Cardinal invariants of idealized Miller null sets

Takehiko Gappo
(https://sites.google.com/view/takehikogappo/home)

TU Wien

February 3, 2026
Winter School in Analysis Set Theory Section, Hejnice.

This is joint work with
Aleksander Cieslak (Wroctaw University of Science and Technology),
Arturo Martinez-Celis (University of Wroctaw), and
Takashi Yamazoe (Kobe University).
A preprint is available at https://arxiv.org/abs/2601.07428.

TECHNISCHE
UNIVERSITAT LLIF
WIEN

Der Wissenschaftsfonds.

Research supported by Austrian Science Fund (FWF) 16087 and ESP5842424.


https://sites.google.com/view/takehikogappo/home
https://arxiv.org/abs/2601.07428

Ideals

We say that Z C p(X) is an ideal on a set X if for all A, B C X,
Q@ AcINBCA=B¢cTand
@ AcIANBeI=AUBeT

Furthermore, if 7 is closed under countable unions, 7 is called a o-ideal.
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Ideals

We say that Z C p(X) is an ideal on a set X if for all A, B C X,

Q@ AcINBCA=BecZand

Q@ AcIANBeI=AUBeT
Furthermore, if Z is closed under countable unions, 7 is called a o-ideal.
Our convention:

@ .7 denotes an ideal on a countable set X.

@ We always assume that .# is proper, i.e. [X]<* C .# and X ¢ .#.
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Ideals

We say that Z C p(X) is an ideal on a set X if for all A, B C X,

Q@ AcINBCA=BecZand

Q@ AcIANBeI=AUBeT
Furthermore, if Z is closed under countable unions, 7 is called a o-ideal.
Our convention:

@ .7 denotes an ideal on a countable set X.

@ We always assume that .# is proper, i.e. [X]<* C .# and X ¢ .#.

There are various cardinal invariants associated with a o-ideal Z on a Polish space X
such as:

o Uniformity number: non(Z) = min{AC X : A¢ Z}.

o Covering number: cov(Z) = min{|F| : F CITA|JF = X}.

o Additivity number: add(Z) = min{|F|: F CZA|JF ¢ I}.

e Cofinality number: cof(Z) = min{|F|: F CZAVA€Z3IB € F(AC B)}.
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Z-Miller null ideal

Let .# be an ideal on a countable set X.

Definition

The .7 -Miller null ideal M » is the o-ideal on X“ generated by sets of the form
My, ={f € X :¥Vn<w f(n) € ¢(f | n)},

where ¢: X<¥ — 7.
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Z-Miller null ideal

Let .# be an ideal on a countable set X.

Definition
The .7 -Miller null ideal M » is the o-ideal on X“ generated by sets of the form

My, ={f € X :¥Vn<w f(n) € ¢(f | n)},

where ¢: X<¥ — 7.

We also consider the following variant.

Definition

The ideal K is the o-ideal on X* generated by sets of the form
Ky ={f € X¥ :V*n<w f(n) € ¢(n)},

where ¢: X<¥ — 7.
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Z-Miller null ideal

Let .# be an ideal on a countable set X.

Definition
The .7 -Miller null ideal M » is the o-ideal on X“ generated by sets of the form

My, ={f € X :¥Vn<w f(n) € ¢(f | n)},

where ¢: X<¥ — 7.

We also consider the following variant.

Definition

The ideal K is the o-ideal on X* generated by sets of the form
Ky ={f € X¥ :V*n<w f(n) € ¢(n)},

where ¢: X<¥ — 7.

Note that Mrin, = Krin = K, where Fin is the ideal of finite subsets of w. Also,
Ke CKs C My C M.

A natural guiding question would be: When is non(M ) different from b and non(M)?
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Why should M s be called the .Z-Miller null ideal?

Let .# be an ideal on a countable set X.

