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Higher Baire spaces 1/20

Classical combinatorial set theory is the study of subsets of
the reals. Usually we use “2 or “w.

The higher context is the result of replacing w by a regular
uncountable «:

Classical | w “w “2 P(w) finite countable ¥,
Higher | k "k "2 P(rk) <k <k G

We will work mainly with #2 with the <x-box topology, i.e.,
partial functions s : kK — 2 with |dom(s)| < x provide basic
clopen sets

[sl={fe"2|sCf}



Meagre, Lebesgue null & closed null 2/20

In this talk we will look at three classical o-ideals:

+ Meagre ideal M:
generated by nowhere dense subsets of “2.

+ Lebesgue null ideal V:
generated by subsets of “2 of Lebesgue measure zero.

« Closed null ideal &:
generated by closed elements of N.

Proposition
ECNNM. O



Higher meagre sets 3/20

Substituting w by «, the k-meagre ideal M, is the
<k-complete ideal generated by nowhere dense subsets of #2.
Equivalently, X € M, if and only if X is the union of xk-many
nowhere dense sets.

Theorem

*2 satisfies the x-Baire category theorem: if (D,, | « € k) are
open dense subsets of ©2, then N ., D, is dense. O

Equivalently, ©2 ¢ M.



Higher Lebesgue measure 420

Since "2 is not second countable, we cannot simply define
a real-valued measure that measures open subsets of ~2.

Relaxing the notion of a Lebesgue measure to metrics defined
on arbitrary monoids will not lead to a consistent
generalisation of measure either (see Agostini, Barrera, and
Dimonte, “On the problem of generalized measures: an
impossibility result”, 2026).

So now we wave goodbye to N.



Higher closed null? 5/20

Since generating sets for £ are closed, we may see them
combinatorially as the body [T of trees T' C <“2.

Lemma

Let T C <2, then u([7T7]) = 0 iff for each s € T there is

ns > dom(s) such that for at least half of the extensions ¢ 2 s
with dom(¢) = ns we have ¢ ¢ T. O

Define T' C <*2 to be halving if every s € T has o > dom(s)
such that
ftew2|scteT) < [{te™2|sct¢T)|
#extensions of s inside T’ #extensions of s outside T’
Define #H, to be <x-complete ideal generated by bodies of
halving trees T' C <F2.



Avoiding measures: the naive way 6/20

Proposition

Hi = M.

Proof. Easily [T] is nowhere dense for every halving T' C <#2.
We show the reverse by picture.

olv2l — olvl

-~/ dom(t) = dom(s) +
where v > w




Characterising £ with slaloms 7120

Let IP denote the set of interval partitions of w. Given
I=(I,|new)elPandy €[], P(™2), we write

new

[l = {x €“2|V®n € w(x | I, € p(n))}.

<ﬁ<<«%/‘é
e

Theorem Bartoszynski and Shelah 1992, Theorem 4.3
& is the set of all X C “2 such that there are (I,, | n € w) € IP
and ¢ € [1,,c., P(*2) with X C [¢]. and for which 3>, 120

new 9llnl

converges.

IP may be replaced by partitions of w into finite parts.



How to deal with the convergent sum? 8/20

As mentioned, in the higher context we have no infinite

summation. So, how to deal with 3°, _ |;(I:)|| ?

Theorem
X € & iff there are a convergent series of positive terms
> newenand I € IP and ¢ €[], P(2) with X C [¢], and

new

|o(n)]

lim ———
n—oo 2lnl . En

=0.
We rewrite the limit as:
o0 1 ol
Vm € wV°n € w( |p(n)|- m . < 20
n

Now we can use that >

new

en converges if - grows fast.



Generalising the classical definition 9/20

Classical:
X e & iff there are a fast growing h € “w and I € IP and
¢ € [,e P("2) with X C [¢], and
Vm € wV®n € w(|<p(n)| -m - h(n) < 2|]"|).
Higher:
We want limyex|Io| = k and |I,| < k. Hence, let k be weakly

inaccessible and IP,, be the family of interval partitions
(I, | a € k) of k with limyek || = .

X € & iff there are a fast growing h € "~ and I € IP,, and
¢ € [Toer P(7=2) with X C [¢], and

Vi < £Y%a € ﬁ(\go(a)\ (@) < 2\fa|).



Simplifying the higher definition 10/20

Lemma
The following are equivalent for weakly inaccessible :

1. X e

2. there are a fast growing h € "x and I € 1P, and
¢ € [Toer P(P>2) with X C [¢], and

V,u < KV a S fﬁ;(’gp(a)’ T h(a) < 2|ch‘>7

3. thereare I € 1P, and ¢ € [],.,, P(’2) with X C [¢], and

aER

v € ﬁ(‘gp(a)‘ < 2\fal).



