

\mathcal{I} -Characterized subgroups of the circle

Prof. Pratulananda Das²

Professor,

Department of Mathematics, Jadavpur University,
West Bengal, India.

Throughout \mathbb{R} , \mathbb{Q} , \mathbb{Z} and \mathbb{N} will stand for the set of all real numbers, the set of all rational numbers, the set of all integers and the set of all natural numbers respectively. The first three are equipped with their usual abelian group structure and the circle group \mathbb{T} is identified with the quotient group \mathbb{R}/\mathbb{Z} of \mathbb{R} endowed with its usual compact topology. For $x \in \mathbb{R}$ we denote by $\{x\}$ the difference $x - [x]$ (the fractional part) and $\|x\|$ the distance from the integers i.e. $\min\{\{x\}, 1 - \{x\}\}$.

Topologically torsion elements

The concept of characterized subgroups has evolved significantly over the years, broadening its scope beyond its original foundations to serve as a **generalization of the torsion subgroup**. Recall that

- An element x of an abelian group G is torsion if there exists $k \in \mathbb{N}$ such that $kx = 0$.

Topologically torsion elements

The concept of characterized subgroups has evolved significantly over the years, broadening its scope beyond its original foundations to serve as a **generalization of the torsion subgroup**. Recall that

- An element x of an abelian group G is torsion if there exists $k \in \mathbb{N}$ such that $kx = 0$.
- Similarly, an element x of an abelian topological group G is :
 - (i) **topologically torsion** if $n!x \rightarrow 0$;
 - (ii) **topologically p -torsion**, for a prime p , if $p^n x \rightarrow 0$.

Topologically torsion elements

The concept of characterized subgroups has evolved significantly over the years, broadening its scope beyond its original foundations to serve as a **generalization of the torsion subgroup**. Recall that

- An element x of an abelian group G is torsion if there exists $k \in \mathbb{N}$ such that $kx = 0$.
- Similarly, an element x of an abelian topological group G is :
 - (i) **topologically torsion** if $n!x \rightarrow 0$;
 - (ii) **topologically p -torsion**, for a prime p , if $p^n x \rightarrow 0$.
- [Armacost, MDN, 1981] defined the subgroups

$$\mathbb{T}_p = \{x \in \mathbb{T} : p^n x \rightarrow 0\} \text{ and } \mathbb{T}! = \{x \in \mathbb{T} : n!x \rightarrow 0\}.$$

Characterized subgroup [Dikranjan, TP, 2002]

Let (u_n) be a sequence of integers, the subgroup

$$t_{(u_n)}(\mathbb{T}) := \{x \in \mathbb{T} : u_n x \rightarrow 0_{\mathbb{T}}\}$$

of \mathbb{T} is called a characterized (by (u_n)) subgroup of \mathbb{T} .

Characterized subgroup [Dikranjan, TP, 2002]

Let (u_n) be a sequence of integers, the subgroup

$$t_{(u_n)}(\mathbb{T}) := \{x \in \mathbb{T} : u_n x \rightarrow 0_{\mathbb{T}}\}$$

of \mathbb{T} is called a characterized (by (u_n)) subgroup of \mathbb{T} .

The elements of this subgroup are called **topologically torsion** with respect to the sequence (u_n) . And these subgroups were also known as **topologically torsion subgroups**.

The term *characterized* appeared much later, coined in [Dikranjan, TP, 2002] (as the sequence of integers \mathbb{Z} coincides with the character group of $\mathbb{T} := \mathbb{R}/\mathbb{Z}$, where a character is nothing but a continuous endomorphism of \mathbb{T} .)

Motivation

- One motivation for the exploration of the notion of **characterized subgroups** can be attributed to the examination of sequences of multiples ($a_n\alpha$) which have deep roots in **Number Theory** (Weyl's theorem of uniform distribution modulo 1) and in **Ergodic Theory** (Sturmian sequences and Hartman sets [Winkler, MM, 2002]).