Definition
A tree T C X<“ is an .%-Miller tree if for every o € T there exists T € T with o C T and

sucer(7) == {x€X: 7 (x) € T} e 7.

Let M. s be the forcing poset of .#-Miller trees ordered by inclusion. The original Miller
forcing is Mpin.
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Why should M s be called the .Z-Miller null ideal?

Let .# be an ideal on a countable set X.

Definition

A tree T C X<“ is an .%-Miller tree if for every o € T there exists T € T with o C T and

sucer(7) == {x€X: 7 (x) € T} e 7.

Let M. s be the forcing poset of .#-Miller trees ordered by inclusion. The original Miller
forcing is Mpin.

Sabok—Zapletal showed that M. is forcing equivalent to the poset Py, of M. s-positive
Borel sets ordered by inclusion:

Proposition (Sabok—Zapletal)

For every analytic subset A C X“, either A € M.y or there is an .7 -Miller tree T C X<¥
such that all the infinite branches through T are in A.
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M4 and K in previous literature

The systematic study of M was initiated by Cie$lak and Martinez-Celis. However,
Brendle and Shelah did a similar study for Laver and Mathias type forcings associated
with ultrafilters. Moreover, the cardinal invariants of My and K~ were (implicitly)
studied from different perspectives.
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M4 and K in previous literature

The systematic study of M was initiated by CieSlak and Martinez-Celis. However,
Brendle and Shelah did a similar study for Laver and Mathias type forcings associated
with ultrafilters. Moreover, the cardinal invariants of My and K~ were (implicitly)
studied from different perspectives.

1. Forcing perspective

o (Sabok-Zapletal) The .#-Miller forcing M» was studied.

o (Pawlikowski) A connection between perfect sets of random reals and Kz was
shown: If there is a perfect set of random reals, w“ NV € Kz.
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M4 and K in previous literature

The systematic study of M was initiated by CieSlak and Martinez-Celis. However,
Brendle and Shelah did a similar study for Laver and Mathias type forcings associated
with ultrafilters. Moreover, the cardinal invariants of My and K~ were (implicitly)
studied from different perspectives.

1. Forcing perspective
o (Sabok—Zapletal) The .#-Miller forcing M » was studied.

o (Pawlikowski) A connection between perfect sets of random reals and Kz was
shown: If there is a perfect set of random reals, w“ NV € Kz.

2. Topological perspective
o (Supina) cov(K.») is the least size of non-S;(.#-I', ©) Hausdorff spaces.

o (Cardona—Gavalod-Mejia—Repicky—Supina) non(K.») and cov(K.») appear as slalom
numbers.
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M4 and K in previous literature

The systematic study of M was initiated by CieSlak and Martinez-Celis. However,
Brendle and Shelah did a similar study for Laver and Mathias type forcings associated
with ultrafilters. Moreover, the cardinal invariants of My and K~ were (implicitly)
studied from different perspectives.

1. Forcing perspective
o (Sabok—Zapletal) The .#-Miller forcing M » was studied.

o (Pawlikowski) A connection between perfect sets of random reals and Kz was
shown: If there is a perfect set of random reals, w“ NV € Kz.

2. Topological perspective
o (Supina) cov(K.») is the least size of non-S;(.#-I', ©) Hausdorff spaces.
o (Cardona—Gavalod-Mejia—Repicky—Supina) non(K.») and cov(K.») appear as slalom
numbers.
3. Combinatorial perspective

o (Blass) Uniformity/covering numbers of M.# /K~ can be seen as evasion/prediction
numbers (e.g. non(M.») is the evasion number for global adaptive predictors with
values in .¥).
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Katétov order on ideals on a countable set

Katétov order <k is one of the main tools for classification of ideals. For given ideals
&, Z on X, Y respectively, define

I <k f == I Y - XVAc I (FAl € 7).
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Katétov order on ideals on a countable set

Katétov order <k is one of the main tools for classification of ideals. For given ideals
&, Z on X, Y respectively, define

I <k f == I Y - XVAc I (FAl € 7).

