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Notation and Terminology | [pikranjan-Impieri, CA, 2014]

Throughout R, Q, Z and N will stand for the set of all real numbers, the
set of all rational numbers, the set of all integers and the set of all
natural numbers respectively. The first three are equipped with their
usual abelian group structure and the circle group T is identified with
the quotient group R/Z of R endowed with its usual compact
topology. For x € R we denote by {x} the difference x — [x] (the
fractional part) and || x|| the distance from the integers i.e.

min{{x},1 — {x}}.
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Topologically torsion elements

The concept of characterized subgroups has evolved significantly over
the years, broadening its scope beyond its original foundations to
serve as a generalization of the torsion subgroup. Recall that

@ An element x of an abelian group G is torsion if there exists k € N
such that kx = 0.
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Topologically torsion elements

The concept of characterized subgroups has evolved significantly over
the years, broadening its scope beyond its original foundations to
serve as a generalization of the torsion subgroup. Recall that
@ An element x of an abelian group G is torsion if there exists k € N
such that kx = 0.
@ Similarly, an element x of an abelian topological group G is :
(i) topologically torsion if nlx — O;
(ii) fopologically p-torsion, for a prime p, if p"x — 0.
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Topologically torsion elements

The concept of characterized subgroups has evolved significantly over
the years, broadening its scope beyond its original foundations to
serve as a generalization of the torsion subgroup. Recall that

@ An element x of an abelian group G is torsion if there exists k € N
such that kx = 0.

@ Similarly, an element x of an abelian topological group G is :
() topologically torsionif n'x — 0;
(i) topologically p-torsion, for a prime p, if p"x — 0.

@ [Armacost, MDN, 1981] defined the subgroups

Tp={xeT:p"'x—0} and T! = {x € T: nlx — 0}.
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Characterized subgroup [pikranjan, TP, 2002]

Let (un) be a sequence of integers, the subgroup

tu)(T) :=={x € T : Upx — Op}

of T is called a characterized (by (un)) subgroup of T.
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Characterized subgroup [pikranjan, TP, 2002]

Let (un) be a sequence of integers, the subgroup
tu)(T) :=={x € T : Upx — Op}

of T is called a characterized (by (un)) subgroup of T.

The elements of this subgroup are called topologically torsion with
respected to the sequence (up). And these subgroups were also
known as topologically torsion subgroups.

The term characterized appeared much later, coined in [Dikranjan, TP,
2002] (as the sequence of integers Z coincides with the character group
of T := R/Z, where a character is nothing but a continuous
endomorphism of T.)
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Motivation

e One motivation for the exploration of the notion of characterized
subgroups can be attributed to the examination of sequences of
multiples (ana) which have deep roots in Number Theory (Weyl’s
theorem of uniform distribution modulo 1) and in Ergodic Theory
(Sturmian sequences and Hartman sets [Winkler, MM, 2002]).
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multiples (ana) which have deep roots in Number Theory (Weyl’s
theorem of uniform distribution modulo 1) and in Ergodic Theory
(Sturmian sequences and Hartman sets [Winkler, MM, 2002]).

e These subgroups also play crucial roles in the structure theory of
locally compact abelian groups.
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Motivation

e One motivation for the exploration of the notion of characterized
subgroups can be attributed to the examination of sequences of
multiples (ana) which have deep roots in Number Theory (Weyl’s
theorem of uniform distribution modulo 1) and in Ergodic Theory
(Sturmian sequences and Hartman sets [Winkler, MM, 2002]).

e These subgroups also play crucial roles in the structure theory of
locally compact abelian groups.

e There also happens to be a deep connection with Arbault sets
[Arbault, BSMF, 1952] which appear in Harmonic Analysis.
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An important class of sequences

In this talk we are interested in characterized subgroups coming from
arithmetic sequences.
@ Arithmetic sequence: A sequence of positive integers (ay) is
called an arithmetic sequence if

1<a<a<a<...<ap<... andap|anforeveryneN,

where the ratio sequence is defined as (b, = ;22.).

