

Laver ultrafilters

Silvan Horvath, ETH Zürich

Winter School 2026

Joint work with Tan Özalp

<https://arxiv.org/abs/2602.01478>

Introduction

Introduction

Definition

Recall that a forcing notion \mathbb{P} has the *Laver property* if the following holds for every \mathbb{P} -generic extension $\mathbb{V}[G]$:

Introduction

Definition

Recall that a forcing notion \mathbb{P} has the *Laver property* if the following holds for every \mathbb{P} -generic extension $\mathbf{V}[G]$:

If $f \in \omega^\omega \cap \mathbf{V}[G]$ and there exists $g \in \omega^\omega \cap \mathbf{V}$ with $f < g$, then there exists $S \in (\prod_{n \in \omega} [g(n)]^{\leq n+1}) \cap \mathbf{V}$ with $f(n) \in S(n)$ for each $n \in \omega$.

Introduction

Definition

Recall that a forcing notion \mathbb{P} has the *Laver property* if the following holds for every \mathbb{P} -generic extension $\mathbf{V}[G]$:

If $f \in \omega^\omega \cap \mathbf{V}[G]$ and there exists $g \in \omega^\omega \cap \mathbf{V}$ with $f < g$, then there exists $S \in (\prod_{n \in \omega} [g(n)]^{\leq n+1}) \cap \mathbf{V}$ with $f(n) \in S(n)$ for each $n \in \omega$.

Note:

Introduction

Definition

Recall that a forcing notion \mathbb{P} has the *Laver property* if the following holds for every \mathbb{P} -generic extension $\mathbf{V}[G]$:

If $f \in \omega^\omega \cap \mathbf{V}[G]$ and there exists $g \in \omega^\omega \cap \mathbf{V}$ with $f < g$, then there exists $S \in (\prod_{n \in \omega} [g(n)]^{\leq n+1}) \cap \mathbf{V}$ with $f(n) \in S(n)$ for each $n \in \omega$.

Note:

- If \mathbb{P} has the Laver property, then \mathbb{P} does not add Cohen reals.

Introduction

Definition

Recall that a forcing notion \mathbb{P} has the *Laver property* if the following holds for every \mathbb{P} -generic extension $\mathbf{V}[G]$:

If $f \in \omega^\omega \cap \mathbf{V}[G]$ and there exists $g \in \omega^\omega \cap \mathbf{V}$ with $f < g$, then there exists $S \in (\prod_{n \in \omega} [g(n)]^{\leq n+1}) \cap \mathbf{V}$ with $f(n) \in S(n)$ for each $n \in \omega$.

Note:

- If \mathbb{P} has the Laver property, then \mathbb{P} does not add Cohen reals.
- The Laver property is preserved under countable support iterations of proper forcing notions.

Introduction

Introduction

Definition

Let \mathcal{U} be an ultrafilter over ω . The forcing notion $\mathbb{L}_{\mathcal{U}}$ (Laver forcing relativized to \mathcal{U}) consists of trees $T \subseteq \omega^{<\omega}$ such that for each stem(T) $\subseteq s \in T$: $\text{succ}_T(s) := \{n \in \omega : s \upharpoonright n \in T\} \in \mathcal{U}$, ordered by inclusion.

Definition

Let \mathcal{U} be an ultrafilter over ω . The forcing notion $\mathbb{L}_{\mathcal{U}}$ (Laver forcing relativized to \mathcal{U}) consists of trees $T \subseteq \omega^{<\omega}$ such that for each stem(T) $\subseteq s \in T$: $\text{succ}_T(s) := \{n \in \omega : s \upharpoonright n \in T\} \in \mathcal{U}$, ordered by inclusion.

Question: For what ultrafilters \mathcal{U} does $\mathbb{L}_{\mathcal{U}}$ have the Laver property?

Introduction

Definition

Let \mathcal{U} be an ultrafilter over ω . The forcing notion $\mathbb{L}_{\mathcal{U}}$ (Laver forcing relativized to \mathcal{U}) consists of trees $T \subseteq \omega^{<\omega}$ such that for each stem(T) $\subseteq s \in T$: $\text{succ}_T(s) := \{n \in \omega : s \upharpoonright n \in T\} \in \mathcal{U}$, ordered by inclusion.

Question: For what ultrafilters \mathcal{U} does $\mathbb{L}_{\mathcal{U}}$ have the Laver property?

Call such a \mathcal{U} a *Laver ultrafilter*.