The below diagram shows Katétov order on various ideals on countable sets.

nwd Fin ® Fin Z

S
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Kat&tov order and uniformity numbers of M~

For ideals .7, # on countable sets with .% <y 7,

non(M.s) < non(M ¢) and non(K) < non(K ¢).
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Kat&tov order and uniformity numbers of M~

For ideals .7, # on countable sets with .% <y 7,

non(M.s) < non(M ¢) and non(K) < non(K ¢).

non(Muwa) non( Mrin@Fin) non(Mz)
~— ] e — ]
non(Msp1) non(Mz,,) —— non(Mz,)
[ [ I
non(Ms) non(Mconv) non(Mgp) —— non(Mepy,,)
[
non(Mg)
[
non(Mrin)
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w-versions of *-numbers of .#

Let .# be an ideal on a countable set X.

Definition

add™(#) =min{|A|: AC FAVBe ¥IAc A(AL" B)}

non*(#) = min{|A| : AC [X]* AVBE€ #IAc A(JANB| <w)}

cov'(F) =min{|A| : AC FAVB € [X]“IA€ A(JANB| =w)}
=

(
cof "(F) =min{|A|: AC S AVB € #IAE A(BC" A)}

add™(.#) and non*(.#) badly behave for non-P-ideals .#. add*(.#) = w for non-P-ideals
4 and non™(.#) = w for any Borel ideal .# 2kg EDsin.
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w-versions of *-numbers of .#

Let .# be an ideal on a countable set X.

Definition

add*(#) =min{|A| : AC S AVBe #IAc A(AZL" B)}
non*(#) = min{|A| : AC [X]* AVBE€ #IAc A(JANB| <w)}
cov'(F) =min{|A| : AC FAVB € [X]“IA€ A(JANB| =w)}
cof '(F) =min{|A| : AC S AVBe #IAe€ A(BC" A)}

add™(.#) and non*(.#) badly behave for non-P-ideals .#. add*(.#) = w for non-P-ideals
4 and non™(.#) = w for any Borel ideal .# 2kg EDsin.

Definition

add’(#) =min{|A|: AC S AVB € [#]*IAc AVB<c B(AZ" B)}
non () = min{|A| : AC [X]* AVB € [#]“TA € AVB € B(|AN B| < w)}
cof i () = min{|A| : AC [#]° AVB € [#]“TA€c AVB € BIAc A(B C" A)}

For P-ideals ., inv,(#) = inv*(#) for inv € {add, non, cof}. These w-versions of
x-numbers were introduced by Brendle—Shelah.
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Relation between cardinal invariants of .# and M,

Let .7 be an ideal on a countable set. Then the following hold:
Q add(My) = add(K.») = min{b, add},(.#)}.
@ b < non(Ky) < non(My) < max{b, non},(.#)}.
@ min{d, cov*(#)} < cov(My) < cov(Kz) <.
Q cof (M) = cof(K») = max{d, cof,(#£)}.
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Relation between cardinal invariants of .# and M,

Let .7 be an ideal on a countable set. Then the following hold:
Q add(My) = add(K.») = min{b, add},(.#)}.
@ b < non(Ky) < non(My) < max{b, non},(.#)}.
@ min{d, cov*(#)} < cov(My) < cov(Kz) <.
Q cof (M) = cof(K») = max{d, cof,(#£)}.

ideal add}(.#) non(#) cov'(F) cofl(¥)
R w1 w1 c C
S w1 cov,(N)  non(N) c
nwd add(M) non(M) cov(M)  cof(M)
conv w1 w1 c C
spl w1 s v c
b 0
( c
7 ¢
? c
? ¢
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Some consequences of Sabok—Zapletal's work

(Sabok—Zapletal) The splitting ideal spl is the ideal on 2<“ generated by sets A C 2<%
such that there is ¢ € [w]“ such that t | ¢ is constant for every t € A.

