

Higher Closed Null Ideal(s)

Tristan van der Vlugt (TU Wien)

joint with Adam Marton, Jaroslav Šupina and Miroslav Repický (Košice)

Winter School

Hejnice, Czech Republic

3 February 2026

Classical combinatorial set theory is the study of subsets of the reals. Usually we use ω_2 or ω_ω .

The *higher context* is the result of replacing ω by a regular uncountable κ :

Classical	ω	ω_ω	ω_2	$\mathcal{P}(\omega)$	finite	countable	\aleph_1
Higher	κ	κ_κ	κ_2	$\mathcal{P}(\kappa)$	$<\kappa$	$\leq\kappa$	κ^+

We will work mainly with κ_2 with the $<\kappa$ -box topology, i.e., partial functions $s : \kappa \rightarrow 2$ with $|\text{dom}(s)| < \kappa$ provide basic clopen sets

$$[s] = \{f \in \kappa_2 \mid s \subseteq f\}.$$

In this talk we will look at three classical σ -ideals:

- **Meagre ideal \mathcal{M} :**

generated by nowhere dense subsets of ω_2 .

- **Lebesgue null ideal \mathcal{N} :**

generated by subsets of ω_2 of Lebesgue measure zero.

- **Closed null ideal \mathcal{E} :**

generated by closed elements of \mathcal{N} .

Proposition

$$\mathcal{E} \subseteq \mathcal{N} \cap \mathcal{M}.$$

□

Substituting ω by κ , the κ -meagre ideal \mathcal{M}_κ is the \leq_κ -complete ideal generated by nowhere dense subsets of ${}^\kappa 2$. Equivalently, $X \in \mathcal{M}_\kappa$ if and only if X is the union of κ -many nowhere dense sets.

Theorem

${}^\kappa 2$ satisfies the κ -Baire category theorem: if $\langle D_\alpha \mid \alpha \in \kappa \rangle$ are open dense subsets of ${}^\kappa 2$, then $\bigcap_{\alpha \in \kappa} D_\alpha$ is dense. □

Equivalently, ${}^\kappa 2 \notin \mathcal{M}_\kappa$.

Since κ^2 is not second countable, we cannot simply define a *real-valued* measure that measures open subsets of κ^2 .

Relaxing the notion of a Lebesgue measure to metrics defined on arbitrary monoids will not lead to a consistent generalisation of measure either (see *Agostini, Barrera, and Dimonte, “On the problem of generalized measures: an impossibility result”, 2026*).

So now we wave goodbye to \mathcal{N} .

Since generating sets for \mathcal{E} are closed, we may see them combinatorially as the body $[T]$ of trees $T \subseteq {}^{<\omega}2$.

Lemma

Let $T \subseteq {}^{<\omega}2$, then $\mu([T]) = 0$ iff for each $s \in T$ there is $n_s > \text{dom}(s)$ such that for at least *half* of the extensions $t \supseteq s$ with $\text{dom}(t) = n_s$ we have $t \notin T$. □

Define $T \subseteq {}^{<\kappa}2$ to be *halving* if every $s \in T$ has $\alpha_s > \text{dom}(s)$ such that

$$\left| \{t \in {}^{\alpha_s}2 \mid s \subseteq t \in T\} \right| \leq \left| \{t \in {}^{\alpha_s}2 \mid s \subseteq t \notin T\} \right|.$$