Motivation

- One motivation for the exploration of the notion of **characterized subgroups** can be attributed to the examination of sequences of multiples ($a_n\alpha$) which have deep roots in **Number Theory** (Weyl's theorem of uniform distribution modulo 1) and in **Ergodic Theory** (Sturmian sequences and Hartman sets [Winkler, MM, 2002]).
- These subgroups also play crucial roles in the **structure theory** of locally compact abelian groups.

Motivation

- One motivation for the exploration of the notion of **characterized subgroups** can be attributed to the examination of sequences of multiples ($a_n\alpha$) which have deep roots in **Number Theory** (Weyl's theorem of uniform distribution modulo 1) and in **Ergodic Theory** (Sturmian sequences and Hartman sets [Winkler, MM, 2002]).
- These subgroups also play crucial roles in the **structure theory** of locally compact abelian groups.
- There also happens to be a deep connection with **Arbault sets** [Arbault, BSMF, 1952] which appear in **Harmonic Analysis**.

An important class of sequences

In this talk we are interested in characterized subgroups coming from arithmetic sequences.

- **Arithmetic sequence:** A sequence of positive integers (a_n) is called an **arithmetic sequence** if

$$1 \leq a_1 < a_2 < a_3 < \dots < a_n < \dots \quad \text{and } a_n | a_{n+1} \text{ for every } n \in \mathbb{N},$$

where the ratio sequence is defined as $(b_n = \frac{a_n}{a_{n-1}})$.

An important class of sequences

In this talk we are interested in characterized subgroups coming from arithmetic sequences.

- **Arithmetic sequence:** A sequence of positive integers (a_n) is called an **arithmetic sequence** if

$$1 \leq a_1 < a_2 < a_3 < \dots < a_n < \dots \quad \text{and } a_n | a_{n+1} \text{ for every } n \in \mathbb{N},$$

where the ratio sequence is defined as $(b_n = \frac{a_n}{a_{n-1}})$.

- **Example:** (2^n) with ratio sequence (2), (p^n) with ratio sequence (p), $(n!)$ with ratio sequence (n).

An important class of sequences

In this talk we are interested in characterized subgroups coming from arithmetic sequences.

- **Arithmetic sequence:** A sequence of positive integers (a_n) is called an **arithmetic sequence** if

$$1 \leq a_1 < a_2 < a_3 < \dots < a_n < \dots \quad \text{and } a_n | a_{n+1} \text{ for every } n \in \mathbb{N},$$

where the ratio sequence is defined as $(b_n = \frac{a_n}{a_{n-1}})$.

- **Example:** (2^n) with ratio sequence (2), (p^n) with ratio sequence (p), $(n!)$ with ratio sequence (n).
- Note that, $A \subseteq \mathbb{N}$ is called
 - (i) **b-bounded** if the sequence of ratios $(b_n)_{n \in A}$ is bounded.
 - (ii) **b-divergent** if the sequence of ratios $(b_n)_{n \in A}$ diverges to ∞ .

- **Fact:** For any arithmetic sequence (a_n) and $x \in \mathbb{T}$, we can build a unique sequence of integers (c_n) , where $0 \leq c_n < b_n$ ($b_n = \frac{a_n}{a_{n-1}}$), such that

$$x = \sum_{n=1}^{\infty} \frac{c_n}{a_n} \quad \text{and } c_n < b_n - 1 \text{ for infinitely many } n. \quad (1)$$

- **Fact:** For any arithmetic sequence (a_n) and $x \in \mathbb{T}$, we can build a unique sequence of integers (c_n) , where $0 \leq c_n < b_n$ ($b_n = \frac{a_n}{a_{n-1}}$), such that

$$x = \sum_{n=1}^{\infty} \frac{c_n}{a_n} \quad \text{and } c_n < b_n - 1 \text{ for infinitely many } n. \quad (1)$$

- For $x \in \mathbb{T}$ with canonical representation (1), we define
 - $\text{supp}(x) = \{n \in \mathbb{N} : c_n \neq 0\}$;
 - $\text{supp}_b(x) = \{n \in \mathbb{N} : c_n = b_n - 1\}$.

