

Cardinal invariants of idealized Miller null sets

Takehiko Gappo

(<https://sites.google.com/view/takehikogappo/home>)

TU Wien

February 3, 2026

Winter School in Analysis Set Theory Section, Hejnice.

This is joint work with

Aleksander Cieślak (Wrocław University of Science and Technology),

Arturo Martínez-Celis (University of Wrocław), and

Takashi Yamazoe (Kobe University).

A preprint is available at <https://arxiv.org/abs/2601.07428>.

TECHNISCHE
UNIVERSITÄT
WIEN

Der Wissenschaftsfonds.

Research supported by Austrian Science Fund (FWF) I16087 and ESP5842424.

We say that $\mathcal{I} \subseteq \wp(X)$ is an **ideal** on a set X if for all $A, B \subseteq X$,

- ① $A \in \mathcal{I} \wedge B \subseteq A \Rightarrow B \in \mathcal{I}$ and
- ② $A \in \mathcal{I} \wedge B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$.

Furthermore, if \mathcal{I} is closed under countable unions, \mathcal{I} is called a **σ -ideal**.

Our convention:

- \mathcal{I} denotes an ideal on a countable set X .
- We always assume that \mathcal{I} is proper, i.e. $[X]^{<\omega} \subseteq \mathcal{I}$ and $X \notin \mathcal{I}$.

There are various cardinal invariants associated with a σ -ideal \mathcal{I} on a Polish space X such as:

- Uniformity number: $\text{non}(\mathcal{I}) = \min\{A \subseteq X : A \notin \mathcal{I}\}$.
- Covering number: $\text{cov}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} = X\}$.
- Additivity number: $\text{add}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} \notin \mathcal{I}\}$.
- Cofinality number: $\text{cof}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} (A \subseteq B)\}$.

We say that $\mathcal{I} \subseteq \wp(X)$ is an **ideal** on a set X if for all $A, B \subseteq X$,

- ① $A \in \mathcal{I} \wedge B \subseteq A \Rightarrow B \in \mathcal{I}$ and
- ② $A \in \mathcal{I} \wedge B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$.

Furthermore, if \mathcal{I} is closed under countable unions, \mathcal{I} is called a **σ -ideal**.

Our convention:

- \mathcal{I} denotes an ideal on a countable set X .
- We always assume that \mathcal{I} is proper, i.e. $[X]^{<\omega} \subseteq \mathcal{I}$ and $X \notin \mathcal{I}$.

There are various cardinal invariants associated with a σ -ideal \mathcal{I} on a Polish space X such as:

- Uniformity number: $\text{non}(\mathcal{I}) = \min\{A \subseteq X : A \notin \mathcal{I}\}$.
- Covering number: $\text{cov}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} = X\}$.
- Additivity number: $\text{add}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} \notin \mathcal{I}\}$.
- Cofinality number: $\text{cof}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} (A \subseteq B)\}$.

We say that $\mathcal{I} \subseteq \wp(X)$ is an **ideal** on a set X if for all $A, B \subseteq X$,

- ① $A \in \mathcal{I} \wedge B \subseteq A \Rightarrow B \in \mathcal{I}$ and
- ② $A \in \mathcal{I} \wedge B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$.

Furthermore, if \mathcal{I} is closed under countable unions, \mathcal{I} is called a **σ -ideal**.

Our convention:

- \mathcal{I} denotes an ideal on a countable set X .
- We always assume that \mathcal{I} is proper, i.e. $[X]^{<\omega} \subseteq \mathcal{I}$ and $X \notin \mathcal{I}$.

There are various cardinal invariants associated with a σ -ideal \mathcal{I} on a Polish space X such as:

- **Uniformity number:** $\text{non}(\mathcal{I}) = \min\{A \subseteq X : A \notin \mathcal{I}\}$.
- **Covering number:** $\text{cov}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} = X\}$.
- **Additivity number:** $\text{add}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} \notin \mathcal{I}\}$.
- **Cofinality number:** $\text{cof}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} (A \subseteq B)\}$.

\mathcal{I} -Miller null ideal

Let \mathcal{I} be an ideal on a countable set X .

Definition

The \mathcal{I} -Miller null ideal $M_{\mathcal{I}}$ is the σ -ideal on X^ω generated by sets of the form

$$M_{\phi} = \{f \in X^\omega : \forall^\infty n < \omega f(n) \in \phi(f \upharpoonright n)\},$$

where $\phi: X^{<\omega} \rightarrow \mathcal{I}$.

We also consider the following variant.

Definition

The ideal $K_{\mathcal{I}}$ is the σ -ideal on X^ω generated by sets of the form

$$K_{\phi} = \{f \in X^\omega : \forall^\infty n < \omega f(n) \in \phi(n)\},$$

where $\phi: X^{<\omega} \rightarrow \mathcal{I}$.

Note that $M_{\text{Fin}} = K_{\text{Fin}} = K_\sigma$, where Fin is the ideal of finite subsets of ω . Also,

$$K_\sigma \subseteq K_{\mathcal{I}} \subseteq M_{\mathcal{I}} \subseteq \mathcal{M}.$$

A natural guiding question would be: When is $\text{non}(M_{\mathcal{I}})$ different from \mathbb{b} and $\text{non}(\mathcal{M})$?

\mathcal{I} -Miller null ideal

Let \mathcal{I} be an ideal on a countable set X .

Definition

The \mathcal{I} -Miller null ideal $M_{\mathcal{I}}$ is the σ -ideal on X^ω generated by sets of the form

$$M_{\phi} = \{f \in X^\omega : \forall^\infty n < \omega f(n) \in \phi(f \upharpoonright n)\},$$

where $\phi: X^{<\omega} \rightarrow \mathcal{I}$.

We also consider the following variant.

Definition

The ideal $K_{\mathcal{I}}$ is the σ -ideal on X^ω generated by sets of the form

$$K_{\phi} = \{f \in X^\omega : \forall^\infty n < \omega f(n) \in \phi(n)\},$$

where $\phi: X^{<\omega} \rightarrow \mathcal{I}$.

Note that $M_{\text{Fin}} = K_{\text{Fin}} = K_\sigma$, where Fin is the ideal of finite subsets of ω . Also,

$$K_\sigma \subseteq K_{\mathcal{I}} \subseteq M_{\mathcal{I}} \subseteq \mathcal{M}.$$

A natural guiding question would be: When is $\text{non}(M_{\mathcal{I}})$ different from \mathbb{b} and $\text{non}(\mathcal{M})$?

\mathcal{I} -Miller null ideal

Let \mathcal{I} be an ideal on a countable set X .

Definition

The \mathcal{I} -Miller null ideal $M_{\mathcal{I}}$ is the σ -ideal on X^ω generated by sets of the form

$$M_{\phi} = \{f \in X^\omega : \forall^\infty n < \omega f(n) \in \phi(f \upharpoonright n)\},$$

where $\phi: X^{<\omega} \rightarrow \mathcal{I}$.

We also consider the following variant.

Definition

The ideal $K_{\mathcal{I}}$ is the σ -ideal on X^ω generated by sets of the form

$$K_{\phi} = \{f \in X^\omega : \forall^\infty n < \omega f(n) \in \phi(n)\},$$

where $\phi: X^{<\omega} \rightarrow \mathcal{I}$.

Note that $M_{\text{Fin}} = K_{\text{Fin}} = K_\sigma$, where Fin is the ideal of finite subsets of ω . Also,

$$K_\sigma \subseteq K_{\mathcal{I}} \subseteq M_{\mathcal{I}} \subseteq \mathcal{M}.$$

A natural guiding question would be: When is $\text{non}(M_{\mathcal{I}})$ different from \mathfrak{b} and $\text{non}(\mathcal{M})$?

Why should $M_{\mathcal{I}}$ be called the \mathcal{I} -Miller null ideal?

Let \mathcal{I} be an ideal on a countable set X .

Definition

A tree $T \subseteq X^{<\omega}$ is an \mathcal{I} -Miller tree if for every $\sigma \in T$ there exists $\tau \in T$ with $\sigma \subseteq \tau$ and

$$\text{succ}_T(\tau) := \{x \in X : \tau^\frown \langle x \rangle \in T\} \in \mathcal{I}^+.$$

Let $\mathbb{M}_{\mathcal{I}}$ be the forcing poset of \mathcal{I} -Miller trees ordered by inclusion. The original Miller forcing is \mathbb{M}_{Fin} .

Sabok–Zapletal showed that $\mathbb{M}_{\mathcal{I}}$ is forcing equivalent to the poset $\mathbb{P}_{M_{\mathcal{I}}}$ of $M_{\mathcal{I}}$ -positive Borel sets ordered by inclusion:

Proposition (Sabok–Zapletal)

For every analytic subset $A \subseteq X^\omega$, either $A \in M_{\mathcal{I}}$ or there is an \mathcal{I} -Miller tree $T \subseteq X^{<\omega}$ such that all the infinite branches through T are in A .

Why should $M_{\mathcal{I}}$ be called the \mathcal{I} -Miller null ideal?

Let \mathcal{I} be an ideal on a countable set X .

Definition

A tree $T \subseteq X^{<\omega}$ is an \mathcal{I} -Miller tree if for every $\sigma \in T$ there exists $\tau \in T$ with $\sigma \subseteq \tau$ and

$$\text{succ}_T(\tau) := \{x \in X : \tau^\frown \langle x \rangle \in T\} \in \mathcal{I}^+.$$

Let $\mathbb{M}_{\mathcal{I}}$ be the forcing poset of \mathcal{I} -Miller trees ordered by inclusion. The original Miller forcing is \mathbb{M}_{Fin} .

Sabok–Zapletal showed that $\mathbb{M}_{\mathcal{I}}$ is forcing equivalent to the poset $\mathbb{P}_{M_{\mathcal{I}}}$ of $M_{\mathcal{I}}$ -positive Borel sets ordered by inclusion:

Proposition (Sabok–Zapletal)

For every analytic subset $A \subseteq X^\omega$, either $A \in M_{\mathcal{I}}$ or there is an \mathcal{I} -Miller tree $T \subseteq X^{<\omega}$ such that all the infinite branches through T are in A .

