

A countably tight $P(K)$ space admitting a nonseparable measure

Zdeněk Silber, IM CAS, Prague
Joint work with Piotr Koszmider

Winter School of Abstract Analysis, Hejnice 2026

Setting

Goal: Understand topological properties of $P(K)$.

Setting

Goal: Understand topological properties of $P(K)$.

- $P(K)$... the set of Radon probability measures on a compact Hausdorff space K
 - Compact if equipped with the weak* topology.

Goal: Understand topological properties of $P(K)$.

- $P(K)$... the set of Radon probability measures on a compact Hausdorff space K
 - Compact if equipped with the weak* topology.
 - K is embedded in $P(K)$ (by identifying each $k \in K$ with the corresponding Dirac measure).

Setting

Goal: Understand topological properties of $P(K)$.

- $P(K)$... the set of Radon probability measures on a compact Hausdorff space K
 - Compact if equipped with the weak* topology.
 - K is embedded in $P(K)$ (by identifying each $k \in K$ with the corresponding Dirac measure).

What properties pass from K to $P(K)$?

- Some do: separability, metrizability, being Eberlein;

Setting

Goal: Understand topological properties of $P(K)$.

- $P(K)$... the set of Radon probability measures on a compact Hausdorff space K
 - Compact if equipped with the weak* topology.
 - K is embedded in $P(K)$ (by identifying each $k \in K$ with the corresponding Dirac measure).

What properties pass from K to $P(K)$?

- Some do: separability, metrizability, being Eberlein;
- Some do not: being totally disconnected;

Goal: Understand topological properties of $P(K)$.

- $P(K)$... the set of Radon probability measures on a compact Hausdorff space K
 - Compact if equipped with the weak* topology.
 - K is embedded in $P(K)$ (by identifying each $k \in K$ with the corresponding Dirac measure).

What properties pass from K to $P(K)$?

- Some do: separability, metrizability, being Eberlein;
- Some do not: being totally disconnected;
- For some it is independent on ZFC: first countability, being Corson.

Setting

Goal: Understand topological properties of $P(K)$.

- $P(K)$... the set of Radon probability measures on a compact Hausdorff space K
 - Compact if equipped with the weak* topology.
 - K is embedded in $P(K)$ (by identifying each $k \in K$ with the corresponding Dirac measure).

What properties pass from K to $P(K)$?

- Some do: separability, metrizability, being Eberlein;
- Some do not: being totally disconnected;
- For some it is independent on ZFC: first countability, being Corson.

Today we will focus on countable tightness of $P(K)$.

Definition

Let X be a topological space. We say that X has **countable tightness** if for every $A \subseteq X$ and $x \in \overline{A}$ there is a countable $B \subseteq A$ such that $x \in \overline{B}$.

Definition

Let X be a topological space. We say that X has **countable tightness** if for every $A \subseteq X$ and $x \in \overline{A}$ there is a countable $B \subseteq A$ such that $x \in \overline{B}$.

K has countable tightness $\leftrightarrow K$ is "simple" or "small".

Definitions

Definition

Let X be a topological space. We say that X has **countable tightness** if for every $A \subseteq X$ and $x \in \overline{A}$ there is a countable $B \subseteq A$ such that $x \in \overline{B}$.

K has countable tightness $\leftrightarrow K$ is "simple" or "small".

Definition

The **Maharam type** of a measure μ is the density of $L_1(\mu)$ (equivalently the minimal cardinality a dense subset of $Borel(K)$ w.r.t. the pseudometric $d_\mu(A, B) = \mu(A \triangle B)$).

Measures of countable type are called **separable**.

Definitions

Definition

Let X be a topological space. We say that X has **countable tightness** if for every $A \subseteq X$ and $x \in \overline{A}$ there is a countable $B \subseteq A$ such that $x \in \overline{B}$.

K has countable tightness $\leftrightarrow K$ is "simple" or "small".

Definition

The **Maharam type** of a measure μ is the density of $L_1(\mu)$ (equivalently the minimal cardinality a dense subset of $Borel(K)$ w.r.t. the pseudometric $d_\mu(A, B) = \mu(A \triangle B)$).

Measures of countable type are called **separable**.

K admits a nonseparable Radon measure $\leftrightarrow K$ is "complicated" or "large".

Definitions

Definition

Let X be a topological space. We say that X has **countable tightness** if for every $A \subseteq X$ and $x \in \overline{A}$ there is a countable $B \subseteq A$ such that $x \in \overline{B}$.

K has countable tightness $\leftrightarrow K$ is "simple" or "small".

Definition

The **Maharam type** of a measure μ is the density of $L_1(\mu)$ (equivalently the minimal cardinality a dense subset of $Borel(K)$ w.r.t. the pseudometric $d_\mu(A, B) = \mu(A \triangle B)$).

Measures of countable type are called **separable**.

K admits a nonseparable Radon measure $\leftrightarrow K$ is "complicated" or "large".

Question

Is there a countably tight compact space K that carries a nonseparable measure?

The K case

Whether countably tight compact spaces can carry a nonseparable measure is independent of ZFC.

The K case

Whether countably tight compact spaces can carry a nonseparable measure is independent of ZFC.

Fremlin '97

(MA + \neg CH) The following are equivalent for a compact K :

- ① There exist a nonseparable Radon measure μ on K ;

The K case

Whether countably tight compact spaces can carry a nonseparable measure is independent of ZFC.

Fremlin '97

(MA + \neg CH) The following are equivalent for a compact K :

- ① There exist a nonseparable Radon measure μ on K ;
- ② There is a **continuous** surjection of K onto $[0, 1]^{\omega_1}$.

The K case

Whether countably tight compact spaces can carry a nonseparable measure is independent of ZFC.