Observations related to characterized subgroup

In 1952, Eggleston was working with sets having fractional dimension and surprisingly there he have shown that:

[Eggleston, PLMS, 1952]

For an increasing sequence of integers (u_n) ,

- (E1) $t_{(u_n)}(\mathbb{T})$ is countable if $(\frac{u_n}{u_{n-1}})$ is bounded,
- (E2) $|t_{(u_n)}(\mathbb{T})| = \mathfrak{c}$ if $(\frac{u_n}{u_{n-1}})$ diverges to ∞ .

Observations related to characterized subgroup

In 1952, Eggleston was working with sets having fractional dimension and surprisingly there he have shown that:

[Eggleston, PLMS, 1952]

For an increasing sequence of integers (u_n) ,

(E1) $t_{(u_n)}(\mathbb{T})$ is countable if $(\frac{u_n}{u_{n-1}})$ is bounded,

(E2) $|t_{(u_n)}(\mathbb{T})| = c$ if $(\frac{u_n}{u_{n-1}})$ diverges to ∞ .

Finally, in 2014, Dikranjan and Impieri have shown that a dichotomic version of Eggleston's result holds true for arithmetic sequences!

Dichotomy [Dikranjan-Impieri, CA, 2014]

For an arithmetic sequence of integers (a_n) ,

(D1) $t_{(a_n)}(\mathbb{T})$ is countable if (a_n) is b -bounded,

(D2) $|t_{(a_n)}(\mathbb{T})| = c$ if (a_n) is not b -bounded.

Generalized convergence

- **Ideal:** A non-empty family $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an ideal on \mathbb{N} whenever

- $\mathbb{N} \notin \mathcal{I}$,
- if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$,
- $A \subset B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$.

\mathcal{I}^* denotes the dual filter. An ideal \mathcal{I} is called a *P-ideal* if for every sequence (A_n) of sets in \mathcal{I} there is a set $A \in \mathcal{I}$ such that $A_n \subset^* A$ for all $n \in \mathbb{N}$.

Generalized convergence

- **Ideal:** A non-empty family $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an ideal on \mathbb{N} whenever

- $\mathbb{N} \notin \mathcal{I}$,
- if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$,
- $A \subset B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$.

\mathcal{I}^* denotes the dual filter. An ideal \mathcal{I} is called a *P-ideal* if for every sequence (A_n) of sets in \mathcal{I} there is a set $A \in \mathcal{I}$ such that $A_n \subset^* A$ for all $n \in \mathbb{N}$.

- **Ideal convergence** [Kostyrko, Salat, wilczynsky, RAE, 2000-2001]: In a topological space X , given an ideal \mathcal{I} , we say that a sequence (x_n) is \mathcal{I} -convergent to $x \in X$ whenever for every open set U containing x , the set $\{n \in \mathbb{N} : x_n \notin U\} \in \mathcal{I}$ (we will write $x_n \rightarrow x$ w.r.t \mathcal{I}).

Generalized convergence

- **Ideal:** A non-empty family $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an ideal on \mathbb{N} whenever
 - $\mathbb{N} \notin \mathcal{I}$,
 - if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$,
 - $A \subset B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$.
- \mathcal{I}^* denotes the dual filter. An ideal \mathcal{I} is called a **P-ideal** if for every sequence (A_n) of sets in \mathcal{I} there is a set $A \in \mathcal{I}$ such that $A_n \subset^* A$ for all $n \in \mathbb{N}$.
- **Ideal convergence** [Kostyrko, Salat, wilczynsky, RAE, 2000-2001]: In a topological space X , given an ideal \mathcal{I} , we say that a sequence (x_n) is \mathcal{I} -convergent to $x \in X$ whenever for every open set U containing x , the set $\{n \in \mathbb{N} : x_n \notin U\} \in \mathcal{I}$ (we will write $x_n \rightarrow x$ w.r.t \mathcal{I}).
- It is known that " (x_n) is \mathcal{I} -convergent to $x \in X$ iff there exists $A \in \mathcal{I}^*$ such that $(x_n)_{n \in A}$ usually converges to x " \iff " \mathcal{I} is a P-ideal"