Laver ultrafilters

Theorem

\mathcal{U} is a Laver ultrafilter if and only if the following holds:

Laver ultrafilters

Theorem

\mathcal{U} is a Laver ultrafilter if and only if the following holds:

For every sequence $\langle \mathcal{P}_n : n \in \omega \rangle$ of partitions of ω into finitely many sets, there exists $A \in \mathcal{U}$ such that for every $n \in \omega$, A has non-empty intersection with at most $n + 1$ elements of \mathcal{P}_n .

Laver ultrafilters

Theorem

\mathcal{U} is a Laver ultrafilter if and only if the following holds:

For every sequence $\langle \mathcal{P}_n : n \in \omega \rangle$ of partitions of ω into finitely many sets, there exists $A \in \mathcal{U}$ such that for every $n \in \omega$, A has non-empty intersection with at most $n + 1$ elements of \mathcal{P}_n .

Some easy corollaries:

Laver ultrafilters

Theorem

\mathcal{U} is a Laver ultrafilter if and only if the following holds:

For every sequence $\langle \mathcal{P}_n : n \in \omega \rangle$ of partitions of ω into finitely many sets, there exists $A \in \mathcal{U}$ such that for every $n \in \omega$, A has non-empty intersection with at most $n + 1$ elements of \mathcal{P}_n .

Some easy corollaries:

- (i) Every rapid P -point is a Laver ultrafilter.

Laver ultrafilters

Theorem

\mathcal{U} is a Laver ultrafilter if and only if the following holds:

For every sequence $\langle \mathcal{P}_n : n \in \omega \rangle$ of partitions of ω into finitely many sets, there exists $A \in \mathcal{U}$ such that for every $n \in \omega$, A has non-empty intersection with at most $n + 1$ elements of \mathcal{P}_n .

Some easy corollaries:

- (i) Every rapid P -point is a Laver ultrafilter.
- (ii) Every Laver ultrafilter is rapid.

Introduction

- (iii) If \mathcal{U} is a Laver ultrafilter and $\mathcal{V} \leq_{\text{RK}} \mathcal{U}$, then \mathcal{V} is a Laver ultrafilter.

Introduction

- (iii) If \mathcal{U} is a Laver ultrafilter and $\mathcal{V} \leq_{\text{RK}} \mathcal{U}$, then \mathcal{V} is a Laver ultrafilter.
- (iv) If $\mathcal{U}, \mathcal{V}_i, i \in \omega$, are Laver ultrafilters, then $\mathcal{U} - \sum_{i \in \omega} \mathcal{V}_i$ is a Laver ultrafilter.

Introduction

- (iii) If \mathcal{U} is a Laver ultrafilter and $\mathcal{V} \leq_{\text{RK}} \mathcal{U}$, then \mathcal{V} is a Laver ultrafilter.
- (iv) If $\mathcal{U}, \mathcal{V}_i, i \in \omega$, are Laver ultrafilters, then $\mathcal{U} - \sum_{i \in \omega} \mathcal{V}_i$ is a Laver ultrafilter.

where $\mathcal{U} - \sum_{i \in \omega} \mathcal{V}_i$ is the ultrafilter on $\omega \times \omega$ consisting of those $A \subseteq \omega \times \omega$ satisfying $\{i \in \omega : \{j \in \omega : \langle i, j \rangle \in A\} \in \mathcal{V}_i\} \in \mathcal{U}$.

Laver ultrafilters in the Baumgartner framework

Definition (Baumgartner [1])

Let \mathcal{I} be a collection of subsets of some set X (in our case, $X = 2^\omega$ or $X = \mathbb{Q} \subseteq 2^\omega$) such that \mathcal{I} contains all singletons and is closed under subsets.

Laver ultrafilters in the Baumgartner framework

Definition (Baumgartner [1])

Let \mathcal{I} be a collection of subsets of some set X (in our case, $X = 2^\omega$ or $X = \mathbb{Q} \subseteq 2^\omega$) such that \mathcal{I} contains all singletons and is closed under subsets.

Call an ultrafilter \mathcal{U} over ω an \mathcal{I} -ultrafilter if for every $F : \omega \rightarrow X$, there exists some $A \in \mathcal{U}$ with $F[A] \in \mathcal{I}$.

Laver ultrafilters in the Baumgartner framework

Some \mathcal{I} of interest:

Laver ultrafilters in the Baumgartner framework

Some \mathcal{I} of interest:

- the nowhere dense subsets of 2^ω . Call \mathcal{I} -ultrafilters *nowhere dense ultrafilters*.