Theorem (Sabok—Zapletal)

Let .7 be a Borel ideal on a countable set.
Q@ M., adds Cohen reals iff nwd <k .¥ | A for some A ¢ 7.
@ M. s adds splitting reals iff spl <k .# | A for some A ¢ 7.
@ M.s preserves outer Lebesgue measure iff S <k .# | A for some A ¢ .7.
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Some consequences of Sabok—Zapletal's work

(Sabok—Zapletal) The splitting ideal spl is the ideal on 2<“ generated by sets A C 2<%
such that there is ¢ € [w]“ such that t | ¢ is constant for every t € A.

Theorem (Sabok—Zapletal)

Let .7 be a Borel ideal on a countable set.
Q@ M., adds Cohen reals iff nwd <k .¥ | A for some A ¢ 7.
@ M. s adds splitting reals iff spl <k .# | A for some A ¢ 7.
@ M.s preserves outer Lebesgue measure iff S <k .# | A for some A ¢ .7.

Corresponding to Sabok—Zapletal's results, we have:

@ non(Muwa) = non(M), cov(Mywa) = cov(M).
@ non(Mp1) = max{b, s}, cov(Msp1) = min{0, t}, non(Ksp1) = b, cov(Ksp1) = 0.
@ non(Ms) = non(Ks) = max{b, cov,,(N)}, cov(Ms) = cov(Ks) = min{d, non(N)}.

Here, cov,,(N) = min{|F| : F CN AVA € [R]* 3N € F (A C N)}. This is consistently
different from cov(N).
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non( non MFm®Fm) non(Mz)

\T‘>/T

max{b,s} non(Mg ) —— non(Mz,)

| | [

max{b, cov,,(N)} non(Meconv) non(Mgp) —— non(Mepy,, )

"

non(Mz)

|

non(Mpgiy)
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Other F, non-P-ideals

@ non(Meonv) = non(Mz) = non(Keonv) = non(Kr) = b.
Q non(Mringrin) = ¢27%(2), non(Kringrin) = b.
@ non(Msp) = ¢“™%(2),non(Kep) = b.

@ non(Msepy,,,) = e52°°(2) for all increasing b € w®

Here, e“"*%(2), ¢§°"(2), ¢2"%(2) are (variants of) constant evasion numbers, which are
defined on the next page.
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Other F, non-P-ideals

@ non(Meonv) = non(Mz) = non(Keonv) = non(Kr) = b.
Q non(Mringrin) = ¢27%(2), non(Kringrin) = b.
@ non(Msp) = ¢“™%(2),non(Kep) = b.

@ non(Msepy,,,) = e52°°(2) for all increasing b € w®

Here, e“"*%(2), ¢§°"(2), ¢2"%(2) are (variants of) constant evasion numbers, which are
defined on the next page.

ron ) " m >/ rno:)
max{b s} non(Mz,) non(Mz,)
max{b, cov,,(N)} non(Msp) > max{b, ¢"*"(2)} —— non(Mepy, ) = max{b, e;>""(2)}

\T
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o Let Pred be the set of all m: w=“ — w. For b€ (w\2)“, [[b:=]],., b(n) and
Pred, := {ﬂ' € Pred : Vo € dom(n) (a € Hn<‘a| b(n) Am(o) € b(|a|)) } .

o Let f € w* and w € Pred. For k > 2, define
focfn < V®i<wIjeli,i+k) f(§) =n(f )
foln < Voi<wdjeli,i+k)f(j) < n(f 1))
o Define the following cardinal invariants:
(k) := min{|F| : F C w” AVr € Pred3f € F—~(f C* )},
;™" (k) := min{|F| : F C [[ bAVr € Pred, 3f € F=(f C* m)},
¢ (k) := min{|F|: F C w* AVm: w<¥ — w3f € F=(f Ekg )},

S

February 3, 2026
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Asymptotic density zero ideal