The systematic study of $M_{\mathcal{I}}$ was initiated by Cieślak and Martínez-Celis. However, Brendle and Shelah did a similar study for Laver and Mathias type forcings associated with ultrafilters. Moreover, the cardinal invariants of $M_{\mathcal{I}}$ and $K_{\mathcal{I}}$ were (implicitly) studied from different perspectives.

1. Forcing perspective

- (Sabok–Zapletal) The \mathcal{I} -Miller forcing $\mathbb{M}_{\mathcal{I}}$ was studied.
- (Pawlikowski) A connection between perfect sets of random reals and $K_{\mathcal{Z}}$ was shown: If there is a perfect set of random reals, $\omega^\omega \cap V \in K_{\mathcal{Z}}$.

2. Topological perspective

- (Šupina) $\text{cov}(K_{\mathcal{I}})$ is the least size of non- $S_1(\mathcal{I}\text{-}\Gamma, \mathcal{O})$ Hausdorff spaces.
- (Cardona–Gavaloá–Mejía–Repický–Šupina) $\text{non}(K_{\mathcal{I}})$ and $\text{cov}(K_{\mathcal{I}})$ appear as slalom numbers.

3. Combinatorial perspective

- (Blass) Uniformity/covering numbers of $M_{\mathcal{I}}/K_{\mathcal{I}}$ can be seen as evasion/prediction numbers (e.g. $\text{non}(M_{\mathcal{I}})$ is the evasion number for global adaptive predictors with values in \mathcal{I}).

The systematic study of $M_{\mathcal{I}}$ was initiated by Cieślak and Martínez-Celis. However, Brendle and Shelah did a similar study for Laver and Mathias type forcings associated with ultrafilters. Moreover, the cardinal invariants of $M_{\mathcal{I}}$ and $K_{\mathcal{I}}$ were (implicitly) studied from different perspectives.

1. Forcing perspective

- (Sabok–Zapletal) The \mathcal{I} -Miller forcing $\mathbb{M}_{\mathcal{I}}$ was studied.
- (Pawlikowski) A connection between perfect sets of random reals and $K_{\mathcal{Z}}$ was shown: If there is a perfect set of random reals, $\omega^\omega \cap V \in K_{\mathcal{Z}}$.

2. Topological perspective

- (Šupina) $\text{cov}(K_{\mathcal{I}})$ is the least size of non- $S_1(\mathcal{I}\text{-}\Gamma, \mathcal{O})$ Hausdorff spaces.
- (Cardona–Gavaloá–Mejía–Repický–Šupina) $\text{non}(K_{\mathcal{I}})$ and $\text{cov}(K_{\mathcal{I}})$ appear as slalom numbers.

3. Combinatorial perspective

- (Blass) Uniformity/covering numbers of $M_{\mathcal{I}}/K_{\mathcal{I}}$ can be seen as evasion/prediction numbers (e.g. $\text{non}(M_{\mathcal{I}})$ is the evasion number for global adaptive predictors with values in \mathcal{I}).

$M_{\mathcal{I}}$ and $K_{\mathcal{I}}$ in previous literature

The systematic study of $M_{\mathcal{I}}$ was initiated by Cieślak and Martínez-Celis. However, Brendle and Shelah did a similar study for Laver and Mathias type forcings associated with ultrafilters. Moreover, the cardinal invariants of $M_{\mathcal{I}}$ and $K_{\mathcal{I}}$ were (implicitly) studied from different perspectives.

1. Forcing perspective

- (Sabok–Zapletal) The \mathcal{I} -Miller forcing $\mathbb{M}_{\mathcal{I}}$ was studied.
- (Pawlikowski) A connection between perfect sets of random reals and $K_{\mathcal{Z}}$ was shown: If there is a perfect set of random reals, $\omega^\omega \cap V \in K_{\mathcal{Z}}$.

2. Topological perspective

- (Šupina) $\text{cov}(K_{\mathcal{I}})$ is the least size of non- $S_1(\mathcal{I}\text{-}\Gamma, \mathcal{O})$ Hausdorff spaces.
- (Cardona–Gavaloá–Mejía–Repický–Šupina) $\text{non}(K_{\mathcal{I}})$ and $\text{cov}(K_{\mathcal{I}})$ appear as slalom numbers.

3. Combinatorial perspective

- (Blass) Uniformity/covering numbers of $M_{\mathcal{I}}/K_{\mathcal{I}}$ can be seen as evasion/prediction numbers (e.g. $\text{non}(M_{\mathcal{I}})$ is the evasion number for global adaptive predictors with values in \mathcal{I}).

The systematic study of $M_{\mathcal{I}}$ was initiated by Cieślak and Martínez-Celis. However, Brendle and Shelah did a similar study for Laver and Mathias type forcings associated with ultrafilters. Moreover, the cardinal invariants of $M_{\mathcal{I}}$ and $K_{\mathcal{I}}$ were (implicitly) studied from different perspectives.

1. Forcing perspective

- (Sabok–Zapletal) The \mathcal{I} -Miller forcing $\mathbb{M}_{\mathcal{I}}$ was studied.
- (Pawlikowski) A connection between perfect sets of random reals and $K_{\mathcal{Z}}$ was shown: If there is a perfect set of random reals, $\omega^\omega \cap V \in K_{\mathcal{Z}}$.

2. Topological perspective

- (Šupina) $\text{cov}(K_{\mathcal{I}})$ is the least size of non- $S_1(\mathcal{I}\text{-}\Gamma, \mathcal{O})$ Hausdorff spaces.
- (Cardona–Gavaloá–Mejía–Repický–Šupina) $\text{non}(K_{\mathcal{I}})$ and $\text{cov}(K_{\mathcal{I}})$ appear as slalom numbers.

3. Combinatorial perspective

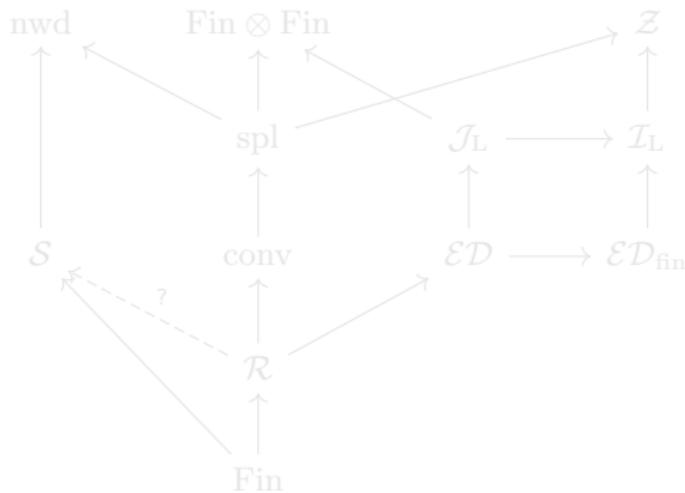
- (Blass) Uniformity/covering numbers of $M_{\mathcal{I}}/K_{\mathcal{I}}$ can be seen as evasion/prediction numbers (e.g. $\text{non}(M_{\mathcal{I}})$ is the evasion number for global adaptive predictors with values in \mathcal{I}).

Katětov order on ideals on a countable set

Katětov order \leqslant_K is one of the main tools for classification of ideals. For given ideals \mathcal{I}, \mathcal{J} on X, Y respectively, define

$$\mathcal{I} \leqslant_K \mathcal{J} \iff \exists f: Y \rightarrow X \forall A \in \mathcal{I} (f^{-1}[A] \in \mathcal{J}).$$

The below diagram shows Katětov order on various ideals on countable sets.

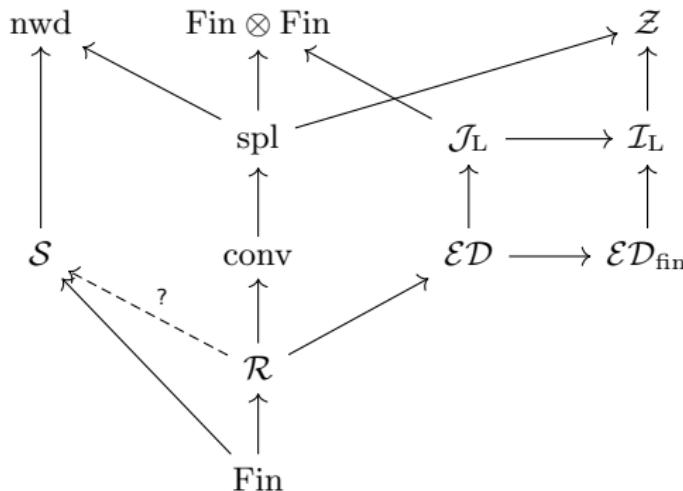


Katětov order on ideals on a countable set

Katětov order \leqslant_K is one of the main tools for classification of ideals. For given ideals \mathcal{I}, \mathcal{J} on X, Y respectively, define

$$\mathcal{I} \leqslant_K \mathcal{J} \iff \exists f: Y \rightarrow X \forall A \in \mathcal{I} (f^{-1}[A] \in \mathcal{J}).$$

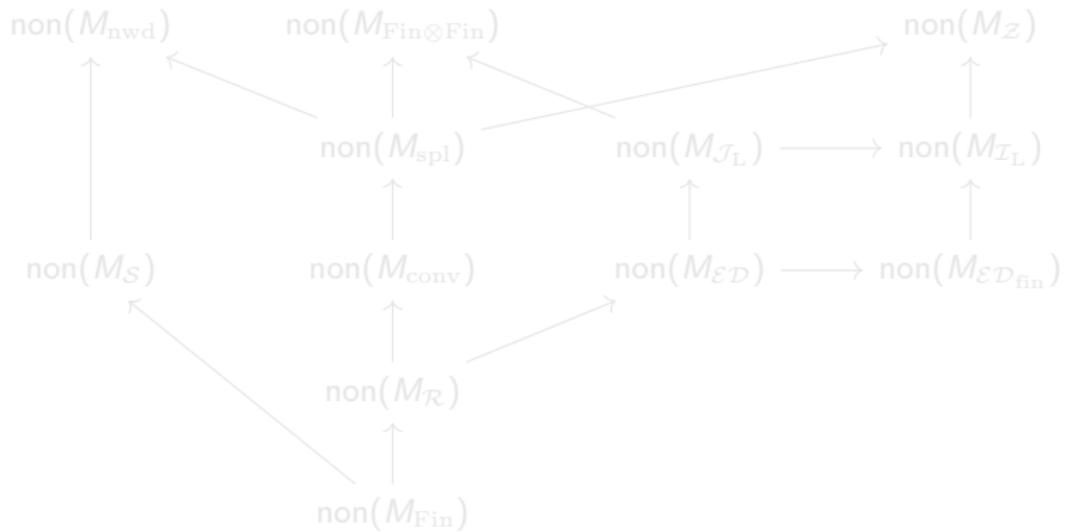
The below diagram shows Katětov order on various ideals on countable sets.