11
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An important class of sequences

In this talk we are interested in characterized subgroups coming from
arithmetic sequences.
@ Arithmetic sequence: A sequence of positive integers (ay) is
called an arithmetic sequence if

1<a<a<a<...<ap<... andap|anforeveryneN,

where the ratio sequence is defined as (b, = ;2-).

n—1

@ Example: (2”) with ratio sequence (2), (p") with ratio sequence
(p), (n') with ratio sequence (n).

11
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An important class of sequences

In this talk we are interested in characterized subgroups coming from
arithmetic sequences.

@ Arithmetic sequence: A sequence of positive integers (ay) is
called an arithmetic sequence if

1<a<a<a<...<ap<... andap|anforeveryneN,

where the ratio sequence is defined as (b, = ;22.).

@ Example: (2”) with ratio sequence (2), (p") with ratio sequence
(p), (n') with ratio sequence (n).

@ Note that, A C N is called

(i) b-bounded if the sequence of ratios (bp)nc4 is bounded.
(i) b-divergent if the sequence of ratios (bp)nca diverges to oc.
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Notation and Terminology [pikranjan-impieri, CA, 2014]

@ Fact: For any arithmetic sequence (a,) and x € T, we can build a
unique sequence of integers (c,), where 0 < ¢, < by (by = afj1 )
such that

[ee)
X =
n=1

% and ¢, < bp — 1 for infinitely many n. (1)
n
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Notation and Terminology [pikranjan-impieri, CA, 2014]

@ Fact: For any arithmetic sequence (a,) and x € T, we can build a

unique sequence of integers (cn), where 0 < ¢, < by (bp = afﬂ ),
such that
X = % and ¢, < by — 1 for infinitely many n. (1)
n=1 "

@ For x € T with canonical representation (1), we define
o supp(x) ={neN : ¢, #0};
@ suppp(x)={neN : ¢c,=b,—1}.
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Observations related to characterized subgroup
In 1952, Eggleston was working with sets having fractional dimension
and surprisingly there he have shown that:

[Eggleston, PLMS, 1952]

For an increasing sequence of integers (up),
(E1) f,)(T) is countable if () is bounded,
(E2) |ty,)(T)| = cif (%) diverges to oc.
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Observations related to characterized subgroup
In 1952, Eggleston was working with sets having fractional dimension
and surprisingly there he have shown that:
[Eggleston, PLMS, 1952]
For an increasing sequence of integers (up),
(E1) f,)(T) is countable if () is bounded,
(E2) |1(,)(T)| = cif (=) diverges to oo.

Finally, in 2014, Dikranjan and Impieri have shown that a dichotomic
version of Eggleston’s result holds true for arithmetic sequences!

Dichotomy [Dikranjan-Impieri, CA, 2014]

For an arithmetic sequence of integers (an),
(D1) {(4,)(T) is countable if (a,) is b-bounded,
(D2) [t(4,)(T)| = cif (an) is not b-bounded.
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Generalized convergence

@ Ideal: A non-empty family Z C P(N) is called an ideal on N
whenever
o N¢17,
o ifA,BeZthenAUuBeZ,
e AcBandBeZthenAcZ.

7* denotes the dual filter. An ideal 7 is called a P-ideal if for every
sequence (Ap) of sets in Z there is a set A € 7 such that A, c* A
forall n e N.
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Generalized convergence

@ Ideal: A non-empty family Z C P(N) is called an ideal on N

whenever

o N¢17,

o ifA,BeZthenAUuBeZ,

e AcBandBeZthenAcZ.
Z* denotes the dual filter. An ideal Z is called a P-ideal if for every
sequence (Ap) of sets in Z there is a set A € 7 such that A, c* A
forall n e N.

