in \mathbb{R} (called Δ -set) (Reed, van Douwen).
- ③ $X \subset \mathbb{R}$ is a Q -set if each subset of X is G_δ .
- ④ $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_δ .
- ⑤ Q -set $\Rightarrow \Delta$ -set $\Rightarrow \lambda$ -set $\Rightarrow \Delta_1$ -set.
- ⑥ If X is an uncountable Q -set, then $|X| < \mathfrak{c}$; so under (CH) there are no uncountable Q -sets (Hausdorff).
- ⑦ (MA) $\wedge (\sim \text{(CH)})$: $X \subset \mathbb{R}$, $|X| < \mathfrak{c}$, then X is a Q -set (Martin-Solovay (1970), M.E. Rudin (1977)).

① Uncountable λ -sets in ZFC exist (Kuratowski), so
**uncountable separable metrizable Δ_1 -spaces do
exist in ZFC.**

- ① Uncountable λ -sets in ZFC exist (Kuratowski), so **uncountable separable metrizable Δ_1 -spaces do exist in ZFC**.
- ② No Δ -set X has cardinality \mathfrak{c} (Przymusiński (1977)).

- ① Uncountable λ -sets in ZFC exist (Kuratowski), so **uncountable separable metrizable Δ_1 -spaces do exist in ZFC**.
- ② No Δ -set X has cardinality \mathfrak{c} (Przymusiński (1977)).
- ③ Whether it is consistent that there is a Δ -set which is not a Q -set seems to be still not well understood.

- ① Uncountable λ -sets in ZFC exist (Kuratowski), so **uncountable separable metrizable Δ_1 -spaces do exist in ZFC**.
- ② No Δ -set X has cardinality \mathfrak{c} (Przymusiński (1977)).
- ③ Whether it is consistent that there is a Δ -set which is not a Q -set seems to be still not well understood.

Theorem 2 (J.K-Leiderman PAMS (2021, 2022))

- (1) *Every metrizable σ -scattered space is a Δ -space.*
- (2) *Compact Δ -spaces are scattered, $[0, \omega_1]$ is not a Δ -space.*
- (3) *Compact Eberlein X is a Δ -space iff X is scattered.*
- (4) *No Δ -space with a countable network has cardinality \mathfrak{c} .*
- (5) *X is a Δ -space iff $C_p(X)$ is **distinguished**, i.e. the strong topological dual of $C_p(X)$ carries the finest locally convex topology.*

Some characterizations of Δ_1 -spaces

Some characterizations of Δ_1 -spaces

Theorem 3 (J.K–Kurka–Leiderman)

If X is Čech-complete, then X is scattered iff X is a Δ_1 -space.

Some characterizations of Δ_1 -spaces

Theorem 3 (J.K–Kurka–Leiderman)

If X is Čech-complete, then X is scattered iff X is a Δ_1 -space.

Corollary 4

For compact X the following are equivalent:

- ① *The space X is a Δ_1 -space.*
- ② *The space X is scattered.*
- ③ *The Banach space $C(X)$ is an Asplund space.*

Some characterizations of Δ_1 -spaces

Theorem 3 (J.K–Kurka–Leiderman)

If X is Čech-complete, then X is scattered iff X is a Δ_1 -space.

Corollary 4

For compact X the following are equivalent:

- ① *The space X is a Δ_1 -space.*
- ② *The space X is scattered.*
- ③ *The Banach space $C(X)$ is an Asplund space.*

$(2) \Leftrightarrow (3)$ is due to Namioka-Phelps.

Some characterizations of Δ_1 -spaces

Theorem 3 (J.K–Kurka–Leiderman)

If X is Čech-complete, then X is scattered iff X is a Δ_1 -space.

Corollary 4

For compact X the following are equivalent:

- ① *The space X is a Δ_1 -space.*
- ② *The space X is scattered.*
- ③ *The Banach space $C(X)$ is an Asplund space.*

$(2) \Leftrightarrow (3)$ is due to Namioka-Phelps.

A Banach space E is an **Asplund space** if for every convex continuous function f on E the set of all points of Fréchet differentiability of f is **dense and G_δ in E** .

Countably compact regular Δ -spaces are compact

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).
- ② J.K-Leiderman asked if (PFA) can be dropped.

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).
- ② J.K-Leiderman asked if (PFA) can be dropped.

Theorem 5 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Every regular and countably compact Δ -space is compact.