An overview of generalized characterized subgroups

- **\mathcal{I} -characterized subgroup** [Das-Ghosh, APAL, 2023]: Let (a_n) be a sequence of integers, the subgroup

$$t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) := \{x \in \mathbb{T} : a_n x \rightarrow 0 \text{ w.r.t. } \mathcal{I} \text{ in } \mathbb{T}\}$$

of \mathbb{T} is called an \mathcal{I} -characterized subgroup of \mathbb{T} .

An overview of generalized characterized subgroups

- **\mathcal{I} -characterized subgroup** [Das-Ghosh, APAL, 2023]: Let (a_n) be a sequence of integers, the subgroup

$$t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) := \{x \in \mathbb{T} : a_n x \rightarrow 0 \text{ w.r.t. } \mathcal{I} \text{ in } \mathbb{T}\}$$

of \mathbb{T} is called an \mathcal{I} -characterized subgroup of \mathbb{T} .

- Fin $\Rightarrow t_{(a_n)}(\mathbb{T})$
- \mathcal{I}_d $\Rightarrow t_{(a_n)}^s(\mathbb{T})$
- \mathcal{I}_g $\Rightarrow t_{(a_n)}^g(\mathbb{T})$
- \mathcal{I}_1 (Translation invariant) $\Rightarrow t_{(a_n)}^{\mathcal{I}_1}(\mathbb{T})$
- \mathcal{I}_2 (non-snt) $\Rightarrow t_{(a_n)}^{\mathcal{I}_2}(\mathbb{T})$

simple density ideal

simple density function

$$\underline{d}_g(A) = \liminf_{n \rightarrow \infty} \frac{|A \cap [1, n]|}{g(n)} \text{ and } \overline{d}_g(A) = \limsup_{n \rightarrow \infty} \frac{|A \cap [1, n]|}{g(n)}. \quad (2)$$

Here g is a non-decreasing weight functions $g : \mathbb{N} \rightarrow [0, \infty)$ such that $\lim_{n \rightarrow \infty} g(n) = \infty$ and $\frac{n}{g(n)} \not\rightarrow 0$.

simple density ideal

simple density function

$$\underline{d}_g(A) = \liminf_{n \rightarrow \infty} \frac{|A \cap [1, n]|}{g(n)} \text{ and } \overline{d}_g(A) = \limsup_{n \rightarrow \infty} \frac{|A \cap [1, n]|}{g(n)}. \quad (2)$$

Here g is a non-decreasing weight functions $g : \mathbb{N} \rightarrow [0, \infty)$ such that $\lim_{n \rightarrow \infty} g(n) = \infty$ and $\frac{n}{g(n)} \not\rightarrow 0$.

$$\mathcal{I}_g = \{A \subset \mathbb{N} : d_g(A) = 0\}.$$

For $g(n) = n$ we have the usual notion of natural density.

Generalized characterized subgroups I

s-characterized Subgroup [Dikranjan-Das-Bose, FM, 2019]

Let (a_n) be a sequence of integers, the subgroup

$$t_{(a_n)}^s(\mathbb{T}) := \{x \in \mathbb{T} : a_n x \rightarrow 0 \text{ statistically in } \mathbb{T}\}$$

of \mathbb{T} is called an *s*-characterized (by (a_n)) subgroup of \mathbb{T} .