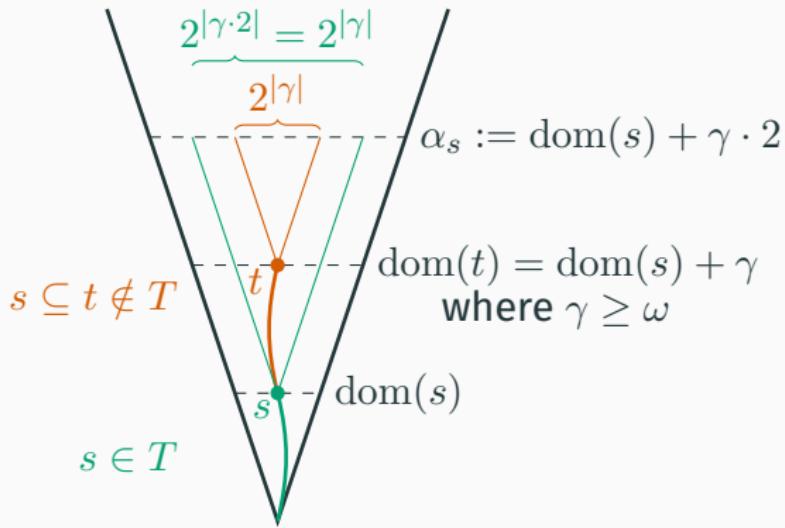
extensions of s inside T # extensions of s outside T

Define \mathcal{H}_κ to be \leq_κ -complete ideal generated by bodies of halving trees $T \subseteq {}^{<\kappa}2$.

Proposition

$$\mathcal{H}_\kappa = \mathcal{M}_\kappa.$$

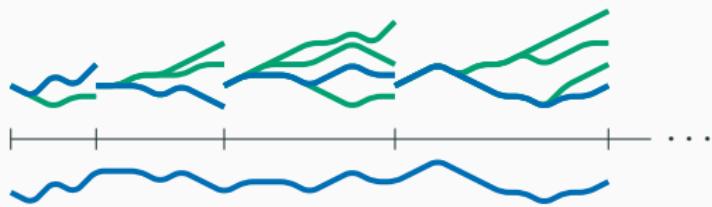
Proof. Easily $[T]$ is nowhere dense for every halving $T \subseteq {}^{<\kappa}2$. We show the reverse by picture.



□

Let IP denote the set of interval partitions of ω . Given $I = \langle I_n \mid n \in \omega \rangle \in \text{IP}$ and $\varphi \in \prod_{n \in \omega} \mathcal{P}(I_n 2)$, we write

$$[\varphi]_* = \{x \in {}^\omega 2 \mid \forall^\infty n \in \omega (x \upharpoonright I_n \in \varphi(n))\}.$$



Theorem *Bartoszyński and Shelah 1992, Theorem 4.3*

\mathcal{E} is the set of all $X \subseteq {}^\omega 2$ such that there are $\langle I_n \mid n \in \omega \rangle \in \text{IP}$ and $\varphi \in \prod_{n \in \omega} \mathcal{P}(I_n 2)$ with $X \subseteq [\varphi]_*$ and for which $\sum_{n \in \omega} \frac{|\varphi(n)|}{2^{|I_n|}}$ converges.

IP may be replaced by partitions of ω into finite parts.

As mentioned, in the higher context we have no infinite summation. So, how to deal with $\sum_{n \in \omega} \frac{|\varphi(n)|}{2^{|I_n|}}$?

Theorem *Cardona, Marton, and Šupina 2025*

$X \in \mathcal{E}$ iff there are a convergent series of positive terms

$\sum_{n \in \omega} \varepsilon_n$ and $I \in \text{IP}$ and $\varphi \in \prod_{n \in \omega} \mathcal{P}(I_n 2)$ with $X \subseteq [\varphi]_*$ and

$$\lim_{n \rightarrow \infty} \frac{|\varphi(n)|}{2^{|I_n|} \cdot \varepsilon_n} = 0.$$

We rewrite the limit as:

$$\forall m \in \omega \forall^\infty n \in \omega \left(|\varphi(n)| \cdot m \cdot \frac{1}{\varepsilon_n} < 2^{|I_n|} \right)$$

Now we can use that $\sum_{n \in \omega} \varepsilon_n$ converges if $\frac{1}{\varepsilon_n}$ grows fast.