@ Ideal convergence [Kostyrko, Salat, wilczynsky, RAE, 2000-2001]: In a
topological space X, given an ideal Z, we say that a sequence
(xn) is Z-convergent to x € X whenever for every open set U
containing x, the set {n e N : x, ¢ U} € Z (we will write x, — x
w.rt 7).
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Generalized convergence

@ Ideal: A non-empty family Z C P(N) is called an ideal on N
whenever

o N¢17,

o ifA,BeZthenAUuBeZ,

e AcBandBeZthenAeZ.
7* denotes the dual filter. An ideal 7 is called a P-ideal if for every
sequence (Ap) of sets in Z there is a set A € 7 such that A, c* A
forall n e N.

@ Ideal convergence [Kostyrko, Salat, wilczynsky, RAE, 2000-2001]: In a
topological space X, given an ideal Z, we say that a sequence
(xn) is Z-convergent to x € X whenever for every open set U
containing x, the set {n e N : x, ¢ U} € Z (we will write x, — x
w.rt 7).

@ Itis known that ”(x,) is Z-convergent to x € X iff there exists
A € T* such that (xp)n,ca usually converges to x” <= "Z is a
P-ideal”
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An overview of generalized characterized subgroups

@ 7Z-characterized subgroup [Das-Ghosh, APAL, 2023]: Let (a,) be a
sequence of integers, the subgroup

t)(T) = {x € T: apx — Ow.rt. Tin T}

of T is called an Z-characterized subgroup of T.
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An overview of generalized characterized subgroups

@ 7Z-characterized subgroup [Das-Ghosh, APAL, 2023]: Let (a,) be a
sequence of integers, the subgroup

t)(T) = {x € T: apx — Ow.rt. Tin T}

of T is called an Z-characterized subgroup of T.

o Fin = tan)(T)

o Ty = t(san)(T)

oIy = o (T)

eZ; (Translation invariant) = i) (T)
o7, (non-snt) = t2)(T)
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simple density ideal

simple density function

glg(A) =lim infw and BQ(A) = |lim SUDM.

n—oo  g(n) noo  9(n)

(@)

Here g is a non-decreasing weight functions g : N — [0, oo) such that

Jim_ g(n) = oo and 55 - 0.
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simple density ideal

simple density function

glg(A) =lim infw and BQ(A) = |lim SUDM.

n—oo  g(n) noo  9(n)

(@)

Here g is a non-decreasing weight functions g : N — [0, oo) such that

Jim_ g(n) = oo and 55 - 0.

T, = {ACN: dy(A) = 0}.

For g(n) = n we have the usual notion of natural density.
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Generalized characterized subgroups |

s-characterized Subgroup [Dikranjan-Das-Bose, FM, 2019]
Let (a,) be a sequence of integers, the subgroup

t‘(S (T) :={x € T: apx — 0 statistically in T}

an)

of T is called an s-characterized (by (an)) subgroup of T.
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Generalized characterized subgroups |l

g-characterized subgroups (special case of [Das-Ghosh, IM, 2021])
For a sequence of integers (an) the subgroup

t(gan)("ﬂ‘) = {x € T : a,x — 0 g-statistically in T}

of T is called an g-statistically characterized (shortly, an
g-characterized) (by (an)) subgroup of T.
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Cardinality, Borel Complexity and Novelty

e For any sequence of integers (ap), 2. (T) is an F,; (hence,
(an)

Borel) subgroup of T containing #,,)(T).
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Cardinality, Borel Complexity and Novelty
e For any sequence of integers (an), t(san)(T) is an F,s (hence,
Borel) subgroup of T containing #,,)(T).

e For any arithmetic sequence (an), we have |{7. \(T)| = c.
(an)
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Cardinality, Borel Complexity and Novelty

e For any sequence of integers (an), t(s )(T) is an F,s (hence,
Borel) subgroup of T containing #,,)(T).
e For any arithmetic sequence (an), we have ]t (T)|

e For any arithmetic sequence (an), t(san)(’]r) an) (T)-
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Cardinality, Borel Complexity and Novelty
e For any sequence of integers (an), t(san)(T) is an F,s (hence,
Borel) subgroup of T containing #,,)(T).

e For any arithmetic sequence (a,), we have ]t(san)("ﬂ“)| =c.

e For any arithmetic sequence (an), t(san)(’]f) 2 tia,)(T).

e For any arithmetic sequence (an), the subgroup z‘(san)(T) cannot be
characterized by any sequence of integers.

v
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Problem Formulation

Problem 1
Let (an) be an arithmetic sequence such that (;2=) is bounded. Does
there exist an ideal Z # Fin such that t(Ian)(T) is countable?