Generalized characterized subgroups II

g-characterized subgroups (special case of [Das-Ghosh, IM, 2021])

For a sequence of integers (a_n) the subgroup

$$t_{(a_n)}^g(\mathbb{T}) := \{x \in \mathbb{T} : a_n x \rightarrow 0 \text{ g-statistically in } \mathbb{T}\}$$

of \mathbb{T} is called *an g-statistically characterized* (shortly, *an g-characterized*) (by (a_n)) subgroup of \mathbb{T} .

Cardinality, Borel Complexity and Novelty

- For any sequence of integers (a_n) , $t_{(a_n)}^s(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.

Cardinality, Borel Complexity and Novelty

- For any sequence of integers (a_n) , $t_{(a_n)}^s(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , we have $|t_{(a_n)}^s(\mathbb{T})| = \mathfrak{c}$.

Cardinality, Borel Complexity and Novelty

- For any sequence of integers (a_n) , $t_{(a_n)}^s(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , we have $|t_{(a_n)}^s(\mathbb{T})| = \mathfrak{c}$.
- For any arithmetic sequence (a_n) , $t_{(a_n)}^s(\mathbb{T}) \supsetneq t_{(a_n)}(\mathbb{T})$.

Cardinality, Borel Complexity and Novelty

- For any sequence of integers (a_n) , $t_{(a_n)}^s(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , we have $|t_{(a_n)}^s(\mathbb{T})| = c$.
- For any arithmetic sequence (a_n) , $t_{(a_n)}^s(\mathbb{T}) \supsetneq t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , the subgroup $t_{(a_n)}^s(\mathbb{T})$ cannot be characterized by any sequence of integers.

Problem Formulation

Problem 1

Let (a_n) be an arithmetic sequence such that $(\frac{a_n}{a_{n-1}})$ is bounded. Does there exist an ideal $\mathcal{I} \neq Fin$ such that $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ is countable?

We will provide a positive solution to this problem, i.e., such an ideal exists.

Problem Formulation

Problem 1

Let (a_n) be an arithmetic sequence such that $(\frac{a_n}{a_{n-1}})$ is bounded. Does there exist an ideal $\mathcal{I} \neq Fin$ such that $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ is countable?

We will provide a positive solution to this problem, i.e., such an ideal exists.

Problem 2

Let (a_n) be an arithmetic sequence. Does $\mathcal{I}_1 \subsetneq \mathcal{I}_2$ imply $t_{(a_n)}^{\mathcal{I}_1}(\mathbb{T}) \subsetneq t_{(a_n)}^{\mathcal{I}_2}(\mathbb{T})$?

We will show that this is not true in general but for a special class of ideals namely translation invariant P -ideals (defined later), the answer to this problem is positive.

Notation and Terminology I

For two subsets A, B of \mathbb{N} and an ideal \mathcal{I} , we will write

- $A \subseteq^{\mathcal{I}} B$ if $A \setminus B \in \mathcal{I}$,
- $A \subset \mathbb{N}$ is called **\mathcal{I} -translation invariant** if
 $A + n = \{m + n \in \mathbb{N} : m \in A\}$ belongs to \mathcal{I} for all $n \in \mathbb{Z}$.

Note that \mathcal{I} is called **translation invariant** if every $A \in \mathcal{I}$ is \mathcal{I} -translation invariant.

Notation and Terminology II

Further every ideal \mathcal{I} on \mathbb{N} can be treated as a subset of the Cantor space $2^{\mathbb{N}}$ in view of the fact that $\mathcal{P}(\mathbb{N})$ and $2^{\mathbb{N}}$ can be identified via the characteristic functions. **An ideal \mathcal{I} is called analytic if it corresponds to an analytic subset of the Cantor space $2^{\mathbb{N}}$.**

snt-ideal

An ideal \mathcal{I} will be called strongly non-translation invariant (in short *snt*-ideal) if it **does not contain any infinite \mathcal{I} -translation invariant set**, i.e., for each infinite subset $A \in \mathcal{I}$, there exists at least one $k \in \mathbb{Z}$ for which $A - k \notin \mathcal{I}$.