Classical:

$X \in \mathcal{E}$ iff there are a *fast growing* $h \in {}^\omega\omega$ and $I \in \text{IP}$ and $\varphi \in \prod_{n \in \omega} \mathcal{P}(I_n 2)$ with $X \subseteq [\varphi]_*$ and

$$\forall m \in \omega \forall^\infty n \in \omega \left(|\varphi(n)| \cdot m \cdot h(n) < 2^{|I_n|} \right).$$

Higher:

We want $\lim_{\alpha \in \kappa} |I_\alpha| = \kappa$ and $|I_\alpha| < \kappa$. Hence, let κ be weakly inaccessible and IP_κ be the family of interval partitions

$\langle I_\alpha \mid \alpha \in \kappa \rangle$ of κ with $\lim_{\alpha \in \kappa} |I_\alpha| = \kappa$.

$X \in \mathcal{E}_\kappa^-$ iff there are a *fast growing* $h \in {}^\kappa\kappa$ and $I \in \text{IP}_\kappa$ and

$\varphi \in \prod_{\alpha \in \kappa} \mathcal{P}(I_\alpha 2)$ with $X \subseteq [\varphi]_*$ and

$$\forall \mu < \kappa \forall^\infty \alpha \in \kappa \left(|\varphi(\alpha)| \cdot \mu \cdot h(\alpha) < 2^{|I_\alpha|} \right).$$

Lemma *Marton, Šupina, Repický, and vdV.*

The following are equivalent for weakly inaccessible κ :

1. $X \in \mathcal{E}_\kappa^-$

2. there are a *fast growing* $h \in {}^\kappa\kappa$ and $I \in \text{IP}_\kappa$ and

$\varphi \in \prod_{\alpha \in \kappa} \mathcal{P}(I_\alpha 2)$ with $X \subseteq [\varphi]_*$ and

$$\forall \mu < \kappa \forall {}^\infty\alpha \in \kappa \left(|\varphi(\alpha)| \cdot \mu \cdot h(\alpha) < 2^{|I_\alpha|} \right),$$

3. there are $I \in \text{IP}_\kappa$ and $\varphi \in \prod_{\alpha \in \kappa} \mathcal{P}(I_\alpha 2)$ with $X \subseteq [\varphi]_*$ and

$$\forall {}^\infty\alpha \in \kappa \left(|\varphi(\alpha)| < 2^{|I_\alpha|} \right).$$

Let BP_κ be the set of partitions $\langle B_\alpha \mid \alpha \in \kappa \rangle$ of κ such that $B_\alpha \in [\kappa]^{<\kappa}$ and $\lim_{\alpha \in \kappa} |B_\alpha| = \kappa$.

Define \mathcal{BE}_κ^- as the family of sets $X \subseteq {}^\kappa 2$ such that there are $B \in \text{BP}_\kappa$ and $\varphi \in \prod_{\alpha \in \kappa} \mathcal{P}(^{B_\alpha} 2)$ with $X \subseteq [\varphi]_*$ and

$$\forall^\infty \alpha \in \kappa \left(|\varphi(\alpha)| < 2^{|B_\alpha|} \right).$$

Theorem *Marton, Šupina, Repický, and vdV.*

For weakly inaccessible κ , we have:

$$\mathcal{E}_\kappa^- \subsetneq \mathcal{BE}_\kappa^- \subsetneq \mathcal{M}_\kappa.$$

One may ask if $\mathcal{E}_\kappa^- = \mathcal{E}_\kappa$ and $\mathcal{BE}_\kappa^- = \mathcal{BE}_\kappa$.

This turns out to be **false**.

Theorem *Marton, Šupina, Repický, and vdV.*

If κ is weakly inaccessible, then there are $X, Y \in \mathcal{BE}_\kappa^-$ such that $X \cup Y \notin \mathcal{BE}_\kappa^-$.

