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@ P(K) ... the set of Radon probability measures on a compact
Hausdorff space K

o Compact if equipped with the weak* topology.
o K is embedded in P(K) (by identifying each k € K with the
corresponding Dirac measure).

What properties pass form K to P(K)?
@ Some do: separability, metrizability, being Eberlein;
@ Some do not: being totally disconnected,;

@ For some it is independent on ZFC: first countability, being Corson.

Today we will focus on countable tightness of P(K). ]
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pseudometric d, (A, B) = u(AAB)).

Measures of countable type are called separable.

K admits a nonseparable Radon measure <> K is " complicated” or "large”.

Is there a countably tight compact space K that carries a nonseparable
measure?
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The K case

Whether countably tight compact spaces can carry a nonseparable
measure is independent of ZFC.

i

(MA + — CH) The following are equivalent for a compact K:

© There exist a nonseparable Radon measure i on K;

@ There is a continuous surjection of K onto [0, 1]“*.

(MA + - CH)
Countable tightness of K implies that Radon measures on K are separable.

Haydon '79, Kunen '81, Talagrand '80

Under CH or <} there are countably tight compact spaces admitting a
nonseparable measure.
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Is there a compact K with countably tight P(K) that carries a
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Corollary of Fremlin

(MA + — CH) Countable tightness of P(K) implies that all Radon
measures on K are separable.

Plebanek Sobota '15

Countable tightness of P(K x K) implies that all Radon measures on K
are separable.

Hope for removing the assumption of MA?
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The P(K) case

Does countable tightness of P(K) imply countable tightness of P(K x K)?
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Does countable tightness of P(K) imply countable tightness of P(K x K)?

o t(P(K)) =w = t(P(K) x P(K)) = w,
o but P(K) x P(K) C P(K x K).

@ Not so simple...

Construction (Koszmider, S. '24)

Under < there is a compact Hausdorff space K which carries a
nonseparable measure but for which P(K) has countable tightness.

The construction falls into to scheme of the counterexamples given by
Haydon, Kunen and Talagrand.
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Construction (Koszmider, S. '24)

Under < there is a compact Hausdorff space K which carries a
nonseparable measure but for which P(K) has countable tightness.

Consistently, under <, we get existence of K such that:
e P(K) has countable tightness but P(K x K) does not.
@ C(K) has Corson's property (C) but C(K x K) does not.

Corson's property (C) of a Banach space X is a convex variant of X being
weakly Lindelof. J

Open problems:
© Can we do the construction using just CH?
@ Is it consistent that there exists a hereditarily separable (sequential,
Frechét-Urysohn) P(K) space with a nonseparable measure?
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