Lemma

For ideals \mathcal{I}, \mathcal{J} on countable sets with $\mathcal{I} \leqslant_{\kappa} \mathcal{J}$,

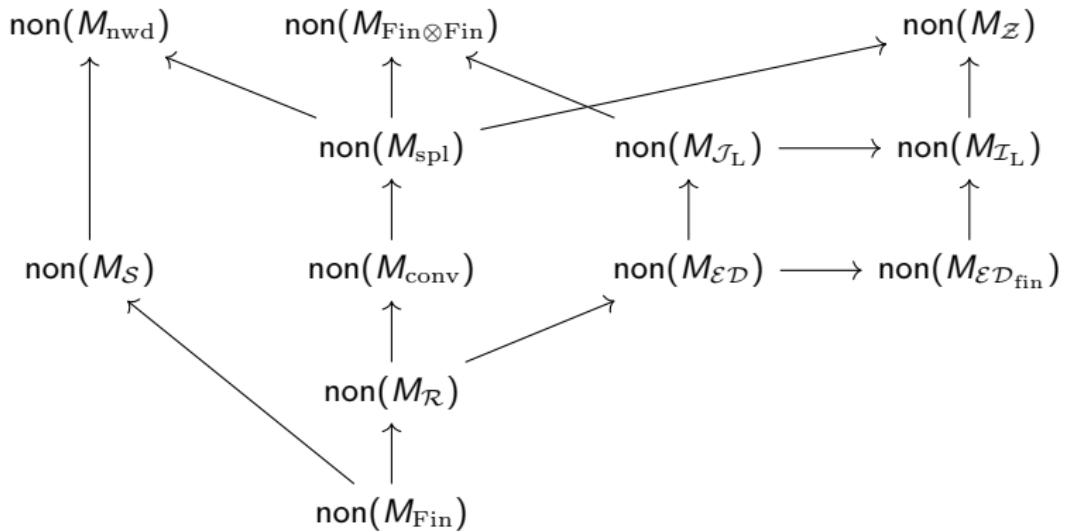
$$\text{non}(M_{\mathcal{I}}) \leqslant \text{non}(M_{\mathcal{J}}) \text{ and } \text{non}(K_{\mathcal{I}}) \leqslant \text{non}(K_{\mathcal{J}}).$$



Lemma

For ideals \mathcal{I}, \mathcal{J} on countable sets with $\mathcal{I} \leqslant_{\kappa} \mathcal{J}$,

$$\text{non}(M_{\mathcal{I}}) \leqslant \text{non}(M_{\mathcal{J}}) \text{ and } \text{non}(K_{\mathcal{I}}) \leqslant \text{non}(K_{\mathcal{J}}).$$



Let \mathcal{I} be an ideal on a countable set X .

Definition

$$\text{add}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall B \in \mathcal{I} \exists A \in \mathcal{A} (A \not\subseteq^* B)\}$$

$$\text{non}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [X]^\omega \wedge \forall B \in \mathcal{I} \exists A \in \mathcal{A} (|A \cap B| < \omega)\}$$

$$\text{cov}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall B \in [X]^\omega \exists A \in \mathcal{A} (|A \cap B| = \omega)\}$$

$$\text{cof}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall B \in \mathcal{I} \exists A \in \mathcal{A} (B \subseteq^* A)\}$$

$\text{add}^*(\mathcal{I})$ and $\text{non}^*(\mathcal{I})$ badly behave for non-P-ideals \mathcal{I} . $\text{add}^*(\mathcal{I}) = \omega$ for non-P-ideals \mathcal{I} and $\text{non}^*(\mathcal{I}) = \omega$ for any Borel ideal $\mathcal{I} \not\geq_{KB} \mathcal{ED}_{\text{fin}}$.

Definition

$$\text{add}_\omega^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall \bar{B} \in [\mathcal{I}]^\omega \exists A \in \mathcal{A} \forall B \in \bar{B} (A \not\subseteq^* B)\}$$

$$\text{non}_\omega^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [X]^\omega \wedge \forall \bar{B} \in [\mathcal{I}]^\omega \exists A \in \mathcal{A} \forall B \in \bar{B} (|A \cap B| < \omega)\}$$

$$\text{cof}_\omega^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\mathcal{I}]^\omega \wedge \forall \bar{B} \in [\mathcal{I}]^\omega \exists \bar{A} \in \mathcal{A} \forall B \in \bar{B} \exists A \in \bar{A} (B \subseteq^* A)\}$$

For P-ideals \mathcal{I} , $\text{inv}_\omega^*(\mathcal{I}) = \text{inv}^*(\mathcal{I})$ for $\text{inv} \in \{\text{add}, \text{non}, \text{cof}\}$. These ω -versions of $*$ -numbers were introduced by Brendle–Shelah.

Let \mathcal{I} be an ideal on a countable set X .

Definition

$$\text{add}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall B \in \mathcal{I} \exists A \in \mathcal{A} (A \not\subseteq^* B)\}$$

$$\text{non}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [X]^\omega \wedge \forall B \in \mathcal{I} \exists A \in \mathcal{A} (|A \cap B| < \omega)\}$$

$$\text{cov}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall B \in [X]^\omega \exists A \in \mathcal{A} (|A \cap B| = \omega)\}$$

$$\text{cof}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall B \in \mathcal{I} \exists A \in \mathcal{A} (B \subseteq^* A)\}$$

$\text{add}^*(\mathcal{I})$ and $\text{non}^*(\mathcal{I})$ badly behave for non-P-ideals \mathcal{I} . $\text{add}^*(\mathcal{I}) = \omega$ for non-P-ideals \mathcal{I} and $\text{non}^*(\mathcal{I}) = \omega$ for any Borel ideal $\mathcal{I} \not\geq_{KB} \mathcal{ED}_{\text{fin}}$.

Definition

$$\text{add}_\omega^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \forall \bar{B} \in [\mathcal{I}]^\omega \exists A \in \mathcal{A} \forall B \in \bar{B} (A \not\subseteq^* B)\}$$

$$\text{non}_\omega^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [X]^\omega \wedge \forall \bar{B} \in [\mathcal{I}]^\omega \exists A \in \mathcal{A} \forall B \in \bar{B} (|A \cap B| < \omega)\}$$

$$\text{cof}_\omega^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\mathcal{I}]^\omega \wedge \forall \bar{B} \in [\mathcal{I}]^\omega \exists \bar{A} \in \mathcal{A} \forall B \in \bar{B} \exists A \in \bar{A} (B \subseteq^* A)\}$$

For P-ideals \mathcal{I} , $\text{inv}_\omega^*(\mathcal{I}) = \text{inv}^*(\mathcal{I})$ for $\text{inv} \in \{\text{add}, \text{non}, \text{cof}\}$. These ω -versions of $*$ -numbers were introduced by Brendle–Shelah.

Theorem

Let \mathcal{I} be an ideal on a countable set. Then the following hold:

- ① $\text{add}(M_{\mathcal{I}}) = \text{add}(K_{\mathcal{I}}) = \min\{\mathfrak{b}, \text{add}_{\omega}^*(\mathcal{I})\}$.
- ② $\mathfrak{b} \leq \text{non}(K_{\mathcal{I}}) \leq \text{non}(M_{\mathcal{I}}) \leq \max\{\mathfrak{b}, \text{non}_{\omega}^*(\mathcal{I})\}$.
- ③ $\min\{\mathfrak{d}, \text{cov}^*(\mathcal{I})\} \leq \text{cov}(M_{\mathcal{I}}) \leq \text{cov}(K_{\mathcal{I}}) \leq \mathfrak{d}$.
- ④ $\text{cof}(M_{\mathcal{I}}) = \text{cof}(K_{\mathcal{I}}) = \max\{\mathfrak{d}, \text{cof}_{\omega}^*(\mathcal{I})\}$.

ideal	$\text{add}_{\omega}^*(\mathcal{I})$	$\text{non}_{\omega}^*(\mathcal{I})$	$\text{cov}^*(\mathcal{I})$	$\text{cof}_{\omega}^*(\mathcal{I})$
\mathcal{R}	ω_1	ω_1	\mathfrak{c}	\mathfrak{c}
\mathcal{S}	ω_1	$\text{cov}_{\omega}(\mathcal{N})$	$\text{non}(\mathcal{N})$	\mathfrak{c}
nwd	$\text{add}(\mathcal{M})$	$\text{non}(\mathcal{M})$	$\text{cov}(\mathcal{M})$	$\text{cof}(\mathcal{M})$
conv	ω_1	ω_1	\mathfrak{c}	\mathfrak{c}
spl	ω_1	\mathfrak{s}	\mathfrak{r}	\mathfrak{c}
$\text{Fin} \otimes \text{Fin}$	\mathfrak{b}	\mathfrak{d}	\mathfrak{b}	\mathfrak{d}
\mathcal{ED}	ω_1	$\text{cov}(\mathcal{M})$	$\text{non}(\mathcal{M})$	\mathfrak{c}
$\mathcal{ED}_{\text{fin}}$	ω_1	?	?	\mathfrak{c}
\mathcal{I}_L	ω_1	?	?	\mathfrak{c}
\mathcal{I}_L	ω_1	?	?	\mathfrak{c}
\mathcal{Z}	$\text{add}(\mathcal{N})$	$\text{non}^*(\mathcal{Z})$	$\text{cov}^*(\mathcal{Z})$	$\text{cof}(\mathcal{N})$