If κ is strongly inaccessible, then there are $X, Y \in \mathcal{E}_\kappa^-$ such that $X \cup Y \notin \mathcal{E}_\kappa^-$.

Let \mathcal{E}_κ and \mathcal{BE}_κ be the \leq_κ -complete ideals generated by \mathcal{E}_κ^- and \mathcal{BE}_κ^- , respectively. Then:

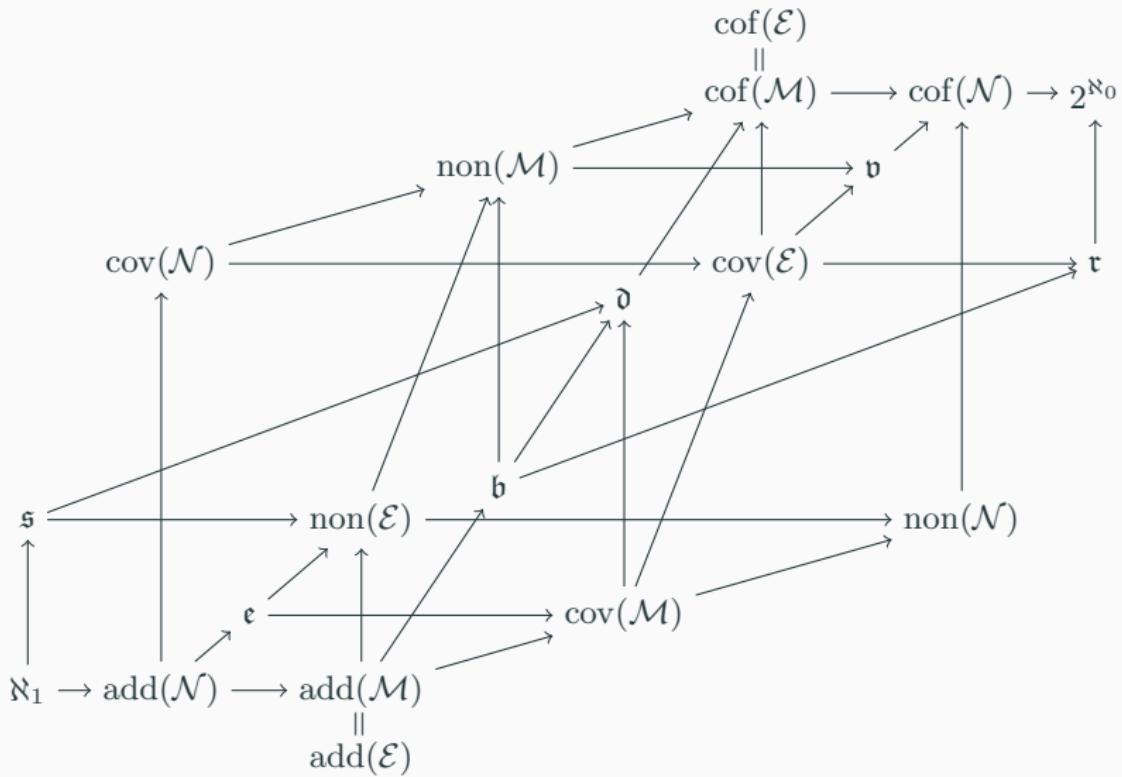
$$\mathcal{E}_\kappa \subsetneq \mathcal{BE}_\kappa \subsetneq \mathcal{M}_\kappa.$$

$$\begin{array}{ccccccc} \mathcal{E}_\kappa & \longrightarrow & \mathcal{BE}_\kappa & \longrightarrow & \mathcal{M}_\kappa & \longrightarrow & \mathcal{P}({}^\kappa 2) \\ \uparrow & & \uparrow & & \uparrow & & \\ \mathcal{E}_\kappa^- & \longrightarrow & \mathcal{BE}_\kappa^- & & \mathcal{NWD}_\kappa & & \end{array}$$

All inclusions are strict.