Fremlin '97

(MA + \neg CH) The following are equivalent for a compact K :

- ① There exist a nonseparable Radon measure μ on K ;
- ② There is a **continuous** surjection of K onto $[0, 1]^{\omega_1}$.

(MA + \neg CH)

Countable tightness of K implies that Radon measures on K are separable.

The K case

Whether countably tight compact spaces can carry a nonseparable measure is independent of ZFC.

Fremlin '97

(MA + \neg CH) The following are equivalent for a compact K :

- ① There exist a nonseparable Radon measure μ on K ;
- ② There is a **continuous** surjection of K onto $[0, 1]^{\omega_1}$.

(MA + \neg CH)

Countable tightness of K implies that Radon measures on K are separable.

Haydon '79, Kunen '81, Talagrand '80

Under CH or \diamond there are countably tight compact spaces admitting a nonseparable measure.

The $P(K)$ case

Consider even stronger notion of smallness of K :

The $P(K)$ case

Consider even stronger notion of smallness of K :

Question

Is there a compact K with countably tight $P(K)$ that carries a nonseparable measure?

The $P(K)$ case

Consider even stronger notion of smallness of K :

Question

Is there a compact K with countably tight $P(K)$ that carries a nonseparable measure?

Corollary of Fremlin

(MA + \neg CH) Countable tightness of $P(K)$ implies that all Radon measures on K are separable.

The $P(K)$ case

Consider even stronger notion of smallness of K :

Question

Is there a compact K with countably tight $P(K)$ that carries a nonseparable measure?

Corollary of Fremlin

(MA + \neg CH) Countable tightness of $P(K)$ implies that all Radon measures on K are separable.

Plebanek Sobota '15

Countable tightness of $P(K \times K)$ implies that all Radon measures on K are separable.

The $P(K)$ case

Consider even stronger notion of smallness of K :

Question

Is there a compact K with countably tight $P(K)$ that carries a nonseparable measure?

Corollary of Fremlin

(MA + \neg CH) Countable tightness of $P(K)$ implies that all Radon measures on K are separable.

Plebanek Sobota '15

Countable tightness of $P(K \times K)$ implies that all Radon measures on K are separable.

Hope for removing the assumption of MA?

The $P(K)$ case

Question

Does countable tightness of $P(K)$ imply countable tightness of $P(K \times K)$?

The $P(K)$ case

Question

Does countable tightness of $P(K)$ imply countable tightness of $P(K \times K)$?

- $t(P(K)) = \omega \implies t(P(K) \times P(K)) = \omega,$

The $P(K)$ case

Question

Does countable tightness of $P(K)$ imply countable tightness of $P(K \times K)$?

- $t(P(K)) = \omega \implies t(P(K) \times P(K)) = \omega,$
- but $P(K) \times P(K) \subsetneq P(K \times K).$

The $P(K)$ case

Question

Does countable tightness of $P(K)$ imply countable tightness of $P(K \times K)$?

- $t(P(K)) = \omega \implies t(P(K) \times P(K)) = \omega$,
- but $P(K) \times P(K) \subsetneq P(K \times K)$.
- Not so simple...

The $P(K)$ case

Question

Does countable tightness of $P(K)$ imply countable tightness of $P(K \times K)$?

- $t(P(K)) = \omega \implies t(P(K) \times P(K)) = \omega$,
- but $P(K) \times P(K) \subsetneq P(K \times K)$.
- Not so simple...

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

The $P(K)$ case

Question

Does countable tightness of $P(K)$ imply countable tightness of $P(K \times K)$?

- $t(P(K)) = \omega \implies t(P(K) \times P(K)) = \omega$,
- but $P(K) \times P(K) \subsetneq P(K \times K)$.
- Not so simple...

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

The construction falls into to scheme of the counterexamples given by Haydon, Kunen and Talagrand.

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

Consistently, under \diamond , we get existence of K such that:

- $P(K)$ has countable tightness but $P(K \times K)$ does not.

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

Consistently, under \diamond , we get existence of K such that:

- $P(K)$ has countable tightness but $P(K \times K)$ does not.
- $C(K)$ has Corson's property (C) but $C(K \times K)$ does not.

Corson's property (C) of a Banach space X is a convex variant of X being weakly Lindelöf.

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

Consistently, under \diamond , we get existence of K such that:

- $P(K)$ has countable tightness but $P(K \times K)$ does not.
- $C(K)$ has Corson's property (C) but $C(K \times K)$ does not.

Corson's property (C) of a Banach space X is a convex variant of X being weakly Lindelöf.

Open problems:

- ① Can we do the construction using just CH?

Construction (Koszmider, S. '24)

Under \diamond there is a compact Hausdorff space K which carries a nonseparable measure but for which $P(K)$ has countable tightness.

Consistently, under \diamond , we get existence of K such that:

- $P(K)$ has countable tightness but $P(K \times K)$ does not.
- $C(K)$ has Corson's property (C) but $C(K \times K)$ does not.

Corson's property (C) of a Banach space X is a convex variant of X being weakly Lindelöf.

Open problems:

- ① Can we do the construction using just CH?
- ② Is it consistent that there exists a hereditarily separable (sequential, Fréchet-Urysohn) $P(K)$ space with a nonseparable measure?

References:

- **Koszmider, P. and Silber, Z.** (2024), *Countably tight dual ball with a nonseparable measure*. J. London Math. Soc.
- **Plebanek, G.** (2024), *A survey on topological properties of $P(K)$ spaces*. Jpn. J. Math.

References:

- **Koszmider, P. and Silber, Z.** (2024), *Countably tight dual ball with a nonseparable measure*. J. London Math. Soc.
- **Plebanek, G.** (2024), *A survey on topological properties of $P(K)$ spaces*. Jpn. J. Math.

THANKS FOR YOUR ATTENTION.