Cardinality and Borel Complexity [Ghosh, RM, 2022]

Consider any translation invariant analytic P -ideal \mathcal{I} ($\neq Fin$) of \mathbb{N} .

- For any sequence of integers (a_n) , $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , we have $|t_{(a_n)}^{\mathcal{I}}(\mathbb{T})| = \mathfrak{c}$.
- For any arithmetic sequence (a_n) , $t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) \supsetneq t_{(a_n)}(\mathbb{T})$.

Cardinality and Borel Complexity [Ghosh, RM, 2022]

Consider any translation invariant analytic P -ideal \mathcal{I} ($\neq Fin$) of \mathbb{N} .

- For any sequence of integers (a_n) , $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , we have $|t_{(a_n)}^{\mathcal{I}}(\mathbb{T})| = \mathfrak{c}$.
- For any arithmetic sequence (a_n) , $t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) \supsetneq t_{(a_n)}(\mathbb{T})$.
- For any arithmetic sequence (a_n) , if $\mathcal{I}_1 \subsetneq \mathcal{I}_2$ then $t_{(a_n)}^{\mathcal{I}_1}(\mathbb{T}) \subsetneq t_{(a_n)}^{\mathcal{I}_2}(\mathbb{T})$.

Method used here for constructing analytic P -ideals I

For a non-negative admissible matrix $\mathbf{M} = (a_{i,j})$ (where admissibility means $\lim_{i \rightarrow \infty} a_{i,j} = 0$ for every $j \in \mathbb{N}$) one can define the corresponding upper **\mathbf{M} -density** of $A \subset \mathbb{N}$ by

$$\overline{d}_{\mathbf{M}}(A) = \limsup_{n \rightarrow \infty} (\mathbf{M} \cdot \chi(A))$$

where $\chi(A)$ is the characteristic sequence of A , i.e.,

$$\chi(A) = (x_n) \quad \text{with} \quad x_n = \begin{cases} 1 & \text{if } n \in A, \\ 0 & \text{otherwise.} \end{cases} .$$

Method used here for constructing analytic P -ideals II

If for $A \subset \mathbb{N}$, $\overline{d}_{\mathbf{M}}(A) = d_{\mathbf{M}}(A)$ then we say that the \mathbf{M} -density of A exists and is denoted by $d_{\mathbf{M}}(A)$.

The analytic P -ideal \mathcal{I} corresponding to \mathbf{M} is obtained by

$$\mathcal{I} = \{A \subset \mathbb{N} : d_{\mathbf{M}}(A) = 0\}.$$

Some examples of *snt*-ideals

Consider the non-negative regular matrix \mathbf{M} defined by

$$\mathbf{M} = (b_{pq}) \text{ and } b_{pq} = \begin{cases} 1 & \text{if } q = 2p - 1 \\ 0 & \text{otherwise,} \end{cases}$$

The corresponding ideal $\mathcal{I} = \{A \subset \mathbb{N} : d_{\mathbf{M}}(A) = 0\}$ satisfies the property that

$$\mathcal{I} = \{A \subset \mathbb{N} : A \subseteq^* 2\mathbb{N}\}.$$

Now consider any infinite set $B \in \mathcal{I}$. Observe that $B \subseteq^* 2\mathbb{N}$ which implies $B + 1 \notin \mathcal{I}$. Hence the ideal \mathcal{I} is a *snt*-ideal.

Similarly, for any $m \in \mathbb{N} \setminus \{1\}$ if we define

$$\mathcal{I} = \{A \subset \mathbb{N} : A \subseteq^* \mathbb{N} \setminus m\mathbb{N}\}$$

then \mathcal{I} becomes a *snt* analytic *P*-ideal.