Theorem

Let \mathcal{I} be an ideal on a countable set. Then the following hold:

- ① $\text{add}(M_{\mathcal{I}}) = \text{add}(K_{\mathcal{I}}) = \min\{\mathfrak{b}, \text{add}_{\omega}^*(\mathcal{I})\}$.
- ② $\mathfrak{b} \leq \text{non}(K_{\mathcal{I}}) \leq \text{non}(M_{\mathcal{I}}) \leq \max\{\mathfrak{b}, \text{non}_{\omega}^*(\mathcal{I})\}$.
- ③ $\min\{\mathfrak{d}, \text{cov}^*(\mathcal{I})\} \leq \text{cov}(M_{\mathcal{I}}) \leq \text{cov}(K_{\mathcal{I}}) \leq \mathfrak{d}$.
- ④ $\text{cof}(M_{\mathcal{I}}) = \text{cof}(K_{\mathcal{I}}) = \max\{\mathfrak{d}, \text{cof}_{\omega}^*(\mathcal{I})\}$.

ideal	$\text{add}_{\omega}^*(\mathcal{I})$	$\text{non}_{\omega}^*(\mathcal{I})$	$\text{cov}^*(\mathcal{I})$	$\text{cof}_{\omega}^*(\mathcal{I})$
\mathcal{R}	ω_1	ω_1	\mathfrak{c}	\mathfrak{c}
\mathcal{S}	ω_1	$\text{cov}_{\omega}(\mathcal{N})$	$\text{non}(\mathcal{N})$	\mathfrak{c}
nwd	$\text{add}(\mathcal{M})$	$\text{non}(\mathcal{M})$	$\text{cov}(\mathcal{M})$	$\text{cof}(\mathcal{M})$
conv	ω_1	ω_1	\mathfrak{c}	\mathfrak{c}
spl	ω_1	\mathfrak{s}	\mathfrak{r}	\mathfrak{c}
$\text{Fin} \otimes \text{Fin}$	\mathfrak{b}	\mathfrak{d}	\mathfrak{b}	\mathfrak{d}
\mathcal{ED}	ω_1	$\text{cov}(\mathcal{M})$	$\text{non}(\mathcal{M})$	\mathfrak{c}
$\mathcal{ED}_{\text{fin}}$	ω_1	?	?	\mathfrak{c}
\mathcal{J}_L	ω_1	?	?	\mathfrak{c}
\mathcal{I}_L	ω_1	?	?	\mathfrak{c}
\mathcal{Z}	$\text{add}(\mathcal{N})$	$\text{non}^*(\mathcal{Z})$	$\text{cov}^*(\mathcal{Z})$	$\text{cof}(\mathcal{N})$

Some consequences of Sabok–Zapletal's work

(Sabok–Zapletal) The splitting ideal spl is the ideal on $2^{<\omega}$ generated by sets $A \subseteq 2^{<\omega}$ such that there is $c \in [\omega]^\omega$ such that $t \upharpoonright c$ is constant for every $t \in A$.

Theorem (Sabok–Zapletal)

Let \mathcal{I} be a Borel ideal on a countable set.

- ① $\mathbb{M}_{\mathcal{I}}$ adds Cohen reals iff $\text{nwd} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.
- ② $\mathbb{M}_{\mathcal{I}}$ adds splitting reals iff $\text{spl} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.
- ③ $\mathbb{M}_{\mathcal{I}}$ preserves outer Lebesgue measure iff $\mathcal{S} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.

Corresponding to Sabok–Zapletal's results, we have:

Theorem

- ① $\text{non}(M_{\text{nwd}}) = \text{non}(\mathcal{M})$, $\text{cov}(M_{\text{nwd}}) = \text{cov}(\mathcal{M})$.
- ② $\text{non}(M_{\text{spl}}) = \max\{\mathfrak{b}, \mathfrak{s}\}$, $\text{cov}(M_{\text{spl}}) = \min\{\mathfrak{d}, \mathfrak{r}\}$, $\text{non}(K_{\text{spl}}) = \mathfrak{b}$, $\text{cov}(K_{\text{spl}}) = \mathfrak{d}$.
- ③ $\text{non}(M_{\mathcal{S}}) = \text{non}(K_{\mathcal{S}}) = \max\{\mathfrak{b}, \text{cov}_{\omega}(\mathcal{N})\}$, $\text{cov}(M_{\mathcal{S}}) = \text{cov}(K_{\mathcal{S}}) = \min\{\mathfrak{d}, \text{non}(\mathcal{N})\}$.

Here, $\text{cov}_{\omega}(\mathcal{N}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N} \wedge \forall A \in [\mathbb{R}]^\omega \exists N \in \mathcal{F} (A \subseteq N)\}$. This is consistently different from $\text{cov}(\mathcal{N})$.

Some consequences of Sabok–Zapletal's work

(Sabok–Zapletal) The splitting ideal spl is the ideal on $2^{<\omega}$ generated by sets $A \subseteq 2^{<\omega}$ such that there is $c \in [\omega]^\omega$ such that $t \upharpoonright c$ is constant for every $t \in A$.

Theorem (Sabok–Zapletal)

Let \mathcal{I} be a Borel ideal on a countable set.

- ① $\mathbb{M}_{\mathcal{I}}$ adds Cohen reals iff $\text{nwd} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.
- ② $\mathbb{M}_{\mathcal{I}}$ adds splitting reals iff $\text{spl} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.
- ③ $\mathbb{M}_{\mathcal{I}}$ preserves outer Lebesgue measure iff $\mathcal{S} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.

Corresponding to Sabok–Zapletal's results, we have:

Theorem

- ① $\text{non}(M_{\text{nwd}}) = \text{non}(\mathcal{M})$, $\text{cov}(M_{\text{nwd}}) = \text{cov}(\mathcal{M})$.
- ② $\text{non}(M_{\text{spl}}) = \max\{\mathfrak{b}, \mathfrak{s}\}$, $\text{cov}(M_{\text{spl}}) = \min\{\mathfrak{d}, \mathfrak{r}\}$, $\text{non}(K_{\text{spl}}) = \mathfrak{b}$, $\text{cov}(K_{\text{spl}}) = \mathfrak{d}$.
- ③ $\text{non}(M_{\mathcal{S}}) = \text{non}(K_{\mathcal{S}}) = \max\{\mathfrak{b}, \text{cov}_{\omega}(\mathcal{N})\}$, $\text{cov}(M_{\mathcal{S}}) = \text{cov}(K_{\mathcal{S}}) = \min\{\mathfrak{d}, \text{non}(\mathcal{N})\}$.

Here, $\text{cov}_{\omega}(\mathcal{N}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N} \wedge \forall A \in [\mathbb{R}]^\omega \exists N \in \mathcal{F} (A \subseteq N)\}$. This is consistently different from $\text{cov}(\mathcal{N})$.

Some consequences of Sabok–Zapletal's work

(Sabok–Zapletal) The splitting ideal spl is the ideal on $2^{<\omega}$ generated by sets $A \subseteq 2^{<\omega}$ such that there is $c \in [\omega]^\omega$ such that $t \upharpoonright c$ is constant for every $t \in A$.

Theorem (Sabok–Zapletal)

Let \mathcal{I} be a Borel ideal on a countable set.

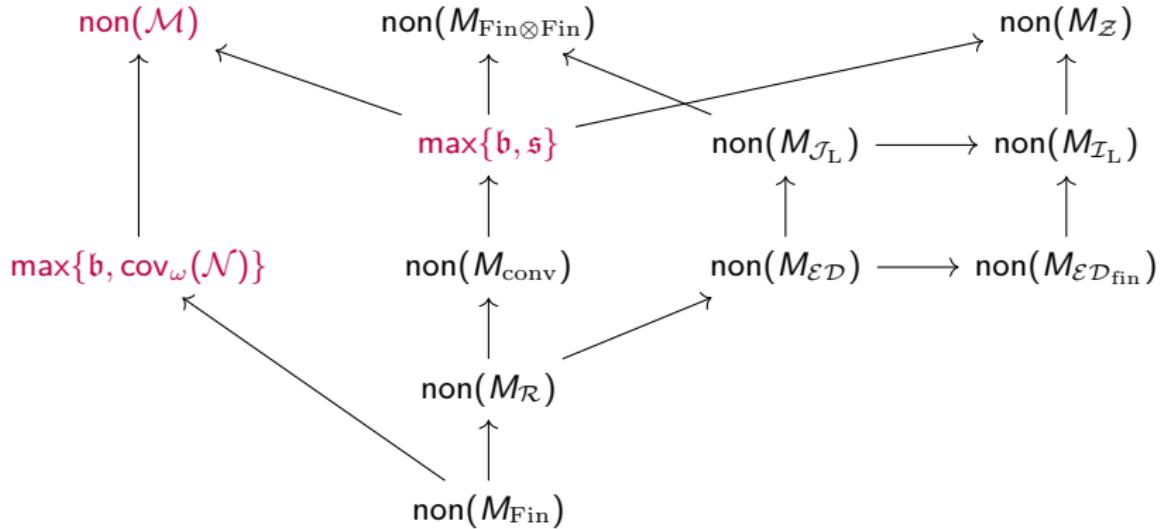
- ① $\mathbb{M}_{\mathcal{I}}$ adds Cohen reals iff $\text{nwd} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.
- ② $\mathbb{M}_{\mathcal{I}}$ adds splitting reals iff $\text{spl} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.
- ③ $\mathbb{M}_{\mathcal{I}}$ preserves outer Lebesgue measure iff $\mathcal{S} \leqslant_{\kappa} \mathcal{I} \upharpoonright A$ for some $A \notin \mathcal{I}$.