Bounded partitions and completeness 1/20

Let BP,, be the set of partitions (B, | a € ) of x such that
B, € [k]<" and limyex|Ba| = k.

Define BE,, as the family of sets X C #2 such that there are
B € BP, and ¢ € [],¢, P(P~2) with X C [¢]. and

Ve € n<|<p(a)| < 2‘3“|>.

Theorem
For weakly inaccessible x, we have:

£ CBEL C M,.



Not ideal 12/20

One may ask if £, = &, and BE,, = BE,.

This turns out to be false.

Theorem Marton, Supina, Repicky, and vdV.

If x is weakly inaccessible, then there are X,Y € BE;, such
that X UY ¢ BE,..

If x is strongly inaccessible, then there are X, Y € &_ such
that X UY ¢ &.

Let £ and BE, be the <x-complete ideals generated by £
and BE,, respectively. Then:

£ CBE, C M,



Overview of families

Ex BE. M, —— P(%2)
E — BE;, NWD,,

All inclusions are strict.

13/20



Classical cardinal characteristics 14120

cof (&)
Il

cof (M) —— cof (N) — 9Ro

1 /

o]

non(M) /

cov(N) ; cov(€) 7 T

N; — add(N) — add(M)
I
add(&)



The localisation number 15/20

Let ¢ € [[,c.[x]1*l and f € %k, then we say ¢ localises f if
f(a) € p(a) for almost all a € «.

Afamily L C [],,.[x]!* is called localising if every f € “r is
localised by some ¢ € L, and let us call a family U C “x
unlocalisable if no ¢ € ], [x]'*! localises all f € U.

The localisation and unlocalisation numbers d,.(€*) and
b.(€*) are the least size of localising and unlocalisable
families, respectively.

Theorem Bartoszyiski 1987
cof(N) =0o(e*) and add(N') = b(e*). O



From classical to higher 16/20

R, — b(€*) —— add(M)



From classical to higher 16/20

Assumptions = Y.
k= k<" is regular non (M) Or
(@) « > 1o

(b) x is inaccessible

(c) » is weakly compact

e cov(M.)
/



Overview of the classical & higher relations 17/20

We have the following ZFC-provable results for s strongly
inaccessible:

Classical E. BE,.
non(&) < non(M) non (&) < non(BE,) < non(M,)

add(€) < b add(E,) < by, ?

s < non(&) 4 s, < non(BEy)

e <non(&) ? e, < non(BE,)

b(e*) < add(€) b.(€*) <non(&;) be(e*) <non(BE,)
add(M) < non(&) ? ;
add(M) < add(€) ? ?
add(€) < cov(M) [ ?

Those results that are known also dualise.



Unbounding and club unbounding 18/20

For f,g € "k, define f <! g if there is a club set C' C & such
that f(a) < g(a) for all a € C. We define b as the least size
of a <l-unbounded family.

Theorem Cummings and Shelah 1995, Theorem 6

6! = b,.

We may dually describe 2¢' as the least size of a
<°l-dominating family. There is the following long-standing
open question:

Theorem Cummings and Shelah 1995

Iso! = 9,2

Theorem Cummings and Shelah 1995, Theorem 8

If » > 1, then 2! =,. (E.g. » strongly inaccessible)



Unbounding and additivity of higher closed null 19/20

Theorem

add(&,) < bel,

Main point of the proof. If I € IP,,, then {min(l,) |« € k} is a
club set.

Hence, if ., [¢¢]. € &, where each slalom ¢ has
associated partition J¢ € IP,, then there is a club C such that
C'is almost contained in { min(J3) | a € x} for each ¢.

To finish a proof, one constructs slaloms o, for each b € B,
where B is a <“-unbounded. Then show that

[oole € Ugen[¥°]+
for one of those b € B.

This does not work for B, ...



The comparing the splitting number with B£,, 20/20

Theorem
5, < non(BEy).
Proof. If AC *2and A ¢ BE,, then {z7'(1) |z c A} isa
splitting family.
Let Y € [x]" and without loss we assume |« \ Y| = &, then we
define B € BP, such that |[B,NY| = 2*land |[B, \ Y| = |a|.
Define € [P (5=2) by

p(a) = {s€P*2|s | (B,NY)is constant}
Since A ¢ BE,, there is x € A with ¢ [].. Hence, for
cofinally many « € x we see that = | (B, NY) is not constant.
It follows that |{z(¢) =i | £ € Y}| = for both i € 2. O

This does not work for &, ...
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