Recall that
Z—{Agw: lim |Aﬂn_0}.

n—oo n

non(Mz) = max{b, non(&)}, cov(Mz) = min{d, cov(&)}.
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Asymptotic density zero ideal

Recall that

n—oo n

Z—{Agw: lim |Aﬂn_0}.

non(Mz) = max{b, non(&)}, cov(Mz) = min{d, cov(&)}.

non(M) \ ) >/ max{b, non(&)}
max{b, s} non(Mg, ) — non(Mz,)

[ I [

non(Mgp) —— non(Mgnpy,)

/

max{b, cov,,(N)}

1
1
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New bounds for non*(Z) and cov*(Z2)

Recall that for an ideal .# on a countable set X,
non*(#) := min{|F|: F C[X]* AVA€ ¥ 3B € F|AN B|< w},
cov’(J) :=min{|F|: F C S AVA € [X]*,IB € F|AN B|=w}.

max{b, non(€)} < non*(Z) and cov*(Z) < min{d, cov(&)}.

Takehiko Gappo (TU Wien) Cardinal invariants of idealized Miller null sets February 3, 2026



New bounds for non*(Z) and cov*(Z2)

Recall that for an ideal .# on a countable set X,
non*(#) := min{|F|: F C[X]* AVA€ ¥ 3B € F|AN B|< w},
cov’(J) :=min{|F|: F C S AVA € [X]*,IB € F|AN B|=w}.

max{b, non(€)} < non*(Z) and cov*(Z) < min{d, cov(&)}.

Proof. For any P-ideal .# on w, non(M_) < max{b,non*(.#)}. Also, b < non*(Z)
(Raghavan—Shelah). Thus,

non(Mz) = max{b, non(£)} < max{b,non"(Z)} = non™(Z2).
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New bounds for non*(Z) and cov*(Z2)

Recall that for an ideal .# on a countable set X,
non*(#) := min{|F|: F C[X]* AVA€ ¥ 3B € F|AN B|< w},
cov’(J) :=min{|F|: F C S AVA € [X]*,IB € F|AN B|=w}.

max{b, non(€)} < non*(Z) and cov*(Z) < min{d, cov(&)}.

Proof. For any P-ideal .# on w, non(M_) < max{b,non*(.#)}. Also, b < non*(Z)
(Raghavan—Shelah). Thus,

non(Mz) = max{b, non(£)} < max{b,non"(Z)} = non™(Z2).

cov*(Z) < non*(Z2).
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New bounds for non*(Z) and cov*(Z2)

Recall that for an ideal .# on a countable set X,
non*(#) := min{|F|: F C[X]* AVA€ ¥ 3B € F|AN B|< w},
cov’(J) :=min{|F|: F C S AVA € [X]*,IB € F|AN B|=w}.

max{b, non(€)} < non*(Z) and cov*(Z) < min{d, cov(&)}.

Proof. For any P-ideal .# on w, non(M_) < max{b,non*(.#)}. Also, b < non*(Z)
(Raghavan—Shelah). Thus,

non(Mz) = max{b, non(£)} < max{b,non"(Z)} = non™(Z2).

cov*(Z) < non*(Z2).

Proof. Raghavan showed min{?,t} < non*(Z) (and cov*(Z) < max{b,s(pr)}). Also, it is
known that cov(£) < t. Thus,

cov™(Z) < min{d, cov(€)} < min{o,t} < non™(2).
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T —c

cov(N) ———— non(/\/l) _ cof(M) cof(N)
[
max{b non( cov(g max{0, non(A)}
max{b, s(}c)}
P
non*(Z2)
Vs
m{D o}
min{b, non(\")} non(é‘) mm{D cov(S)}
add(\) add(/\/l) _— cov(M) non(A")

/

Ry — s(pr)
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ED, g,Dﬁna jLaIL

For ACwxwand n<w, (A)r:={m<w:(n,m) e A}

ED ={ACwxw:Tk <wV’n<w|(A)n] < k} and EDgyn :=ED | A.
Jo={ACwxw:Fk<wV’n<w|(A) < k-n}and Zr, := Ju | A.