Corresponding to Sabok–Zapletal's results, we have:

Theorem

- ① $\text{non}(M_{\text{nwd}}) = \text{non}(\mathcal{M})$, $\text{cov}(M_{\text{nwd}}) = \text{cov}(\mathcal{M})$.
- ② $\text{non}(M_{\text{spl}}) = \max\{\mathfrak{b}, \mathfrak{s}\}$, $\text{cov}(M_{\text{spl}}) = \min\{\mathfrak{d}, \mathfrak{r}\}$, $\text{non}(K_{\text{spl}}) = \mathfrak{b}$, $\text{cov}(K_{\text{spl}}) = \mathfrak{d}$.
- ③ $\text{non}(M_{\mathcal{S}}) = \text{non}(K_{\mathcal{S}}) = \max\{\mathfrak{b}, \text{cov}_{\omega}(\mathcal{N})\}$, $\text{cov}(M_{\mathcal{S}}) = \text{cov}(K_{\mathcal{S}}) = \min\{\mathfrak{d}, \text{non}(\mathcal{N})\}$.

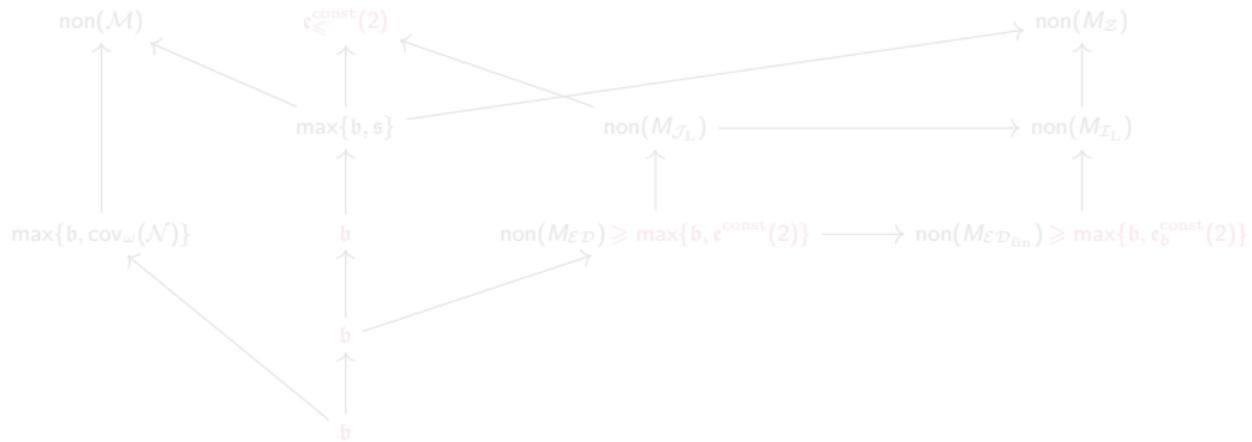
Here, $\text{cov}_{\omega}(\mathcal{N}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N} \wedge \forall A \in [\mathbb{R}]^\omega \exists N \in \mathcal{F} (A \subseteq N)\}$. This is consistently different from $\text{cov}(\mathcal{N})$.



Theorem

- ① $\text{non}(M_{\text{conv}}) = \text{non}(M_{\mathcal{R}}) = \text{non}(K_{\text{conv}}) = \text{non}(K_{\mathcal{R}}) = \mathfrak{b}$.
- ② $\text{non}(M_{\text{Fin} \otimes \text{Fin}}) = \mathfrak{e}_{\leq}^{\text{const}}(2)$, $\text{non}(K_{\text{Fin} \otimes \text{Fin}}) = \mathfrak{b}$.
- ③ $\text{non}(M_{\mathcal{ED}}) \geq \mathfrak{e}^{\text{const}}(2)$, $\text{non}(K_{\mathcal{ED}}) = \mathfrak{b}$.
- ④ $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) \geq \mathfrak{e}_b^{\text{const}}(2)$ for all increasing $b \in \omega^\omega$.

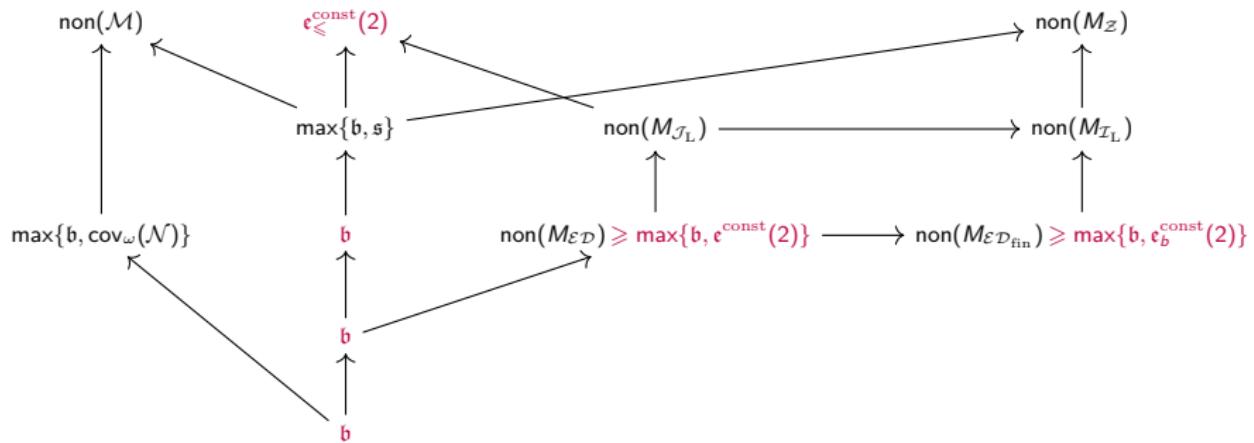
Here, $\mathfrak{e}^{\text{const}}(2)$, $\mathfrak{e}_b^{\text{const}}(2)$, $\mathfrak{e}_{\leq}^{\text{const}}(2)$ are (variants of) constant evasion numbers, which are defined on the next page.



Theorem

- ① $\text{non}(M_{\text{conv}}) = \text{non}(M_{\mathcal{R}}) = \text{non}(K_{\text{conv}}) = \text{non}(K_{\mathcal{R}}) = \mathfrak{b}$.
- ② $\text{non}(M_{\text{Fin} \otimes \text{Fin}}) = \mathfrak{e}_{\leq}^{\text{const}}(2)$, $\text{non}(K_{\text{Fin} \otimes \text{Fin}}) = \mathfrak{b}$.
- ③ $\text{non}(M_{\mathcal{ED}}) \geq \mathfrak{e}^{\text{const}}(2)$, $\text{non}(K_{\mathcal{ED}}) = \mathfrak{b}$.
- ④ $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) \geq \mathfrak{e}_b^{\text{const}}(2)$ for all increasing $b \in \omega^\omega$.

Here, $\mathfrak{e}^{\text{const}}(2)$, $\mathfrak{e}_b^{\text{const}}(2)$, $\mathfrak{e}_{\leq}^{\text{const}}(2)$ are (variants of) constant evasion numbers, which are defined on the next page.



Definition

- Let Pred be the set of all $\pi: \omega^{<\omega} \rightarrow \omega$. For $b \in (\omega \setminus 2)^\omega$, $\prod b := \prod_{n < \omega} b(n)$ and

$$\text{Pred}_b := \left\{ \pi \in \text{Pred} : \forall \sigma \in \text{dom}(\pi) \left(\sigma \in \prod_{n < |\sigma|} b(n) \wedge \pi(\sigma) \in b(|\sigma|) \right) \right\}.$$

- Let $f \in \omega^\omega$ and $\pi \in \text{Pred}$. For $k \geq 2$, define

$$f \sqsubset^k \pi \iff \forall^\infty i < \omega \exists j \in [i, i+k) f(j) = \pi(f \upharpoonright j)$$

$$f \sqsubset^k_\leqslant \pi \iff \forall^\infty i < \omega \exists j \in [i, i+k) f(j) \leqslant \pi(f \upharpoonright j)$$

- Define the following cardinal invariants:

$$\mathfrak{e}^{\text{const}}(k) := \min\{|F| : F \subseteq \omega^\omega \wedge \forall \pi \in \text{Pred} \exists f \in F \neg(f \sqsubset^k \pi)\},$$

$$\mathfrak{e}_b^{\text{const}}(k) := \min\{|F| : F \subseteq \prod b \wedge \forall \pi \in \text{Pred}_b \exists f \in F \neg(f \sqsubset^k \pi)\},$$

$$\mathfrak{e}_\leqslant^{\text{const}}(k) := \min\{|F| : F \subseteq \omega^\omega \wedge \forall \pi: \omega^{<\omega} \rightarrow \omega \exists f \in F \neg(f \sqsubset^k_\leqslant \pi)\},$$

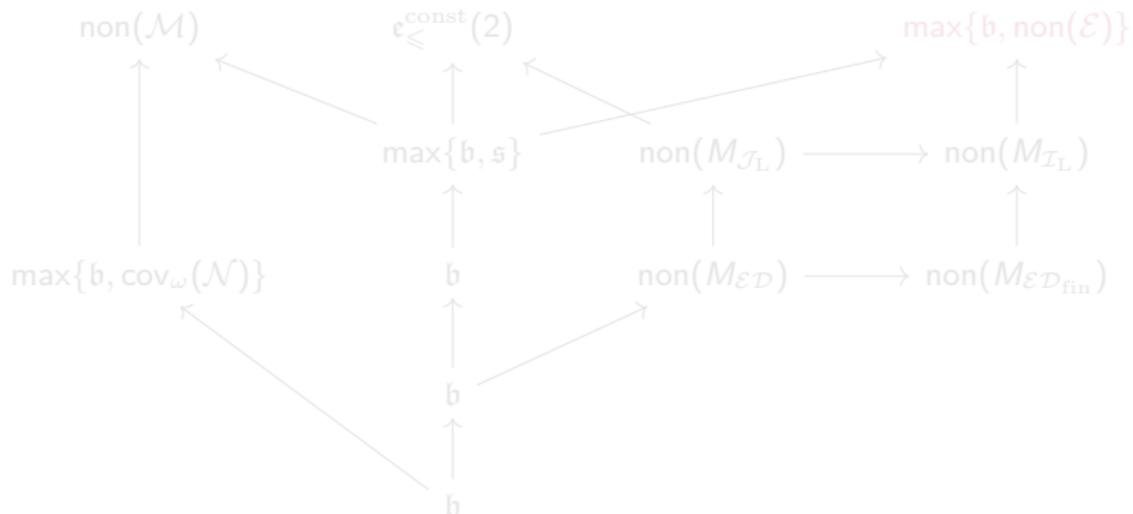
Asymptotic density zero ideal

Recall that

$$\mathcal{Z} = \left\{ A \subseteq \omega : \lim_{n \rightarrow \infty} \frac{|A \cap n|}{n} = 0 \right\}.$$