Laver ultrafilters in the Baumgartner framework

Some \mathcal{I} of interest:

- the nowhere dense subsets of 2^ω . Call \mathcal{I} -ultrafilters *nowhere dense ultrafilters*.
- the subsets of 2^ω with closure of measure zero, call \mathcal{I} -ultrafilters *measure zero ultrafilters*.

Laver ultrafilters in the Baumgartner framework

Some \mathcal{I} of interest:

- the nowhere dense subsets of 2^ω . Call \mathcal{I} -ultrafilters *nowhere dense ultrafilters*.
- the subsets of 2^ω with closure of measure zero, call \mathcal{I} -ultrafilters *measure zero ultrafilters*.
- the scattered subsets of 2^ω , call \mathcal{I} -ultrafilters *scattered ultrafilters*.

Laver ultrafilters in the Baumgartner framework

Some \mathcal{I} of interest:

- the nowhere dense subsets of 2^ω . Call \mathcal{I} -ultrafilters *nowhere dense ultrafilters*.
- the subsets of 2^ω with closure of measure zero, call \mathcal{I} -ultrafilters *measure zero ultrafilters*.
- the scattered subsets of 2^ω , call \mathcal{I} -ultrafilters *scattered ultrafilters*.
- the subsets of 2^ω with countable closure, call \mathcal{I} -ultrafilters *countable closed ultrafilters*.

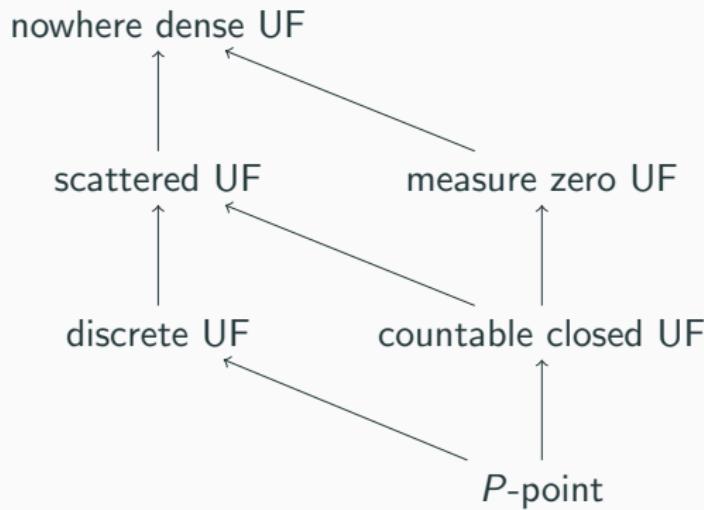
Laver ultrafilters in the Baumgartner framework

Some \mathcal{I} of interest:

- the nowhere dense subsets of 2^ω . Call \mathcal{I} -ultrafilters *nowhere dense ultrafilters*.
- the subsets of 2^ω with closure of measure zero, call \mathcal{I} -ultrafilters *measure zero ultrafilters*.
- the scattered subsets of 2^ω , call \mathcal{I} -ultrafilters *scattered ultrafilters*.
- the subsets of 2^ω with countable closure, call \mathcal{I} -ultrafilters *countable closed ultrafilters*.
- the discrete subsets of 2^ω , call \mathcal{I} -ultrafilters *discrete ultrafilters*.

Laver ultrafilters in the Baumgartner framework

Containments among these ultrafilter classes provable in ZFC (Brendle [3]).



An arrow $(\mathcal{I}\text{-ultrafilter}) \rightarrow (\mathcal{J}\text{-ultrafilter})$ means that every \mathcal{I} -ultrafilter is a \mathcal{J} -ultrafilter.

Laver ultrafilters in the Baumgartner framework

Definition

For $A \subseteq 2^\omega$ and $n \in \omega$, define $\text{level}_A(n) := |\{x|_n : x \in A\}|$.

Laver ultrafilters in the Baumgartner framework

Definition

For $A \subseteq 2^\omega$ and $n \in \omega$, define $\text{level}_A(n) := |\{x|_n : x \in A\}|$.

For a non-decreasing, unbounded function $f \in \omega^\omega$ consider the collection

$$\mathcal{I}_f := \{A \subseteq 2^\omega : \text{level}_A \leq f + 1\}.$$

Laver ultrafilters in the Baumgartner framework

Definition

For $A \subseteq 2^\omega$ and $n \in \omega$, define $\text{level}_A(n) := |\{x|_n : x \in A\}|$.