Classical cardinal characteristics

14/20



Let $\varphi \in \prod_{\alpha \in \kappa} [\kappa]^{|\alpha|}$ and $f \in {}^\kappa \kappa$, then we say φ localises f if $f(\alpha) \in \varphi(\alpha)$ for almost all $\alpha \in \kappa$.

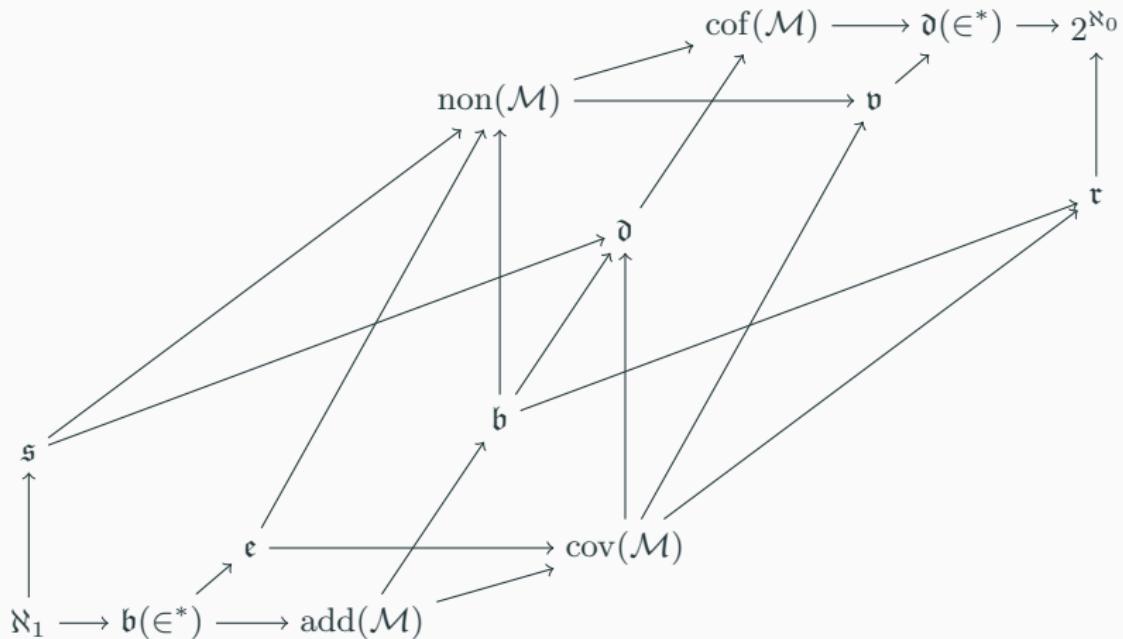
A family $L \subseteq \prod_{\alpha \in \kappa} [\kappa]^{|\alpha|}$ is called localising if every $f \in {}^\kappa \kappa$ is localised by some $\varphi \in L$, and let us call a family $U \subseteq {}^\kappa \kappa$ unlocalisable if no $\varphi \in \prod_{\alpha \in \kappa} [\kappa]^{|\alpha|}$ localises all $f \in U$.

The localisation and unlocalisation numbers $\mathfrak{d}_\kappa(\in^*)$ and $\mathfrak{b}_\kappa(\in^*)$ are the least size of localising and unlocalisable families, respectively.

Theorem *Bartoszyński 1987*

$\text{cof}(\mathcal{N}) = \mathfrak{d}(\in^*)$ and $\text{add}(\mathcal{N}) = \mathfrak{b}(\in^*)$.