We will provide a positive solution to this problem, i.e., such an ideal
exists.
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Problem Formulation

Problem 1
Let (an) be an arithmetic sequence such that (;2=) is bounded. Does
there exist an ideal Z # Fin such that ¢/, (T) is countable?

We will provide a positive solution to this problem, i.e., such an ideal
exists.
Problem 2

Let (an) be an arithmetic sequence. Does Z; C 7, imply
(D) & (a)(D?

We will show that this is not true in general but for a special class of
ideals namely translation invariant P-ideals (defined later), the answer
to this problem is positive.
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Notation and Terminology |

For two subsets A, B of N and an ideal Z, we will write
e ACTBifA\B¢cT,
e A C Nis called Z-translation invariant if
A+n={m+neN: me A} belongstoZ forall nc Z.

Note that Z is called translation invariant if every A € 7 is Z-translation
invariant.
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Notation and Terminology Il

Further every ideal Z on N can be treated as a subset of the Cantor
space 2V in view of the fact that P(N) and 2" can be identified via the
characteristic functions. An ideal 7 is called analytic if it corresponds to
an analytic subset of the Cantor space 2",

snt-ideal

An ideal Z will be called strongly non-translation invariant (in short
snt-ideal) if it does not contain any infinite Z-translation invariant set,
i.e., for each infinite subset A € Z, there exists at least one k € Z for
which A— k ¢ 7.
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Cardinality and Borel Complexity [Ghosh, RM, 2022]
Consider any translation invariant analytic P-ideal Z (# Fin) of N.
e For any sequence of integers (an), t(Zan)(T) is an F,s (hence,
Borel) subgroup of T containing #4,)(T).
e For any arithmetic sequence (an), we have |t(Ian)(T)| =c.

e For any arithmetic sequence (ap), tIan)("JI‘) 2 tia,)(T).

31
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Cardinality and Borel Complexity [Ghosh, RM, 2022]
Consider any translation invariant analytic P-ideal Z (# Fin) of N.

e For any sequence of integers (ap), t- (@ )(T) is an F,s (hence,
Borel) subgroup of T containing #4,)(T).

e For any arithmetic sequence (an), we have |t(Ian)(T)| =c.
o For any arithmetic sequence (an), 7, 1(T) 2 {(a,)(T).
e For any arithmetic sequence (ap), if 7y C 7, then

tan(T) C 12 (D).

(an) ~* “(an)
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Method used here for constructing analytic P-ideals |

For a non-negative admissible matrix M = (a; ;) (where admissibility

means lim a;; = 0 for every j € N) one can define the corresponding
I—00

upper M-density of A C N by

dm(A) = limsup (M- x(A))

n—oo

where x(A) is the characteristic sequence of A, i.e.,

1 ifneA,

A) = ith = )
X(A) = ) wi Xn {O otherwise.
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Method used here for constructing analytic P-ideals |l

If for A C N, du(A) = di(A) then we say that the M-density of A exists
and is denoted by ay(A).

The analytic P-ideal Z corresponding to M is obtained by

T={ACN: du(A) =0}
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Some examples of snt-ideals

Consider the non-negative regular matrix M defined by

1 ifg=2p—1

M = (bpg) and Dpq = {O otherwise

The corresponding ideal Z = {A C N : ay(A) = 0} satisfies the
property that

T={ACN :AC" 2N}

Now consider any infinite set B € Z. Observe that B C* 2N which
implies B+ 1 ¢ Z. Hence the ideal 7 is a snt-ideal.