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).
- ② J.K-Leiderman asked if (PFA) can be dropped.

Theorem 5 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Every regular and countably compact Δ -space is compact.

- ③ Leiderman-Szeptycki asked whether any countably compact Δ -space has countable tightness in ZFC.

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).
- ② J.K-Leiderman asked if (PFA) can be dropped.

Theorem 5 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Every regular and countably compact Δ -space is compact.

- ③ Leiderman-Szeptycki asked whether any countably compact Δ -space has countable tightness in ZFC.
- ④ Recall every compact Δ -space is scattered, so it has countable tightness. Hence Theorem 5 implies

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).
- ② J.K-Leiderman asked if (PFA) can be dropped.

Theorem 5 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Every regular and countably compact Δ -space is compact.

- ③ Leiderman-Szeptycki asked whether any countably compact Δ -space has countable tightness in ZFC.
- ④ Recall every compact Δ -space is scattered, so it has countable tightness. Hence Theorem 5 implies

Countably compact regular Δ -spaces are compact

- ① Proper Forcing Axiom (PFA) implies that every regular and countably compact Δ -space is compact (J.K-Leiderman).
- ② J.K-Leiderman asked if (PFA) can be dropped.

Theorem 5 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Every regular and countably compact Δ -space is compact.

- ③ Leiderman-Szeptycki asked whether any countably compact Δ -space has countable tightness in ZFC.
- ④ Recall every compact Δ -space is scattered, so it has countable tightness. Hence Theorem 5 implies

Corollary 6 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Regular countably compact Δ -spaces have countable tightness.

On ω -resolvable Δ -spaces and Δ_1 -spaces

On ω -resolvable Δ -spaces and Δ_1 -spaces

On ω -resolvable Δ -spaces and Δ_1 -spaces

- ① X is *crowded*, if X does not admit isolated points; X is *resolvable* (ω -resolvable), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder). Arc connected crowded spaces are ω -resolvable, so every TVS over \mathbb{R} is ω -resolvable.

On ω -resolvable Δ -spaces and Δ_1 -spaces

- ① X is *crowded*, if X does not admit isolated points; X is *resolvable* (ω -*resolvable*), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder). Arc connected crowded spaces are ω -resolvable, so every TVS over \mathbb{R} is ω -resolvable.
- ② El'kin and Malykhin published papers on these subjects and their connections with various topological problems.

On ω -resolvable Δ -spaces and Δ_1 -spaces

- ① X is *crowded*, if X does not admit isolated points; X is *resolvable* (ω -*resolvable*), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder). Arc connected crowded spaces are ω -resolvable, so every TVS over \mathbb{R} is ω -resolvable.
- ② El'kin and Malykhin published papers on these subjects and their connections with various topological problems.
- ③ If X has an isolated point, then X is **not resolvable**.

On ω -resolvable Δ -spaces and Δ_1 -spaces

- ① X is *crowded*, if X does not admit isolated points; X is *resolvable* (ω -*resolvable*), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder). Arc connected crowded spaces are ω -resolvable, so every TVS over \mathbb{R} is ω -resolvable.
- ② El'kin and Malykhin published papers on these subjects and their connections with various topological problems.
- ③ If X has an isolated point, then X is **not resolvable**.
- ④ A natural question: **Are there crowded spaces which are not resolvable?**

On ω -resolvable Δ -spaces and Δ_1 -spaces

- ① X is *crowded*, if X does not admit isolated points; X is *resolvable* (ω -*resolvable*), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder). Arc connected crowded spaces are ω -resolvable, so every TVS over \mathbb{R} is ω -resolvable.
- ② El'kin and Malykhin published papers on these subjects and their connections with various topological problems.
- ③ If X has an isolated point, then X is **not resolvable**.
- ④ A natural question: **Are there crowded spaces which are not resolvable?**
- ⑤ Under $L=V$ (i.e. every set is constructible) **every Baire crowded space is resolvable** (Kunen-Szymański-Tall).

On ω -resolvable Δ -spaces and Δ_1 -spaces

- ① X is *crowded*, if X does not admit isolated points; X is *resolvable* (ω -*resolvable*), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder). Arc connected crowded spaces are ω -resolvable, so every TVS over \mathbb{R} is ω -resolvable.
- ② El'kin and Malykhin published papers on these subjects and their connections with various topological problems.
- ③ If X has an isolated point, then X is **not resolvable**.
- ④ A natural question: **Are there crowded spaces which are not resolvable?**
- ⑤ Under $L = V$ (i.e. every set is constructible) **every Baire crowded space is resolvable** (Kunen-Szymański-Tall).
- ⑥ $(V=L) \Rightarrow (AC) \wedge (GCH)$.