□



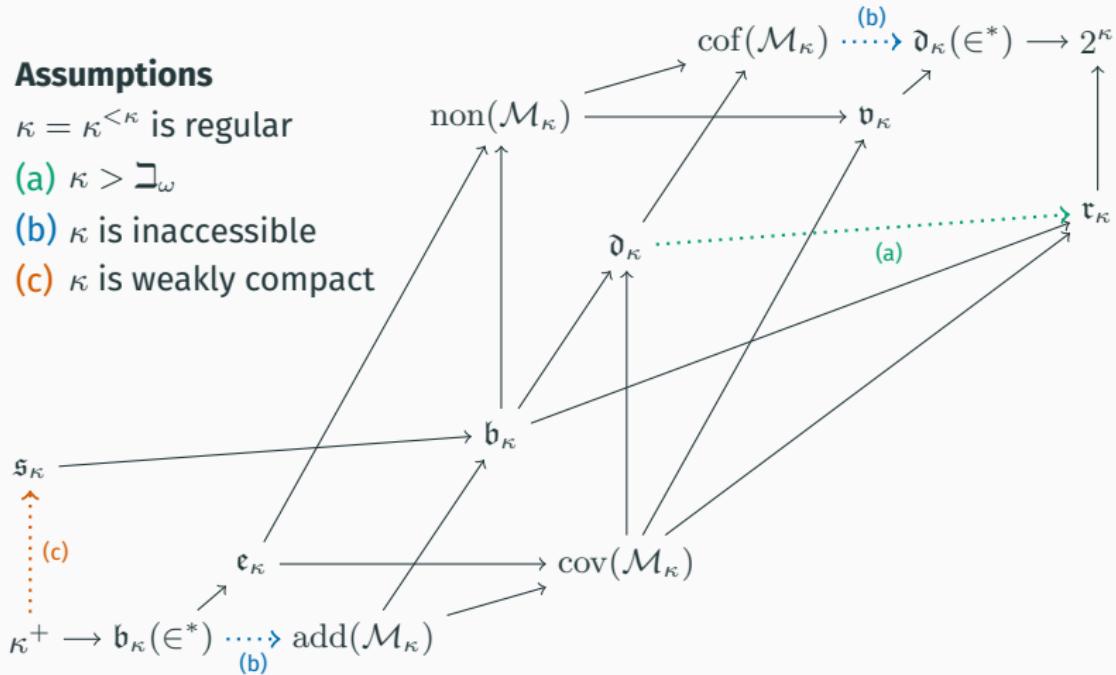
Assumptions

$\kappa = \kappa^{<\kappa}$ is regular

(a) $\kappa > \beth_\omega$

(b) κ is inaccessible

(c) κ is weakly compact



We have the following ZFC-provable results for κ strongly inaccessible:

Classical	\mathcal{E}_κ	\mathcal{BE}_κ
$\text{non}(\mathcal{E}) \leq \text{non}(\mathcal{M})$	$\text{non}(\mathcal{E}_\kappa) \leq \text{non}(\mathcal{BE}_\kappa) \leq \text{non}(\mathcal{M}_\kappa)$	
$\text{add}(\mathcal{E}) \leq \mathfrak{b}$	$\text{add}(\mathcal{E}_\kappa) \leq \mathfrak{b}_\kappa$?
$\mathfrak{s} \leq \text{non}(\mathcal{E})$?	$\mathfrak{s}_\kappa \leq \text{non}(\mathcal{BE}_\kappa)$
$\mathfrak{e} \leq \text{non}(\mathcal{E})$?	$\mathfrak{e}_\kappa \leq \text{non}(\mathcal{BE}_\kappa)$
$\mathfrak{b}(\in^*) \leq \text{add}(\mathcal{E})$	$\mathfrak{b}_\kappa(\in^*) \leq \text{non}(\mathcal{E}_\kappa)$	$\mathfrak{b}_\kappa(\in^*) \leq \text{non}(\mathcal{BE}_\kappa)$
$\text{add}(\mathcal{M}) \leq \text{non}(\mathcal{E})$?	?
$\text{add}(\mathcal{M}) \leq \text{add}(\mathcal{E})$?	?
$\text{add}(\mathcal{E}) \leq \text{cov}(\mathcal{M})$?	?