7y, is the linear polynomial growth ideal. 71, and its variants appear in the work of Das,
Filipéw, Gtab, and Tryba.
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ED, 5/Dﬁn~, jLaIL

For ACwxwand n<w, (A)r:={m<w:(n,m) e A}

ED ={ACwxw:Fk<wV¥V’n<wl|(A)n| <k} and EDsn :=ED | A
T ={ACwxw:Fk<wV’n<w|(A)n| <k-ntand Iy =Ju | A

7y, is the linear polynomial growth ideal. 71, and its variants appear in the work of Das,
Filipéw, Gtab, and Tryba.

non(M e2™(2) max{b, non(&)}
max{b s} non(Mz, ) ——— non(Mz,)
[ I
max{b, cov,, (N)} non(Mgp) — non(Mepy,,)

\V
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Extended Cichon’s maximum

Recall that non(Mep) > max{b, ¢“"**(2)} and non(Mep,,, ) = max{b, ¢i°™*(2)} for all
increasing b € w”. These inequality cannot be reversed in ZFC:

The following are consistent relative to ZFC:
@ non(Mgp) > max{b, e (2)}.
@ non(Mzep,,,,) > max{b, ¢;>***(2)} for all increasing b € w*.
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Extended Cichon’s maximum

Recall that non(Mgp) > max{b, ¢*°***(2)} and non(Mepg,,) = max{b, ¢;>"**(2)} for all
increasing b € w”. These inequality cannot be reversed in ZFC:

The following are consistent relative to ZFC:

@ non(Mgp) > max{b, e (2)}.
@ non(Mzep,,,,) > max{b, ¢;>***(2)} for all increasing b € w*.

For J1, and Zy,, we can get even better consistency result:

Let #, %1 be ideals on countable sets such that

JL <k S <k Fin® Fin and Iy, <k 41 <k Z.

Then there is a c.c.c. poset forcing Cichon’s maximum with uniformity and covering
numbers of M.z, and Mg, (or K.s,).

These consistency results are proved by using (closed) Fr-limits and ultrafilter-limits
based on Yamazoe's previous works.

February 3, 2026

Cardinal invariants of idealized Miller null sets

Takehiko Gappo (TU Wien)



cov(/\/’) : npn(M) - - - cof (N) X

non(Kz,)
non(M}j“in®Fiﬂ) 0

non(Mz, ) cov(Mz,)
b "|cov(MringFin)

cov(Kz,)
MZ)

cov(

non(AMz)

N - add(N) - - cov(M) | - non(N)
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Open questions

@ Is non(K.s) = non(M.») provable in ZFC for .# = nwd, EDsin, I, Z7
@ Are b < non(Mgp) < non(M) and b < non(Mgpy,,,) < non(M) consistent?
@ Are non(Mgp) < non(MringFin) and non(Mgp,,, ) < non(Mz) consistent?

non(M em5E(2) max{b, non(&)}
max{b 5}% non(Mz, )
max{b, cov,,(N)} non(Mgp) — non(Mepy,,,)

\V

Takehiko Gappo (TU Wien) Cardinal invariants of idealized Miller null sets February 3, 2026



Open questions

@ Is non(K.s) = non(M.») provable in ZFC for .# = nwd, EDsin, I, Z7
@ Are b < non(Mgp) < non(M) and b < non(Mgpy,,,) < non(M) consistent?
@ Are non(Mgp) < non(MringFin) and non(Mgp,,, ) < non(Mz) consistent?

non(M em5E(2) max{b, non(&)}
max{b 5}% non(Mz, )
max{b, cov,,(N)} non(Mgp) — non(Mepy,,,)

\V

Thank you for your attention!
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