Some examples of non-snt ideals

Consider the analytic P -ideal $\mathcal{I} = \{A \subset \mathbb{N} : d_{\mathbf{M}}(A) = 0\}$, where \mathbf{M} is a non-negative regular matrix defined by

$$\mathbf{M} = (b_{ij}) \quad \text{and} \quad b_{ij} = \begin{cases} 1 & \text{if } j = (2i)^2 \\ 0 & \text{otherwise.} \end{cases}$$

Then, the set $A = \{n \in \mathbb{N} : n = (2k+1)^2 \text{ for all } k \in \mathbb{N}\}$ is translation invariant w.r.t \mathcal{I} . Therefore \mathcal{I} is a non-snt ideal. Note that all the density ideals we have studied so far are translation invariant therefore non-snt.

Characterization of *snt*-ideals

The concept of *snt*-ideal comes from the fact that we want ideals that does not have sets with arbitrary block length. Equivalently, we want to construct a filter which do not contain sets with arbitrary gap in it.

An analytic P -ideal \mathcal{I} is a *snt*-ideal if and only if

(**) for all $A^* = \{n_1 < n_2 < \dots < n_i < \dots\} \in \mathcal{I}^*$ there exists a fixed $m \in \mathbb{N}$ and $i_{A^*} \in \mathbb{N}$ such that $n_{i+1} - n_i \leq m$ for all $i \geq i_{A^*}$.

Theorem 1

For any analytic P -ideal \mathcal{I} , $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ is a $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} containing $t_{(a_n)}(\mathbb{T})$.

Theorem 2

For any analytic P -ideal \mathcal{I} and $x \in \mathbb{T}$, if $supp(x) \in \mathcal{I}$ and $supp(x)$ is \mathcal{I} -translation invariant, then $x \in t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$.

Theorem 3

For any non-snt analytic P -ideal \mathcal{I} and for any arithmetic sequence (a_n) , $|t_{(a_n)}^{\mathcal{I}}(\mathbb{T})| = \mathfrak{c}$.

Theorem 4

For any non-snt analytic P -ideal \mathcal{I} and for any arithmetic sequence (a_n) , $t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) \supsetneq t_{(a_n)}(\mathbb{T})$ and $|t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) \setminus t_{(a_n)}(\mathbb{T})| = \mathfrak{c}$.

Therefore, all the cardinality related observations (that we have seen for translation invariant ideals) actually hold for non-snt ideals.

Theorem 5

For a b -bounded arithmetic sequence (a_n) and an analytic P -ideal \mathcal{I} ,
 $t_{(a_n)}^{\mathcal{I}}(\mathbb{T}) = t_{(a_n)}(\mathbb{T})$ if and only if \mathcal{I} is a *snt*-ideal.

This result provides a **negative solution to Problem 2** (as $Fin \subsetneq \mathcal{I}$).

Theorem 6

Let \mathcal{I} be a *snt* analytic P -ideal. Then $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ is countable if and only if (a_n) is b -bounded.

This provides a **positive solution to problem 1**, i.e., there exists an ideal strictly bigger than the ideal Fin for which the subgroup $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ can be countable.

Novelty [Das-Ghosh, Communicated, 2025]

For any dense analytic P -ideal \mathcal{I} and for any arithmetic sequence (a_n) , the subgroup $t_{(a_n)}^{\mathcal{I}}(\mathbb{T})$ cannot be characterized by any sequence of integers.

Conclusion and Future Scope

Open Problem 1

Does the previous result hold for more **general class of ideals** (in particular, for the class of non-snt ideals)?

Conclusion and Future Scope

Open Problem 1

Does the previous result hold for more **general class of ideals** (in particular, for the class of non-snt ideals)?

Open Problem 2

Classify the class of ideals for which corresponding \mathcal{I} -characterized subgroups are Borel sets. In particular, what can you conclude regarding the cardinality of an \mathcal{I} -characterized subgroup if \mathcal{I} is not an analytic P -ideal.