Those results that are known also dualise.

For $f, g \in {}^\kappa \kappa$, define $f \leq^{\text{cl}} g$ if there is a club set $C \subseteq \kappa$ such that $f(\alpha) \leq g(\alpha)$ for all $\alpha \in C$. We define $\mathfrak{b}_\kappa^{\text{cl}}$ as the least size of a \leq^{cl} -unbounded family.

Theorem *Cummings and Shelah 1995, Theorem 6*

$$\mathfrak{b}_\kappa^{\text{cl}} = \mathfrak{b}_\kappa.$$

We may dually describe $\mathfrak{d}_\kappa^{\text{cl}}$ as the least size of a \leq^{cl} -dominating family. There is the following long-standing open question:

Theorem *Cummings and Shelah 1995*

Is $\mathfrak{d}_\kappa^{\text{cl}} = \mathfrak{d}_\kappa$?

Theorem *Cummings and Shelah 1995, Theorem 8*

If $\kappa > \beth_\omega$, then $\mathfrak{d}_\kappa^{\text{cl}} = \mathfrak{d}_\kappa$. (E.g. κ strongly inaccessible)

Theorem Marton, Šupina, Repický, and vdV.

$$\text{add}(\mathcal{E}_\kappa) \leq \mathfrak{b}_\kappa^{\text{cl}}.$$

Main point of the proof. If $I \in \text{IP}_\kappa$, then $\{\min(I_\alpha) \mid \alpha \in \kappa\}$ is a club set.

Hence, if $\bigcup_{\xi \in \kappa} [\psi^\xi]_* \in \mathcal{E}_\kappa$, where each slalom ψ^ξ has associated partition $J^\xi \in \text{IP}_\kappa$, then there is a club C such that C is almost contained in $\{\min(J_\alpha^\xi) \mid \alpha \in \kappa\}$ for each ξ .

To finish a proof, one constructs slaloms φ_b for each $b \in B$, where B is a \leq^{cl} -unbounded. Then show that

$$[\varphi_b]_* \not\subseteq \bigcup_{\xi \in \kappa} [\psi^\xi]_*$$

for one of those $b \in B$.

This does not work for \mathcal{BE}_κ ...

Theorem *Marton, Šupina, Repický, and vdV.*

$$\mathfrak{s}_\kappa \leq \text{non}(\mathcal{BE}_\kappa).$$

Proof. If $A \subseteq {}^\kappa 2$ and $A \notin \mathcal{BE}_\kappa$, then $\{x^{-1}(1) \mid x \in A\}$ is a splitting family.

Let $Y \in [\kappa]^\kappa$ and without loss we assume $|\kappa \setminus Y| = \kappa$, then we define $B \in \text{BP}_\kappa$ such that $|B_\alpha \cap Y| = 2^{|\alpha|}$ and $|B_\alpha \setminus Y| = |\alpha|$. Define $\varphi \in \prod \mathcal{P}(^{B_\alpha} 2)$ by

$$\varphi(\alpha) = \{s \in {}^{B_\alpha} 2 \mid s \upharpoonright (B_\alpha \cap Y) \text{ is constant}\}$$

Since $A \notin \mathcal{BE}_\kappa$, there is $x \in A$ with $x \notin [\varphi]_*$. Hence, for cofinally many $\alpha \in \kappa$ we see that $x \upharpoonright (B_\alpha \cap Y)$ is not constant. It follows that $|\{x(\xi) = i \mid \xi \in Y\}| = \kappa$ for both $i \in 2$. \square

This does not work for \mathcal{E}_κ ...

An aerial photograph of a rural landscape. In the foreground, a small town with numerous houses and buildings is nestled among fields and forests. The terrain is hilly and covered with a mix of green fields, dark forests, and patches of brown earth. In the distance, more hills and a few wind turbines are visible under a sky filled with large, dark, dramatic clouds.

Thank you!
Děkuji za pozornost!