For a non-decreasing, unbounded function $f \in \omega^\omega$ consider the collection

$$\mathcal{I}_f := \{A \subseteq 2^\omega : \text{level}_A \leq f + 1\}.$$

Lemma

\mathcal{U} is a Laver ultrafilter if and only if \mathcal{U} is an \mathcal{I}_f -ultrafilter for each $f \in \omega^\omega$ as above.

Laver ultrafilters in the Baumgartner framework

Laver ultrafilters in the Baumgartner framework

Observe: Each \mathcal{I}_f consists of measure zero sets, and $A \in \mathcal{I}_f \iff \bar{A} \in \mathcal{I}_f$, hence every Laver ultrafilter is a measure zero ultrafilter.

Laver ultrafilters in the Baumgartner framework

Observe: Each \mathcal{I}_f consists of measure zero sets, and $A \in \mathcal{I}_f \iff \bar{A} \in \mathcal{I}_f$, hence every Laver ultrafilter is a measure zero ultrafilter.

Compare:

Theorem (Błaszczyk, Shelah [2])

$\mathbb{L}_{\mathcal{U}}$ does not add Cohen reals if and only if \mathcal{U} is a nowhere dense ultrafilter.

Laver ultrafilters in the Baumgartner framework

Observe: Each \mathcal{I}_f consists of measure zero sets, and $A \in \mathcal{I}_f \iff \bar{A} \in \mathcal{I}_f$, hence every Laver ultrafilter is a measure zero ultrafilter.

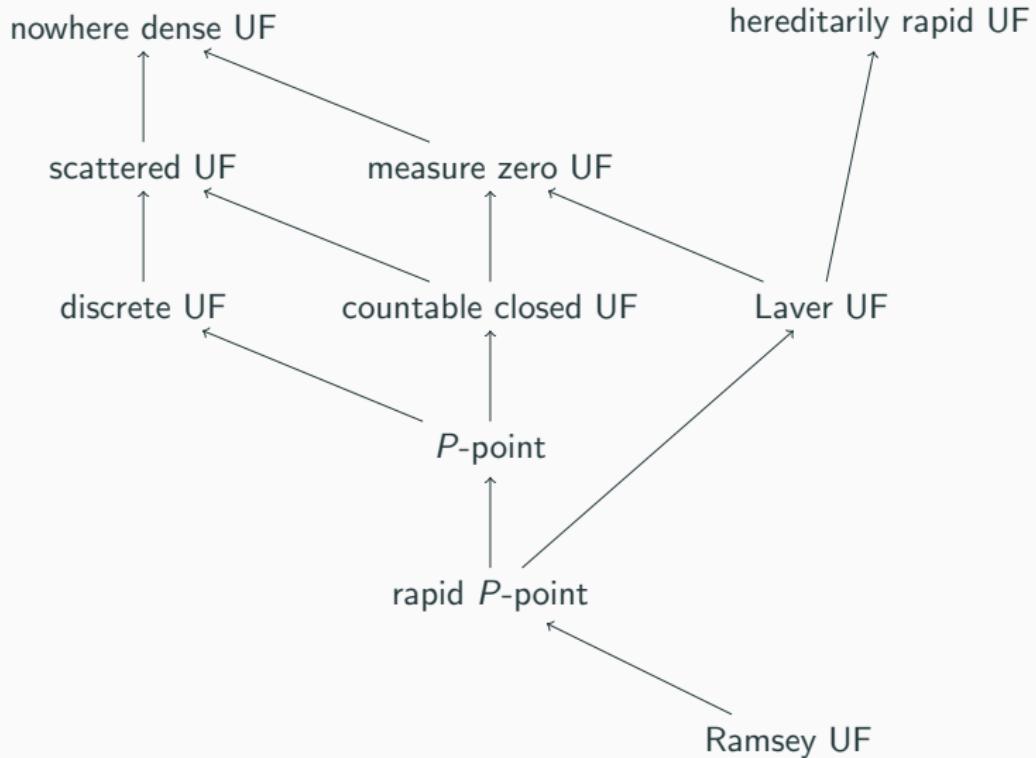
Compare:

Theorem (Błaszczyk, Shelah [2])

$\mathbb{L}_{\mathcal{U}}$ does not add Cohen reals if and only if \mathcal{U} is a nowhere dense ultrafilter.