- ① (Under $V=L$) **every crowded Baire space is ω -resolvable** (Pavlov).

- ① (Under $V=L$) every crowded Baire space is ω -resolvable (Pavlov).
- ② If X is a Baire Δ -space, the intersection of any decreasing sequence of dense subsets of X is non-empty, so X is not ω -resolvable.

- ① (Under $V=L$) every crowded Baire space is ω -resolvable (Pavlov).
- ② If X is a Baire Δ -space, the intersection of any decreasing sequence of dense subsets of X is non-empty, so X is not ω -resolvable.

Proposition 7 (Leiderman–Szeptycki)

*If X is Baire ω -resolvable, then X is not a Δ -space.
Hence, a Lindelöf Baire space which is a Δ -space has isolated points.*

- ① (Under $V=L$) every crowded Baire space is ω -resolvable (Pavlov).
- ② If X is a Baire Δ -space, the intersection of any decreasing sequence of dense subsets of X is non-empty, so X is not ω -resolvable.

Proposition 7 (Leiderman–Szeptycki)

*If X is Baire ω -resolvable, then X is not a Δ -space.
Hence, a Lindelöf Baire space which is a Δ -space has isolated points.*

- ③ If X has an isolated point then, trivially, the intersection of any family of dense subsets of X is non-empty.

1 Hence the following problem is well motivated.

1 Hence the following problem is well motivated.

Problem 8 (Leiderman-Szeptycki,J.K.-Leiderman-Tkachuk)

Does every Baire Δ -space have an isolated point?

- ① Hence the following problem is well motivated.

Problem 8 (Leiderman-Szeptycki,J.K.-Leiderman-Tkachuk)

Does every Baire Δ -space have an isolated point?

- ② Note the following

1 Hence the following problem is well motivated.

Problem 8 (Leiderman-Szeptycki,J.K.-Leiderman-Tkachuk)

Does every Baire Δ -space have an isolated point?

2 Note the following

Theorem 9 (Leiderman-Tkachuk)

Every pseudocompact Δ -space X with $c(X) = \omega$ is separable and has a dense set of isolated points.

- 1 Hence the following problem is well motivated.

Problem 8 (Leiderman-Szeptycki,J.K.-Leiderman-Tkachuk)

Does every Baire Δ -space have an isolated point?

- 2 Note the following

Theorem 9 (Leiderman-Tkachuk)

Every pseudocompact Δ -space X with $c(X) = \omega$ is separable and has a dense set of isolated points.

- 3 Consider some cases for which Problem 8 has a positive answer.

- ① Under Souslin hypothesis (SH) (i.e. there are no Souslin lines) if X is crowded and Baire with $c(X) = \omega$, then X is ω -resolvable (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar) (Recall that $(MA) \wedge (\sim (CH)) \Rightarrow (SH)$.)

① Under Souslin hypothesis (SH) (i.e. there are no Souslin lines) if X is crowded and Baire with $c(X) = \omega$, then X is ω -resolvable (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar) (Recall that $(MA) \wedge (\sim (CH)) \Rightarrow (SH)$.)

Corollary 10

(SH) If X is a Baire space with $c(X) = \omega$ and X is a Δ -space, then X has isolated points.

① Under Souslin hypothesis (SH) (i.e. there are no Souslin lines) if X is crowded and Baire with $c(X) = \omega$, then X is ω -resolvable (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar) (Recall that $(MA) \wedge (\sim (CH)) \Rightarrow (SH)$.)

Corollary 10

(SH) If X is a Baire space with $c(X) = \omega$ and X is a Δ -space, then X has isolated points.

② The axiom of constructibility, $V = L$, implies that every crowded Baire space is ω -resolvable (Pavlov). Hence, applying Leiderman-Szeptycki theorem, (under $V = L$) every Δ -space which is Baire has isolated points.

① (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):

Crowded X is ω -resolvable if X is Baire and $c(X) = \omega$ or X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.

① (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):

Crowded X is ω -resolvable if X is Baire and $c(X) = \omega$ or X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.