Similarly, for any m € N\ {1} if we define
I={ACN:AC*N\mN}

then Z becomes a snt analytic P-ideal.
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Some examples of non-snt ideals

Consider the analytic P-ideal Z = {A C N : dy(A) = 0}, where M is a
non-negative regular matrix defined by

1 ifj=(20)?
M= (b;) and b; =
( ”) Y {O otherwise.
Then, the set A= {ne N : n= (2k + 1) for all k € N} is translation
invariant w.r.t Z. Therefore Z is a non-snt ideal. Note that all the

density ideals we have studied so far are translation invariant therefore
non-snt.
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Characterization of snt-ideals

The concept of snt-ideal comes from the fact that we want ideals that
does not have sets with arbitrary block length. Equivalently, we want to
construct a filter which do not contain sets with arbitrary gap in it.

An analytic P-ideal Z is a snt-ideal if and only if

(xx) forall A* = {m < nx <...< n;<...} € Z* there exists a fixed
m e Nand ip« € Nsuchthat nj.y —n; < mforall i > ig-.
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Main Results [pas-Ghosh, APAL, 2023 |

Theorem 1

For any analytic P-ideal Z, tén)(T) is a F,s (hence, Borel) subgroup of
T containing f(4,)(T).

Theorem 2

For any analytic P-ideal Z and x € T, if supp(x) € Z and supp(x) is
Z-translation invariant, then x € t(Ian)(T).
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Main Results [pas-Ghosh, ApaL, 2023] Il

Theorem 3

For any non-snt analytic P-ideal Z and for any arithmetic sequence
(an). sy (D) =

Theorem 4

For any non-snt analytic P-ideal Z and for any arithmetic sequence
(@), 1L 1(T) 2 ta(T) and |2 (T)\ {z,)(T)| = c.

Therefore, all the cardinality related observations (that we have seen
for translation invariant ideals) actually hold for non-snt ideals.
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Main Results [pas-Ghosh, ApaL, 2023] Il

Theorem 5

For a b-bounded arithmetic sequence (a,) and an analytic P-ideal Z,
()(T) = f(a,)(T) if and only if 7 is a sni-ideal.

This result provides a negative solution to Problem 2 (as Fin C 7).

Theorem 6

Let Z be a snt analytic P-ideal. Then t(Ian)(’IF) is countable if and only if
(an) is b-bounded.

This provides a positive solution to problem 1, i.e., there exists an ideal
strictly bigger than the ideal Fin for which the subgroup t(Ian)(']I‘) can be
countable.
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Main Results [pas-Ghosh, ApaL, 2023 IV

Novelty [Das-Ghosh, Communicated, 2025]

For any dense analytic P-ideal Z and for any arithmetic sequence (an),
the subgroup tIan)("]I‘) cannot be characterized by any sequence of

integers.

Prof. Pratulananda Das*! (Professor, Depart Z-Characterized subgroups of the circle 27/34



Conclusion and Future Scope

Open Problem 1

Does the previous result hold for more general class of ideals (in
particular, for the class of non-snt ideals)?
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Conclusion and Future Scope

Open Problem 1

Does the previous result hold for more general class of ideals (in
particular, for the class of non-snt ideals)?

Open Problem 2

Classify the class of ideals for which corresponding Z-characterized
subgroups are Borel sets. In particular, what can you conclude
regarding the cardinality of an Z-characterized subgroup if Z is not an
analytic P-ideal.
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Conclusion and Future Scope

Open Problem 1

Does the previous result hold for more general class of ideals (in
particular, for the class of non-snt ideals)?

Open Problem 2

Classify the class of ideals for which corresponding Z-characterized
subgroups are Borel sets. In particular, what can you conclude
regarding the cardinality of an Z-characterized subgroup if Z is not an
analytic P-ideal.

Open Problem 3

Compare the class of non-snt ideals with other well known class of
ideals (in particular, the class of dense ideals).
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