Conclusion and Future Scope

Open Problem 1

Does the previous result hold for more **general class of ideals** (in particular, for the class of non-snt ideals)?

Open Problem 2

Classify the class of ideals for which corresponding \mathcal{I} -characterized subgroups are Borel sets. In particular, what can you conclude regarding the cardinality of an \mathcal{I} -characterized subgroup if \mathcal{I} is not an analytic P -ideal.

Open Problem 3

Compare the class of non-snt ideals with other well known class of ideals (in particular, the class of dense ideals).

Reference I

- J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253-317.
- D. L. Armacost, The structure of locally compact abelian groups, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York 68 (1981).
- A. Bartoszewich, P. Das, S. Glab, On matrix summability of spliced sequences and A -density of points, Linear Algebra Appl., 487 (2015), 22–42.
- S. Bhunia, P. Das and S. K. Pal, Restricting statistical convergence, Acta Math. Hungar., 134 (2012), 153–161.
- A. Bíró, J.M. Deshouillers, V.T. Sós, Good approximation and characterization of subgroups of \mathbb{R}/\mathbb{Z} , Studia Sci. Math. Hungar., 38 (2001), 97–113.

Reference II

- K. Bose, P. Das, A. Kwela, Generating new ideals using weighted density via modulus functions, *Indag. Math.*, 29 (2018) 1196–1209.
- J. Braconnier, Sur les groupes topologiques primaires, *C. R. Acad. Sci. Paris*, 218 (1944), 304–305.
- R. C. Buck, The measure theoretic approach to density, *Amer. J. Math.*, 68 (1946), 560–580.
- H. Cartan, Théorie des filtres, *C. R. Acad. Sci. Paris*, 205 (1937), 595–598.
- P. Das, K. Bose, W. He, Generating subgroups of the circle using statistical convergence of order α , *Acta Math. Hungar.*, Published: 30 June 2020.
- D. Dikranjan, P. Das, K. Bose, Statistically characterized subgroups of the circle, *Fund. Math.*, 249 (2020), 185–209.

Reference III

- D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, Marcel Dekker Inc., New York (1989).
- P. Das, A. Ghosh, Generating subgroups of the circle using a generalized class of density functions, *Indag. Math.*, 32(3) (2021), 598–618.
- P. Das, A. Ghosh, Solution of a general version of Armacost's problem on topologically torsion elements, *Acta Math. Hungar.*, 164(1) (2021), 243–264.
- P. Das, A. Ghosh, On a new class of trigonometric thin sets extending Arbault sets, *Bul. Sci. Math.*, 179 (2022), 103157.
- P. Das, A. Ghosh, When ideals properly extend the class of Arbault sets, communicated.

Reference IV

- D. Dikranjan, D. Impieri, Topologically torsion elements of the circle group, *Commun. Algebra*, 42 (2014), 600–614.
- H. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, *Proc. Lond. Math. Soc.*, 54(2) (1952), 42–93.
- I. Farah, Analytic quotients: Theory of lifting for quotients over analytic ideals on integers, *Mem. Amer. Math. Soc.* 148 (2000).
- H. Fast, Sur la convergence statistique, *Colloq. Math.*, 2 (1951), 241–244.
- A. Ghosh, Topologically \mathcal{I} -torsion elements of the Circle, *Ric. Mat.*, 73 (2022), 2263–2281.

Reference V

- R. Di Santo, D. Dikranjan, Answer to Armacost's quest on topologically torsion elements of the circle group, *Commun. Algebra*, 32 (2004), 133–146.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, *Colloq. Math.*, 2 (1951), 73–74.
- R. Winkler, Ergodic group rotations, Hartman sets and Kronecker sequences, *Monatsh. Math.* 135, No.4, 333-343 (2002).

THANK YOU FOR YOUR ATTENTION