① (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):

Crowded X is ω -resolvable if X is Baire and $c(X) = \omega$ or X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.

Corollary 11

(MA) If X is a Baire Δ -space satisfying one of the properties, then X has isolated points.

① (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):

Crowded X is ω -resolvable if X is Baire and $c(X) = \omega$ or X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.

Corollary 11

(MA) If X is a Baire Δ -space satisfying one of the properties, then X has isolated points.

Theorem 12 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If there is a crowded Baire Δ -space then there is an inner model with a measurable cardinal.

① (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):
*Crowded X is ω -resolvable if X is Baire and $c(X) = \omega$ or
 X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.*

Corollary 11

(MA) *If X is a Baire Δ -space satisfying one of the properties, then X has isolated points.*

Theorem 12 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If there is a crowded Baire Δ -space then there is an inner model with a measurable cardinal.

② Uncountable cardinals with a two-valued measure are large cardinals whose existence cannot be proved from ZFC.

① (under (MA)) (Casarrubias-Segura, Tamaris-Mascar):
*Crowded X is ω -resolvable if X is Baire and $c(X) = \omega$ or
 X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.*

Corollary 11

(MA) If X is a Baire Δ -space satisfying one of the properties, then X has isolated points.

Theorem 12 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If there is a crowded Baire Δ -space then there is an inner model with a measurable cardinal.

② Uncountable cardinals with a two-valued measure are large cardinals whose existence cannot be proved from ZFC.

③ Cardinal number κ is measurable if there exists a κ -additive, nontrivial, 0 – 1-valued measure on 2^κ .

- ① Every crowded countably compact space is ω -resolvable (Comfort). This applies to provide the following:

- ① Every crowded countably compact space is ω -resolvable (Comfort). This applies to provide the following:

Example 13

There exist crowded ω -resolvable countably compact Δ_1 -spaces which are not Δ -spaces.

- ① Every crowded countably compact space is ω -resolvable (Comfort). This applies to provide the following:

Example 13

There exist crowded ω -resolvable countably compact Δ_1 -spaces which are not Δ -spaces.

- ② Example 13 shows that extending Proposition 7 (due to Leiderman-Szeptycki) to Δ_1 -spaces requires some extra assumption on Baire X .

1 Note a similar problem related with Δ_1 -spaces.

1 Note a similar problem related with Δ_1 -spaces.

Problem 14 (J.K.-Leiderman-Tkachuk)

Does every Baire Δ_1 -space have an isolated point?

- 1 Note a similar problem related with Δ_1 -spaces.

Problem 14 (J.K.-Leiderman-Tkachuk)

Does every Baire Δ_1 -space have an isolated point?

- 2 Dealing with Δ_1 -spaces we propose the following extension of Proposition 7 as follows.

Theorem 15 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a Δ_1 -space. Hence, a separable Baire space which is a Δ_1 -space has isolated points.

- ① Note a similar problem related with Δ_1 -spaces.

Problem 14 (J.K.-Leiderman-Tkachuk)

Does every Baire Δ_1 -space have an isolated point?

- ② Dealing with Δ_1 -spaces we propose the following extension of Proposition 7 as follows.

Theorem 15 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a Δ_1 -space. Hence, a separable Baire space which is a Δ_1 -space has isolated points.

- ③ Separability of X cannot be removed.

- ① Nevertheless, it turns out that:

① Nevertheless, it turns out that:

Example 16 (J.K.-Leiderman-Tkachuk)

Separable countably compact Δ_1 -spaces need not be scattered.

① Nevertheless, it turns out that:

Example 16 (J.K.-Leiderman-Tkachuk)

Separable countably compact Δ_1 -spaces need not be scattered.

Proof.

Juhasz and van Mill showed that there exists a dense countably compact subspace $Z \subset \beta\omega \setminus \omega$ in which all countable subsets are scattered and hence Z is a Δ_1 -space. If $X = \omega \cup Z$, then X is a countably compact separable Δ_1 -space not scattered. □

① Nevertheless, it turns out that:

Example 16 (J.K.-Leiderman-Tkachuk)

Separable countably compact Δ_1 -spaces need not be scattered.

Proof.