Theorem

$$\text{non}(M_{\mathcal{Z}}) = \max\{\mathfrak{b}, \text{non}(\mathcal{E})\}, \text{cov}(M_{\mathcal{Z}}) = \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\}.$$



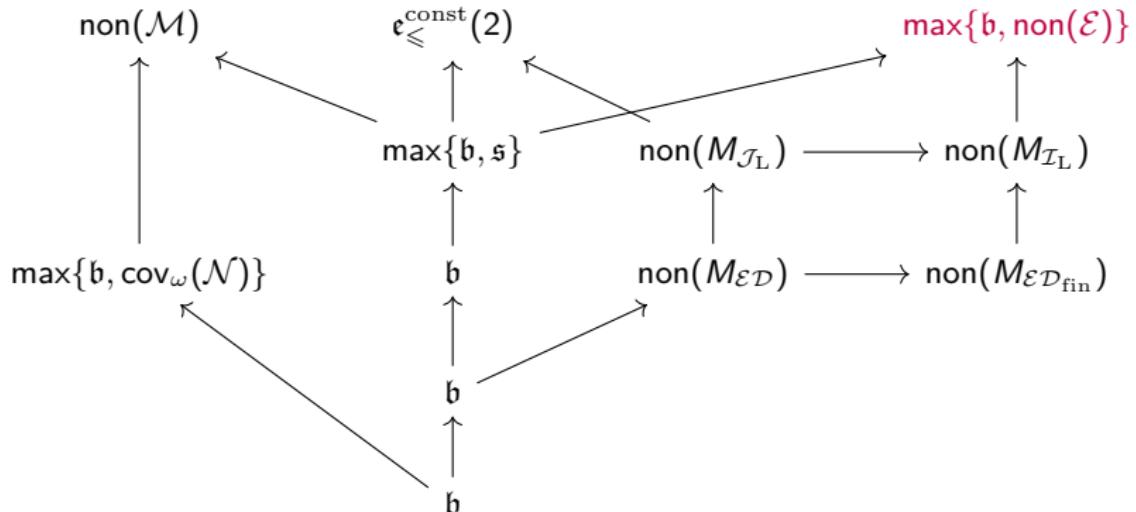
Asymptotic density zero ideal

Recall that

$$\mathcal{Z} = \left\{ A \subseteq \omega : \lim_{n \rightarrow \infty} \frac{|A \cap n|}{n} = 0 \right\}.$$

Theorem

$$\text{non}(M_{\mathcal{Z}}) = \max\{\mathfrak{b}, \text{non}(\mathcal{E})\}, \text{cov}(M_{\mathcal{Z}}) = \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\}.$$



New bounds for $\text{non}^*(\mathcal{Z})$ and $\text{cov}^*(\mathcal{Z})$

Recall that for an ideal \mathcal{I} on a countable set X ,

$$\begin{aligned}\text{non}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq [X]^\omega \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} |A \cap B| < \omega\}, \\ \text{cov}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in [X]^\omega, \exists B \in \mathcal{F} |A \cap B| = \omega\}.\end{aligned}$$

Corollary

$$\max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \text{non}^*(\mathcal{Z}) \text{ and } \text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\}.$$

Proof. For any P-ideal \mathcal{I} on ω , $\text{non}(M_{\mathcal{I}}) \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{I})\}$. Also, $\mathfrak{b} \leq \text{non}^*(\mathcal{Z})$ (Raghavan–Shelah). Thus,

$$\text{non}(M_{\mathcal{Z}}) = \max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{Z})\} = \text{non}^*(\mathcal{Z}).$$

Corollary

$$\text{cov}^*(\mathcal{Z}) \leq \text{non}^*(\mathcal{Z}).$$

Proof. Raghavan showed $\min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z})$ (and $\text{cov}^*(\mathcal{Z}) \leq \max\{\mathfrak{b}, \mathfrak{s}(\text{pr})\}$). Also, it is known that $\text{cov}(\mathcal{E}) \leq \mathfrak{r}$. Thus,

$$\text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\} \leq \min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z}).$$

New bounds for $\text{non}^*(\mathcal{Z})$ and $\text{cov}^*(\mathcal{Z})$

Recall that for an ideal \mathcal{I} on a countable set X ,

$$\begin{aligned}\text{non}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq [X]^\omega \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} |A \cap B| < \omega\}, \\ \text{cov}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in [X]^\omega, \exists B \in \mathcal{F} |A \cap B| = \omega\}.\end{aligned}$$

Corollary

$$\max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \text{non}^*(\mathcal{Z}) \text{ and } \text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\}.$$

Proof. For any P-ideal \mathcal{I} on ω , $\text{non}(M_{\mathcal{I}}) \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{I})\}$. Also, $\mathfrak{b} \leq \text{non}^*(\mathcal{Z})$ (Raghavan–Shelah). Thus,

$$\text{non}(M_{\mathcal{Z}}) = \max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{Z})\} = \text{non}^*(\mathcal{Z}).$$

Corollary

$$\text{cov}^*(\mathcal{Z}) \leq \text{non}^*(\mathcal{Z}).$$

Proof. Raghavan showed $\min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z})$ (and $\text{cov}^*(\mathcal{Z}) \leq \max\{\mathfrak{b}, \mathfrak{s}(\text{pt})\}$). Also, it is known that $\text{cov}(\mathcal{E}) \leq \mathfrak{r}$. Thus,

$$\text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\} \leq \min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z}).$$

New bounds for $\text{non}^*(\mathcal{Z})$ and $\text{cov}^*(\mathcal{Z})$

Recall that for an ideal \mathcal{I} on a countable set X ,

$$\begin{aligned}\text{non}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq [X]^\omega \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} |A \cap B| < \omega\}, \\ \text{cov}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in [X]^\omega, \exists B \in \mathcal{F} |A \cap B| = \omega\}.\end{aligned}$$

Corollary

$$\max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \text{non}^*(\mathcal{Z}) \text{ and } \text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\}.$$

Proof. For any P-ideal \mathcal{I} on ω , $\text{non}(M_{\mathcal{I}}) \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{I})\}$. Also, $\mathfrak{b} \leq \text{non}^*(\mathcal{Z})$ (Raghavan–Shelah). Thus,

$$\text{non}(M_{\mathcal{Z}}) = \max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{Z})\} = \text{non}^*(\mathcal{Z}).$$

Corollary

$$\text{cov}^*(\mathcal{Z}) \leq \text{non}^*(\mathcal{Z}).$$

Proof. Raghavan showed $\min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z})$ (and $\text{cov}^*(\mathcal{Z}) \leq \max\{\mathfrak{b}, \mathfrak{s}(\text{pt})\}$). Also, it is known that $\text{cov}(\mathcal{E}) \leq \mathfrak{r}$. Thus,

$$\text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\} \leq \min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z}).$$

New bounds for $\text{non}^*(\mathcal{Z})$ and $\text{cov}^*(\mathcal{Z})$

Recall that for an ideal \mathcal{I} on a countable set X ,

$$\begin{aligned}\text{non}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq [X]^\omega \wedge \forall A \in \mathcal{I} \exists B \in \mathcal{F} |A \cap B| < \omega\}, \\ \text{cov}^*(\mathcal{I}) &:= \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \wedge \forall A \in [X]^\omega, \exists B \in \mathcal{F} |A \cap B| = \omega\}.\end{aligned}$$

Corollary

$$\max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \text{non}^*(\mathcal{Z}) \text{ and } \text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\}.$$

Proof. For any P-ideal \mathcal{I} on ω , $\text{non}(M_{\mathcal{I}}) \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{I})\}$. Also, $\mathfrak{b} \leq \text{non}^*(\mathcal{Z})$ (Raghavan–Shelah). Thus,

