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Definition
Recall that a forcing notion IP has the Laver property if the

following holds for every P-generic extension V[G]:

If f € w* NV[G] and there exists g € w¥ NV with f < g, then
there exists S € ([, [g(n)]=""!) NV with f(n) € S(n) for each
necw.

Note:

e If P has the Laver property, then P does not add Cohen reals.

e The Laver property is preserved under countable support
iterations of proper forcing notions.
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Definition

Let U be an ultrafilter over w. The forcing notion Ly, (Laver
forcing relativized to U) consists of trees T C w<“ such that for
each stem(T)Cse T :succy(s):={nc€w:s"neT}el,
ordered by inclusion.

Question: For what ultrafilters I/ does Iy, have the Laver property?

Call such a U a Laver ultrafilter.
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Laver ultrafilters

Theorem

U is a Laver ultrafilter if and only if the following holds:

For every sequence (P, : n € w) of partitions of w into finitely
many sets, there exists A € U such that for every n € w, A has
non-empty intersection with at most n+ 1 elements of P,.

Some easy corollaries:

(i) Every rapid P-point is a Laver ultrafilter.
(ii) Every Laver ultrafilter is rapid.
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(iii) If U is a Laver ultrafilter and V <gk U, then V is a Laver
ultrafilter.

(iv) fU, Vi, i € w, are Laver ultrafilters, then U — >, Vi is a
Laver ultrafilter.

where U — 37, Vi is the ultrafilter on w x w consisting of those

ACw xw satisfying {i ew: {j ew: (i,j) € A} € V;} eU.
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Definition (Baumgartner [1])

Let Z be a collection of subsets of some set X (in our case,
X =2%or X =Q C 2¥) such that Z contains all singletons and is

closed under subsets.

Call an ultrafilter U over w an Z-ultrafilter if for every F : w — X,
there exists some A € U with F[A] € .
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Some Z of interest:

e the nowhere dense subsets of 2. Call Z-ultrafilters nowhere
dense ultrafilters.

e the subsets of 2% with closure of measure zero, call
Z-ultrafilters measure zero ultrafilters.
e the scattered subsets of 2%, call Z-ultrafilters scattered

ultrafilters.

e the subsets of 2% with countable closure, call Z-ultrafilters
countable closed ultrafilters.

e the discrete subsets of 2%, call Z-ultrafilters discrete
ultrafilters.
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Containments among these ultrafilter classes provable in ZFC
(Brendle [3]).

nowhere dense UF

|

scattered UF measure zero UF
discrete UF countable closed UF
P-point

An arrow (Z-ultrafilter) — (7-ultrafilter) means that every Z-ultrafilter is
a J-ultrafilter. 7
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Definition
For AC 2“ and n € w, define levela(n) := |{x|, : x € A}|.
For a non-decreasing, unbounded function f € w* consider the

collection
Zr = {AC2¥: levelg < f +1}.

Lemma

U is a Laver ultrafilter if and only if U is an Z¢-ultrafilter for each
f € w* as above.



Laver ultrafilters in the Baumgartner framework



Laver ultrafilters in the Baumgartner framework

Observe: Each Zr consists of measure zero sets, and
A€ Tf — Ac T, hence every Laver ultrafilter is a measure
zero ultrafilter.



Laver ultrafilters in the Baumgartner framework

Observe: Each Zr consists of measure zero sets, and
A€ Tf — Ac T, hence every Laver ultrafilter is a measure
zero ultrafilter.

Compare:

Theorem (Btaszczyk, Shelah [2])

ILy; does not add Cohen reals if and only if U is a nowhere dense
ultrafilter.



Laver ultrafilters in the Baumgartner framework

Observe: Each Zr consists of measure zero sets, and
A€ Tf — Ac T, hence every Laver ultrafilter is a measure
zero ultrafilter.

Compare:

Theorem (Btaszczyk, Shelah [2])

ILy; does not add Cohen reals if and only if U is a nowhere dense
ultrafilter.

Side note: Laver ultrafilters are y?—ultrafilters for every strictly
increasing f € w*, where y? denotes the ideal of subsets of 2%
with closure in the Yorioka ideal Jr (approximations of the strong
measure zero ideal SN, [5]).



Extended map of ZFC-implications

nowhere dense UF hereditarily rapid UF

I

scattered UF measure zero UF

discrete UF countable closed UF Laver UF

P-point

rapid P-point

T

Ramsey UF
10
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Extended map of ZFC-implications

This map is complete:

Theorem (Brendle, Flaskova [4])

MA(countable) implies the existence of a hereditarily rapid
ultrafilter that is not nowhere dense.

Theorem

MA(o — linked) implies the existence of a Laver ultrafilter that is

not scattered.

Open problem: Does MA imply the existence of an ultrafilter that
is both countable closed and hereditarily rapid, but not a Laver
ultrafilter?
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(Generic) existence of Laver ultrafilters

Definition
An ultrafilter class C exists generically if every filter base of
cardinality < ¢ can be extended to an ultrafilter in the class C.

Theorem

(i) If cov(M) = ¢ or non(N A) = ¢, then Laver ultrafilters exist
generically.

(i) If Laver ultrafilters exist generically, then non(SN') = ¢ and
max{non(&),0} =c.

Open problem: Is the generic existence of Laver ultrafilters
equivalent to max{cov(M), non(N A)} = ¢?
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Using (i):

Theorem
It is consistent that there are no P-points while Laver ultrafilters

exist generically.

Proof.
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(Generic) existence of Laver ultrafilters

Using (i):
Theorem

It is consistent that there are no P-points while Laver ultrafilters
exist generically.

Proof.

Kill P-points using Grigorieff forcing and simultaneously increase

non(N A). O
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Thank you for your attention!
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