Juhasz and van Mill showed that there exists a dense countably compact subspace $Z \subset \beta\omega \setminus \omega$ in which all countable subsets are scattered and hence Z is a Δ_1 -space. If $X = \omega \cup Z$, then X is a countably compact separable Δ_1 -space not scattered. □

① Nevertheless, it turns out that:

Example 16 (J.K.-Leiderman-Tkachuk)

Separable countably compact Δ_1 -spaces need not be scattered.

Proof.

Juhasz and van Mill showed that there exists a dense countably compact subspace $Z \subset \beta\omega \setminus \omega$ in which all countable subsets are scattered and hence Z is a Δ_1 -space. If $X = \omega \cup Z$, then X is a countably compact separable Δ_1 -space not scattered. □

② Example 16 shows that Theorem 5 (due to Juhasz-van Mill...) fails for Δ_1 -spaces.

① Nevertheless, it turns out that:

Example 16 (J.K.-Leiderman-Tkachuk)

Separable countably compact Δ_1 -spaces need not be scattered.

Proof.

Juhasz and van Mill showed that there exists a dense countably compact subspace $Z \subset \beta\omega \setminus \omega$ in which all countable subsets are scattered and hence Z is a Δ_1 -space. If $X = \omega \cup Z$, then X is a countably compact separable Δ_1 -space not scattered. □

- ② Example 16 shows that Theorem 5 (due to Juhasz-van Mill...) fails for Δ_1 -spaces.
- ③ Recall compact X is scattered iff X is a Δ_1 -space.

4 More questions

① More questions

Problem 17 (Leiderman-Tkachuk)

Suppose that X is a separable pseudocompact Δ -space. Must X be scattered?

1 More questions

Problem 17 (Leiderman-Tkachuk)

Suppose that X is a separable pseudocompact Δ -space. Must X be scattered?

Problem 18 (Leiderman-Tkachuk)

Is it true that every compact Δ -space is the countable union of Eberlein compact spaces?

1 More questions

Problem 17 (Leiderman-Tkachuk)

Suppose that X is a separable pseudocompact Δ -space. Must X be scattered?

Problem 18 (Leiderman-Tkachuk)

Is it true that every compact Δ -space is the countable union of Eberlein compact spaces?

Problem 19 (Leiderman-Tkachuk)

Suppose that X is a space and there is a family $(U_n)_n$ of open Δ -subspaces of X covering X . Is it true that X must be a Δ -space?

① One problem more

1 One problem more

Theorem 20 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If X is a Δ -space and $cf(o(X)) > \omega$, then $|X| < o(X)$, where $o(X)$ means the number of all open sets in X .

① One problem more

Theorem 20 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If X is a Δ -space and $cf(o(X)) > \omega$, then $|X| < o(X)$, where $o(X)$ means the number of all open sets in X .

- ② If X is hereditary Lindelöf of weight $\leq c$ or if $|X| = c$ and X is hereditary separable then $o(X) \leq c$.

① One problem more

Theorem 20 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If X is a Δ -space and $cf(o(X)) > \omega$, then $|X| < o(X)$, where $o(X)$ means the number of all open sets in X .

- ② If X is hereditary Lindelöf of weight $\leq c$ or if $|X| = c$ and X is hereditary separable then $o(X) \leq c$.
- ③ So, if either X is hereditary Lindelöf of weight $\leq c$ or hereditary separable then X is a Δ -space implies $|X| < c$.

① One problem more

Theorem 20 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If X is a Δ -space and $cf(o(X)) > \omega$, then $|X| < o(X)$, where $o(X)$ means the number of all open sets in X .

- ② If X is hereditary Lindelöf of weight $\leq c$ or if $|X| = c$ and X is hereditary separable then $o(X) \leq c$.
- ③ So, if either X is hereditary Lindelöf of weight $\leq c$ or hereditary separable then X is a Δ -space implies $|X| < c$.
- ④ Thus we have the following problem.

① One problem more

Theorem 20 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

If X is a Δ -space and $cf(o(X)) > \omega$, then $|X| < o(X)$, where $o(X)$ means the number of all open sets in X .

- ② If X is hereditary Lindelöf of weight $\leq c$ or if $|X| = c$ and X is hereditary separable then $o(X) \leq c$.
- ③ So, if either X is hereditary Lindelöf of weight $\leq c$ or hereditary separable then X is a Δ -space implies $|X| < c$.
- ④ Thus we have the following problem.

Problem 21 (Juhasz–van Mill–Soukup–Szentmiklossy (2025))

Does every hereditary Lindelöf Δ -space have cardinality $< c$?