Side note: Laver ultrafilters are \mathcal{Y}_f^0 -ultrafilters for every strictly increasing $f \in \omega^\omega$, where \mathcal{Y}_f^0 denotes the ideal of subsets of 2^ω with closure in the Yorioka ideal \mathcal{Y}_f (approximations of the *strong measure zero* ideal \mathcal{SN} , [5]).

Extended map of ZFC-implications



Extended map of ZFC-implications

This map is complete:

Extended map of ZFC-implications

This map is complete:

Theorem (Brendle, Flašková [4])

MA(countable) implies the existence of a hereditarily rapid ultrafilter that is not nowhere dense.

Extended map of ZFC-implications

This map is complete:

Theorem (Brendle, Flašková [4])

MA(countable) implies the existence of a hereditarily rapid ultrafilter that is not nowhere dense.

Theorem

MA(σ – linked) implies the existence of a Laver ultrafilter that is not scattered.

Extended map of ZFC-implications

This map is complete:

Theorem (Brendle, Flašková [4])

MA(countable) implies the existence of a hereditarily rapid ultrafilter that is not nowhere dense.

Theorem

MA(σ – linked) implies the existence of a Laver ultrafilter that is not scattered.

Open problem: Does MA imply the existence of an ultrafilter that is both countable closed and hereditarily rapid, but not a Laver ultrafilter?

(Generic) existence of Laver ultrafilters

(Generic) existence of Laver ultrafilters

Definition

An ultrafilter class \mathcal{C} exists generically if every filter base of cardinality $< \mathfrak{c}$ can be extended to an ultrafilter in the class \mathcal{C} .

(Generic) existence of Laver ultrafilters

Definition

An ultrafilter class \mathcal{C} exists generically if every filter base of cardinality $< \mathfrak{c}$ can be extended to an ultrafilter in the class \mathcal{C} .

Theorem

- (i) If $\text{cov}(\mathcal{M}) = \mathfrak{c}$ or $\text{non}(\mathcal{N}\mathcal{A}) = \mathfrak{c}$, then Laver ultrafilters exist generically.
- (ii) If Laver ultrafilters exist generically, then $\text{non}(\mathcal{SN}) = \mathfrak{c}$ and $\max\{\text{non}(\mathcal{E}), \mathfrak{d}\} = \mathfrak{c}$.

(Generic) existence of Laver ultrafilters

Definition

An ultrafilter class \mathcal{C} exists generically if every filter base of cardinality $< \mathfrak{c}$ can be extended to an ultrafilter in the class \mathcal{C} .

Theorem

- (i) If $\text{cov}(\mathcal{M}) = \mathfrak{c}$ or $\text{non}(\mathcal{N}\mathcal{A}) = \mathfrak{c}$, then Laver ultrafilters exist generically.
- (ii) If Laver ultrafilters exist generically, then $\text{non}(\mathcal{SN}) = \mathfrak{c}$ and $\max\{\text{non}(\mathcal{E}), \mathfrak{d}\} = \mathfrak{c}$.

Open problem: Is the generic existence of Laver ultrafilters equivalent to $\max\{\text{cov}(\mathcal{M}), \text{non}(\mathcal{N}\mathcal{A})\} = \mathfrak{c}$?

(Generic) existence of Laver ultrafilters

(Generic) existence of Laver ultrafilters

Using (i):

Theorem

It is consistent that there are no P -points while Laver ultrafilters exist generically.

Proof.

(Generic) existence of Laver ultrafilters

Using (i):

Theorem

It is consistent that there are no P -points while Laver ultrafilters exist generically.

Proof.

Kill P -points using Grigorieff forcing and simultaneously increase $\text{non}(\mathcal{N}\mathcal{A})$. □

Thank you for your attention!

References

- [1] James E. Baumgartner.
Ultrafilters on ω .
The Journal of Symbolic Logic, 60(2):624–639, 1995.
- [2] Aleksander Błaszczyk and Saharon Shelah.
Regular subalgebras of complete boolean algebras.
The Journal of Symbolic Logic, 66(2):792–800, 2001.
- [3] Jörg Brendle.
Between P -points and nowhere dense ultrafilters.
Israel Journal of Mathematics, 113:205–230, 1999.
- [4] Jörg Brendle and Jana Flašková.
Generic existence of ultrafilters on the natural numbers.
Fundamenta Mathematicae, 236(3):201–245, 2017.
- [5] Teruyuki Yorioka.
The cofinality of the strong measure zero ideal.
The Journal of Symbolic Logic, 67(4):1373–1384, 2002.