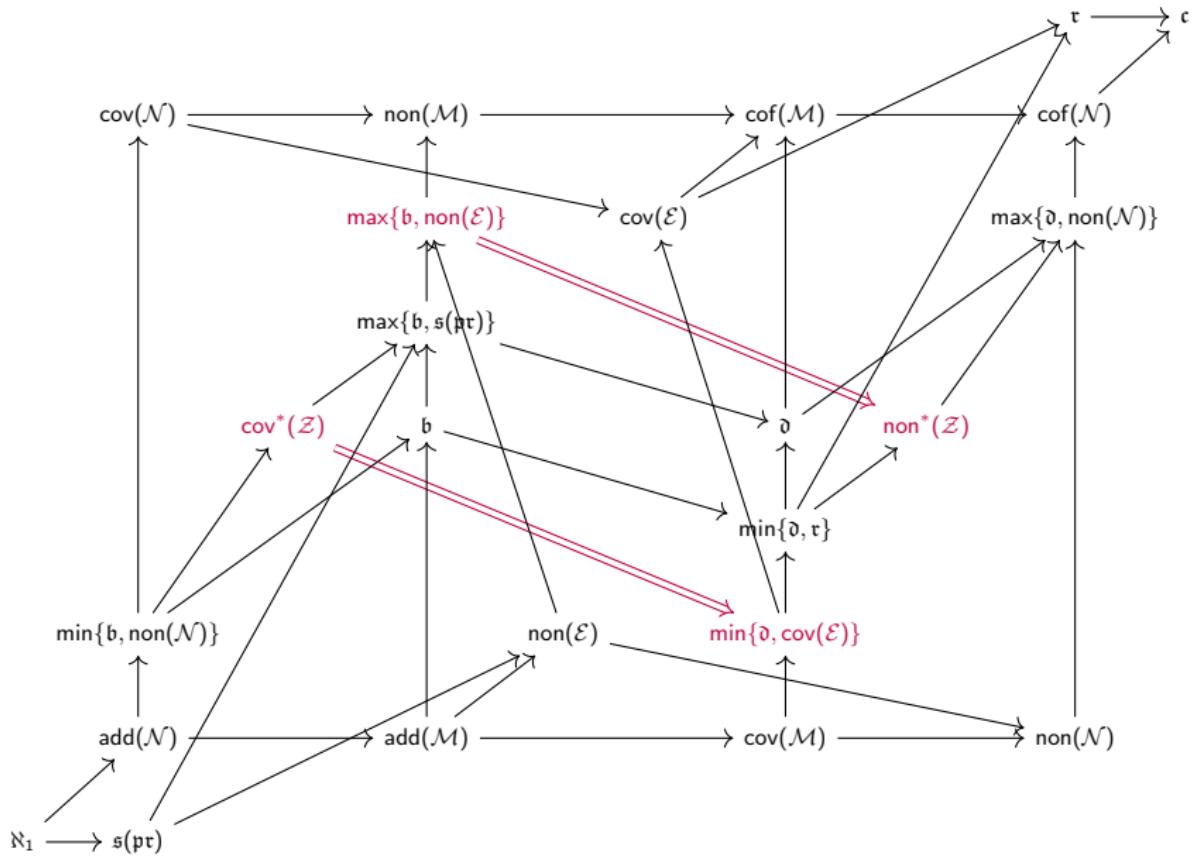
$$\text{non}(M_{\mathcal{Z}}) = \max\{\mathfrak{b}, \text{non}(\mathcal{E})\} \leq \max\{\mathfrak{b}, \text{non}^*(\mathcal{Z})\} = \text{non}^*(\mathcal{Z}).$$

Corollary

$$\text{cov}^*(\mathcal{Z}) \leq \text{non}^*(\mathcal{Z}).$$

Proof. Raghavan showed $\min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z})$ (and $\text{cov}^*(\mathcal{Z}) \leq \max\{\mathfrak{b}, \mathfrak{s}(\mathfrak{pr})\}$). Also, it is known that $\text{cov}(\mathcal{E}) \leq \mathfrak{r}$. Thus,

$$\text{cov}^*(\mathcal{Z}) \leq \min\{\mathfrak{d}, \text{cov}(\mathcal{E})\} \leq \min\{\mathfrak{d}, \mathfrak{r}\} \leq \text{non}^*(\mathcal{Z}).$$

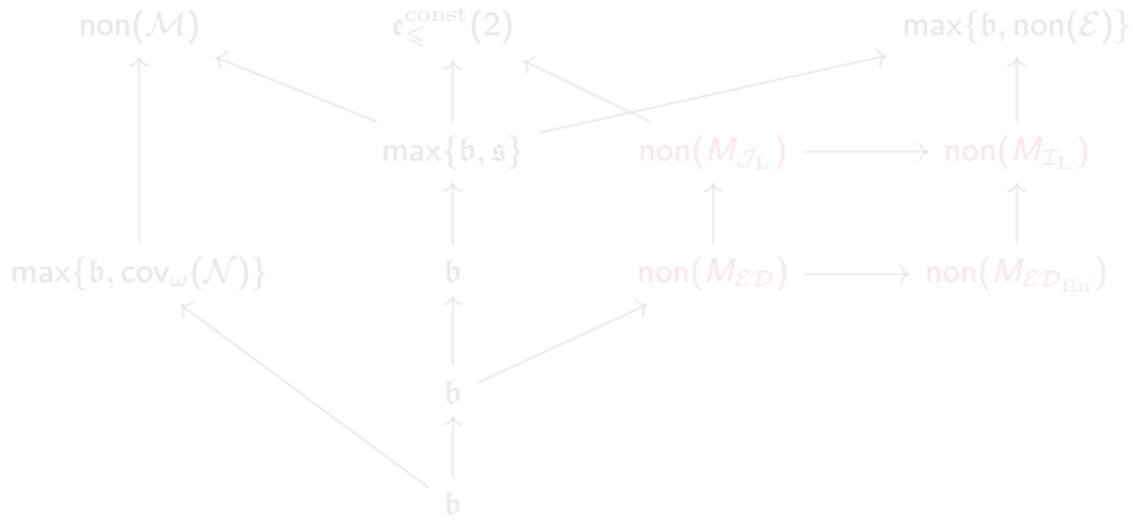


For $A \subseteq \omega \times \omega$ and $n < \omega$, $(A)_n := \{m < \omega : \langle n, m \rangle \in A\}$.

$\mathcal{ED} := \{A \subseteq \omega \times \omega : \exists k < \omega \forall^\infty n < \omega |(A)_n| \leq k\}$ and $\mathcal{ED}_{\text{fin}} := \mathcal{ED} \upharpoonright \Delta$.

$\mathcal{J}_L := \{A \subseteq \omega \times \omega : \exists k < \omega \forall^\infty n < \omega |(A)_n| \leq k \cdot n\}$ and $\mathcal{I}_L := \mathcal{J}_L \upharpoonright \Delta$.

\mathcal{I}_L is the linear polynomial growth ideal. \mathcal{J}_L and its variants appear in the work of Das, Filipów, Głab, and Tryba.

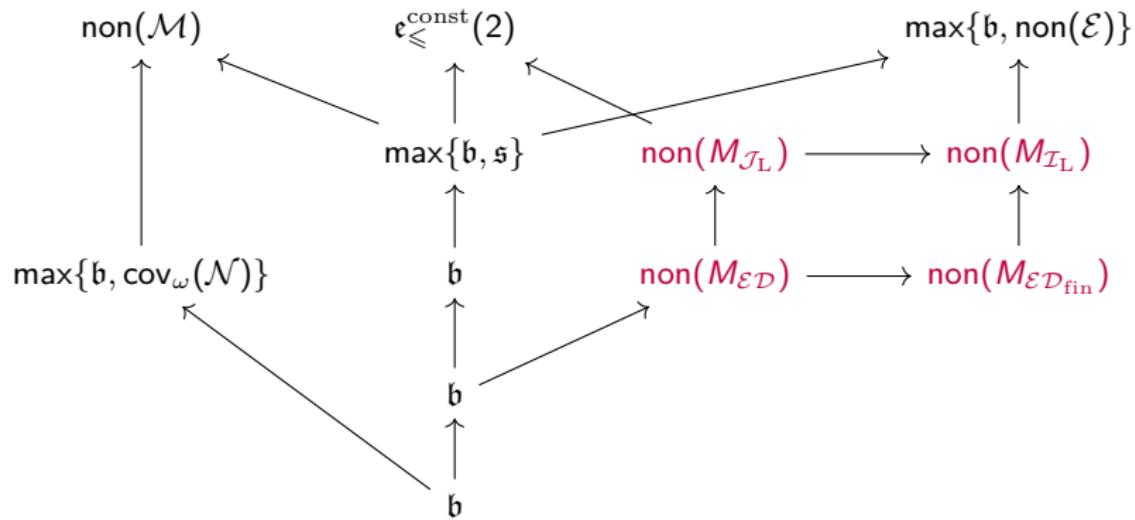


For $A \subseteq \omega \times \omega$ and $n < \omega$, $(A)_n := \{m < \omega : \langle n, m \rangle \in A\}$.

$\mathcal{ED} := \{A \subseteq \omega \times \omega : \exists k < \omega \forall^\infty n < \omega |(A)_n| \leq k\}$ and $\mathcal{ED}_{\text{fin}} := \mathcal{ED} \upharpoonright \Delta$.

$\mathcal{J}_L := \{A \subseteq \omega \times \omega : \exists k < \omega \forall^\infty n < \omega |(A)_n| \leq k \cdot n\}$ and $\mathcal{I}_L := \mathcal{J}_L \upharpoonright \Delta$.

\mathcal{I}_L is the linear polynomial growth ideal. \mathcal{J}_L and its variants appear in the work of Das, Filipów, Głab, and Tryba.



Extended Cichoń's maximum

Recall that $\text{non}(M_{\mathcal{ED}}) \geq \max\{\mathfrak{b}, \mathfrak{e}^{\text{const}}(2)\}$ and $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) \geq \max\{\mathfrak{b}, \mathfrak{e}_b^{\text{const}}(2)\}$ for all increasing $b \in \omega^\omega$. These inequality cannot be reversed in ZFC:

Theorem

The following are consistent relative to ZFC:

- ① $\text{non}(M_{\mathcal{ED}}) > \max\{\mathfrak{b}, \mathfrak{e}^{\text{const}}(2)\}$.
- ② $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) > \max\{\mathfrak{b}, \mathfrak{e}_b^{\text{const}}(2)\}$ for all increasing $b \in \omega^\omega$.

For \mathcal{J}_L and \mathcal{I}_L , we can get even better consistency result:

Theorem

Let $\mathcal{I}_0, \mathcal{I}_1$ be ideals on countable sets such that

$$\mathcal{J}_L \leq_K \mathcal{I}_0 \leq_K \text{Fin} \otimes \text{Fin} \text{ and } \mathcal{I}_L \leq_K \mathcal{I}_1 \leq_K \mathcal{Z}.$$

Then there is a c.c.c. poset forcing Cichoń's maximum with uniformity and covering numbers of $M_{\mathcal{I}_0}$ and $M_{\mathcal{I}_1}$ (or $K_{\mathcal{I}_1}$).

These consistency results are proved by using (closed) Fr-limits and ultrafilter-limits based on Yamazoe's previous works.

