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Introduction

Definition

Recall that a forcing notion P has the Laver property if the

following holds for every P-generic extension V[G ]:

If f ∈ ωω ∩ V[G ] and there exists g ∈ ωω ∩ V with f < g , then

there exists S ∈ (
󰁔

n∈ω[g(n)]
≤n+1) ∩ V with f (n) ∈ S(n) for each

n ∈ ω.

Note:

• If P has the Laver property, then P does not add Cohen reals.

• The Laver property is preserved under countable support

iterations of proper forcing notions.
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Definition

Let U be an ultrafilter over ω. The forcing notion LU (Laver

forcing relativized to U) consists of trees T ⊆ ω<ω such that for

each stem(T ) ⊆ s ∈ T : succT (s) := {n ∈ ω : s󰃂n ∈ T} ∈ U ,
ordered by inclusion.
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Introduction

Definition

Let U be an ultrafilter over ω. The forcing notion LU (Laver

forcing relativized to U) consists of trees T ⊆ ω<ω such that for

each stem(T ) ⊆ s ∈ T : succT (s) := {n ∈ ω : s󰃂n ∈ T} ∈ U ,
ordered by inclusion.

Question: For what ultrafilters U does LU have the Laver property?

Call such a U a Laver ultrafilter.
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Laver ultrafilters

Theorem

U is a Laver ultrafilter if and only if the following holds:

For every sequence 〈Pn : n ∈ ω〉 of partitions of ω into finitely

many sets, there exists A ∈ U such that for every n ∈ ω, A has

non-empty intersection with at most n + 1 elements of Pn.

Some easy corollaries:

(i) Every rapid P-point is a Laver ultrafilter.

(ii) Every Laver ultrafilter is rapid.

3



Introduction
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(iii) If U is a Laver ultrafilter and V ≤RK U , then V is a Laver

ultrafilter.

(iv) If U ,Vi , i ∈ ω, are Laver ultrafilters, then U −
󰁓

i∈ω Vi is a

Laver ultrafilter.

where U −
󰁓

i∈ω Vi is the ultrafilter on ω × ω consisting of those

A ⊆ ω × ω satisfying {i ∈ ω : {j ∈ ω : 〈i , j〉 ∈ A} ∈ Vi} ∈ U .
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Definition (Baumgartner [1])

Let I be a collection of subsets of some set X (in our case,

X = 2ω or X = Q ⊆ 2ω) such that I contains all singletons and is

closed under subsets.
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Definition (Baumgartner [1])

Let I be a collection of subsets of some set X (in our case,

X = 2ω or X = Q ⊆ 2ω) such that I contains all singletons and is

closed under subsets.

Call an ultrafilter U over ω an I-ultrafilter if for every F : ω → X ,

there exists some A ∈ U with F [A] ∈ I.
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Laver ultrafilters in the Baumgartner framework

Some I of interest:

• the nowhere dense subsets of 2ω. Call I-ultrafilters nowhere
dense ultrafilters.

• the subsets of 2ω with closure of measure zero, call

I-ultrafilters measure zero ultrafilters.

• the scattered subsets of 2ω, call I-ultrafilters scattered
ultrafilters.

• the subsets of 2ω with countable closure, call I-ultrafilters
countable closed ultrafilters.

• the discrete subsets of 2ω, call I-ultrafilters discrete
ultrafilters.
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Laver ultrafilters in the Baumgartner framework

Containments among these ultrafilter classes provable in ZFC

(Brendle [3]).

P-point

countable closed UFdiscrete UF

scattered UF measure zero UF

nowhere dense UF

An arrow (I-ultrafilter) → (J -ultrafilter) means that every I-ultrafilter is
a J -ultrafilter. 7
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Laver ultrafilters in the Baumgartner framework

Definition

For A ⊆ 2ω and n ∈ ω, define levelA(n) := |{x |n : x ∈ A}|.

For a non-decreasing, unbounded function f ∈ ωω consider the

collection

If := {A ⊆ 2ω : levelA ≤ f + 1}.

Lemma

U is a Laver ultrafilter if and only if U is an If -ultrafilter for each
f ∈ ωω as above.
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Laver ultrafilters in the Baumgartner framework

Observe: Each If consists of measure zero sets, and

A ∈ If ⇐⇒ Ā ∈ If , hence every Laver ultrafilter is a measure

zero ultrafilter.

Compare:

Theorem (B󰀀laszczyk, Shelah [2])

LU does not add Cohen reals if and only if U is a nowhere dense

ultrafilter.

Side note: Laver ultrafilters are Y0
f -ultrafilters for every strictly

increasing f ∈ ωω, where Y0
f denotes the ideal of subsets of 2ω

with closure in the Yorioka ideal Yf (approximations of the strong

measure zero ideal SN , [5]).
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Extended map of ZFC-implications

Ramsey UF

rapid P-point

P-point

countable closed UF Laver UFdiscrete UF

scattered UF measure zero UF

nowhere dense UF hereditarily rapid UF
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MA(countable) implies the existence of a hereditarily rapid

ultrafilter that is not nowhere dense.

11



Extended map of ZFC-implications

This map is complete:

Theorem (Brendle, Flašková [4])
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Extended map of ZFC-implications

This map is complete:

Theorem (Brendle, Flašková [4])

MA(countable) implies the existence of a hereditarily rapid

ultrafilter that is not nowhere dense.

Theorem

MA(σ − linked) implies the existence of a Laver ultrafilter that is

not scattered.

Open problem: Does MA imply the existence of an ultrafilter that

is both countable closed and hereditarily rapid, but not a Laver

ultrafilter?
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An ultrafilter class C exists generically if every filter base of
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(Generic) existence of Laver ultrafilters

Definition

An ultrafilter class C exists generically if every filter base of

cardinality < c can be extended to an ultrafilter in the class C.

Theorem

(i) If cov(M) = c or non(NA) = c, then Laver ultrafilters exist

generically.

(ii) If Laver ultrafilters exist generically, then non(SN ) = c and

max{non(E), d} = c.

Open problem: Is the generic existence of Laver ultrafilters

equivalent to max{cov(M), non(NA)} = c?
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(Generic) existence of Laver ultrafilters

Using (i):

Theorem

It is consistent that there are no P-points while Laver ultrafilters

exist generically.

Proof.
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(Generic) existence of Laver ultrafilters

Using (i):

Theorem

It is consistent that there are no P-points while Laver ultrafilters

exist generically.

Proof.

Kill P-points using Grigorieff forcing and simultaneously increase

non(NA).
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Thank you for your attention!
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