Extended Cichoń's maximum

Recall that $\text{non}(M_{\mathcal{ED}}) \geq \max\{\mathfrak{b}, \mathfrak{e}^{\text{const}}(2)\}$ and $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) \geq \max\{\mathfrak{b}, \mathfrak{e}_b^{\text{const}}(2)\}$ for all increasing $b \in \omega^\omega$. These inequality cannot be reversed in ZFC:

Theorem

The following are consistent relative to ZFC:

- ① $\text{non}(M_{\mathcal{ED}}) > \max\{\mathfrak{b}, \mathfrak{e}^{\text{const}}(2)\}$.
- ② $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) > \max\{\mathfrak{b}, \mathfrak{e}_b^{\text{const}}(2)\}$ for all increasing $b \in \omega^\omega$.

For \mathcal{J}_L and \mathcal{I}_L , we can get even better consistency result:

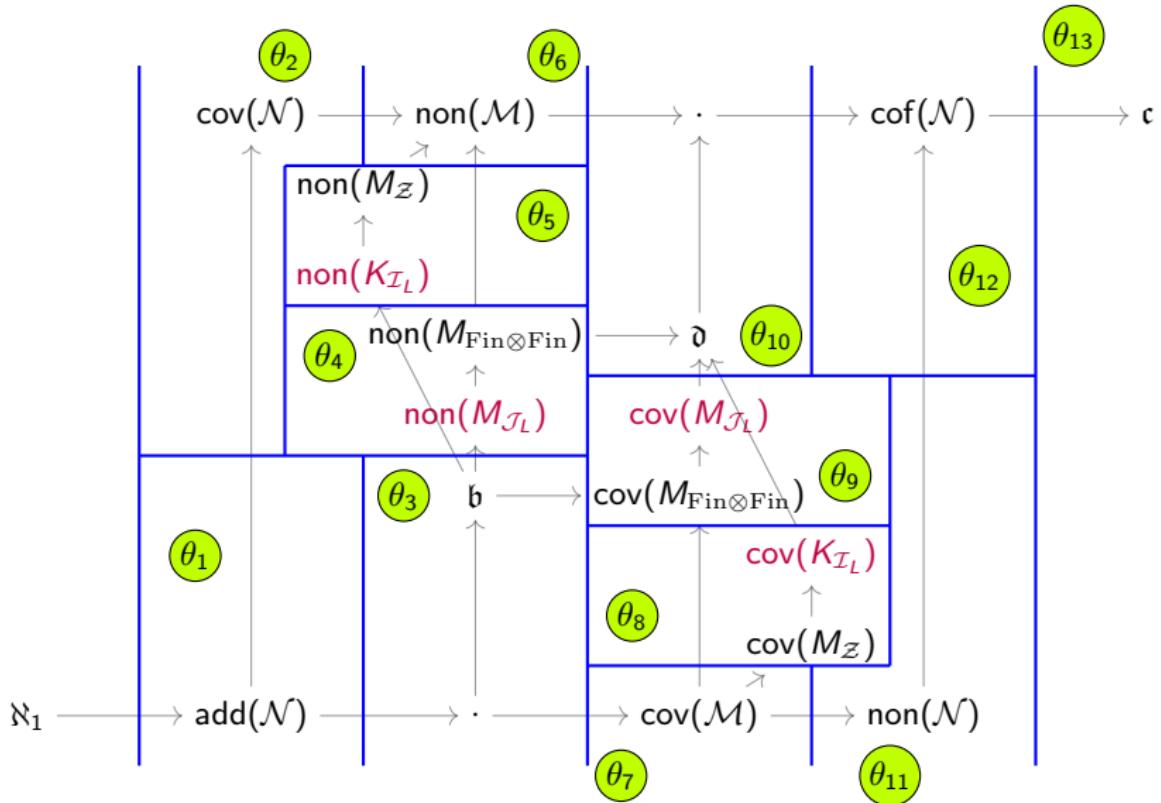
Theorem

Let $\mathcal{J}_0, \mathcal{J}_1$ be ideals on countable sets such that

$$\mathcal{J}_L \leq_K \mathcal{J}_0 \leq_K \text{Fin} \otimes \text{Fin} \text{ and } \mathcal{I}_L \leq_K \mathcal{J}_1 \leq_K \mathcal{Z}.$$

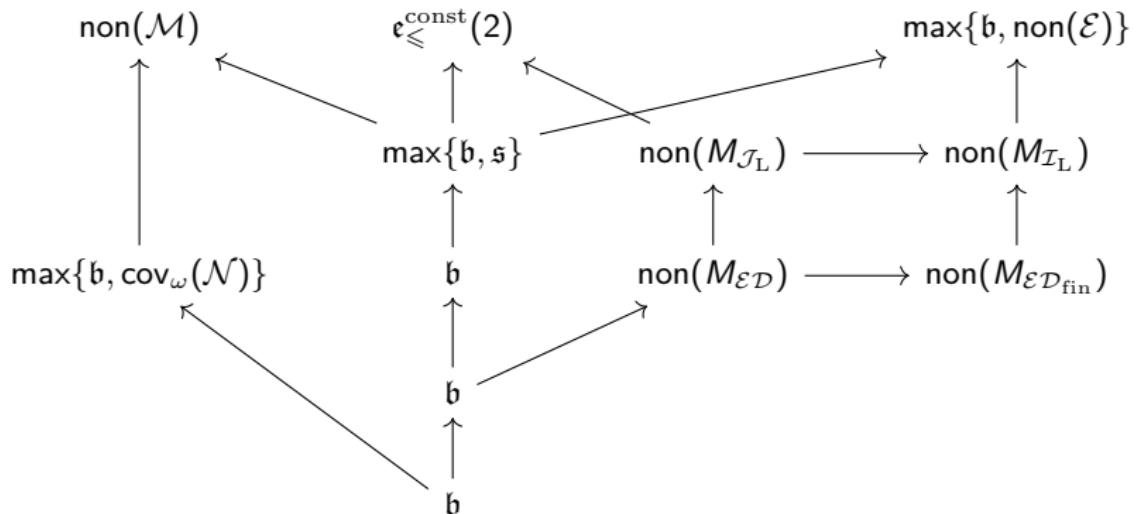
Then there is a c.c.c. poset forcing Cichoń's maximum with uniformity and covering numbers of $M_{\mathcal{J}_0}$ and $M_{\mathcal{J}_1}$ (or $K_{\mathcal{J}_1}$).

These consistency results are proved by using (closed) Fr-limits and ultrafilter-limits based on Yamazoe's previous works.



Open questions

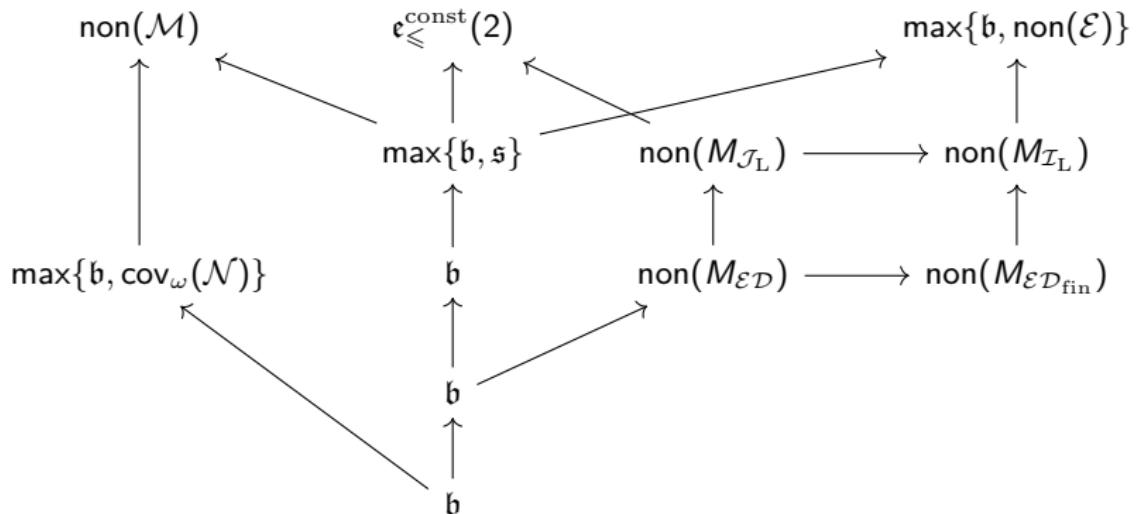
- ① Is $\text{non}(K_{\mathcal{I}}) = \text{non}(M_{\mathcal{I}})$ provable in ZFC for $\mathcal{I} = \text{nwd}, \mathcal{ED}_{\text{fin}}, \mathcal{I}_L, \mathcal{Z}$?
- ② Are $\mathfrak{b} < \text{non}(M_{\mathcal{ED}}) < \text{non}(M)$ and $\mathfrak{b} < \text{non}(M_{\mathcal{ED}_{\text{fin}}}) < \text{non}(M)$ consistent?
- ③ Are $\text{non}(M_{\mathcal{ED}}) < \text{non}(M_{\text{Fin} \otimes \text{Fin}})$ and $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) < \text{non}(M_{\mathcal{Z}})$ consistent?



Thank you for your attention!

Open questions

- ① Is $\text{non}(K_{\mathcal{I}}) = \text{non}(M_{\mathcal{I}})$ provable in ZFC for $\mathcal{I} = \text{nwd}, \mathcal{ED}_{\text{fin}}, \mathcal{I}_L, \mathcal{Z}$?
- ② Are $\mathfrak{b} < \text{non}(M_{\mathcal{ED}}) < \text{non}(M)$ and $\mathfrak{b} < \text{non}(M_{\mathcal{ED}_{\text{fin}}}) < \text{non}(M)$ consistent?
- ③ Are $\text{non}(M_{\mathcal{ED}}) < \text{non}(M_{\text{Fin} \otimes \text{Fin}})$ and $\text{non}(M_{\mathcal{ED}_{\text{fin}}}) < \text{non}(M_{\mathcal{Z}})$ consistent?



Thank you for your attention!