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Higher Baire spaces 1/20

Classical combinatorial set theory is the study of subsets of
the reals. Usually we use ω2 or ωω.

The higher context is the result of replacing ω by a regular
uncountable κ:

Classical ω ωω ω2 P(ω) finite countable ℵ1

Higher κ κκ κ2 P(κ) <κ ≤κ κ+

We will work mainly with κ2 with the <κ-box topology, i.e.,
partial functions s : κ ⇀ 2 with |dom(s)| < κ provide basic
clopen sets

[s] = {f ∈ κ2 | s ⊆ f}.



Meagre, Lebesgue null & closed null 2/20

In this talk we will look at three classical σ-ideals:

• Meagre ideal M:
generated by nowhere dense subsets of ω2.

• Lebesgue null ideal N :
generated by subsets of ω2 of Lebesgue measure zero.

• Closed null ideal E :
generated by closed elements of N .

Proposition
E ⊆ N ∩M.



Higher meagre sets 3/20

Substituting ω by κ, the κ-meagre ideal Mκ is the
≤κ-complete ideal generated by nowhere dense subsets of κ2.

Equivalently, X ∈ Mκ if and only if X is the union of κ-many
nowhere dense sets.

Theorem
κ2 satisfies the κ-Baire category theorem: if ⟨Dα | α ∈ κ⟩ are
open dense subsets of κ2, then

⋂
α∈κDα is dense.

Equivalently, κ2 /∈ Mκ.



Higher Lebesgue measure 4/20

Since κ2 is not second countable, we cannot simply define
a real-valued measure that measures open subsets of κ2.

Relaxing the notion of a Lebesgue measure to metrics defined
on arbitrary monoids will not lead to a consistent
generalisation of measure either (see Agostini, Barrera, and
Dimonte, “On the problem of generalized measures: an
impossibility result”, 2026).

So now we wave goodbye to N .



Higher closed null? 5/20

Since generating sets for E are closed, we may see them
combinatorially as the body [T ] of trees T ⊆ <ω2.

Lemma
Let T ⊆ <ω2, then µ([T ]) = 0 iff for each s ∈ T there is
ns > dom(s) such that for at least half of the extensions t ⊇ s

with dom(t) = ns we have t /∈ T .

Define T ⊆ <κ2 to be halving if every s ∈ T has αs > dom(s)

such that∣∣∣{t ∈ αs2 | s ⊆ t ∈ T}
∣∣∣

# extensions of s inside T

≤
∣∣∣{t ∈ αs2 | s ⊆ t /∈ T}

∣∣∣
# extensions of s outside T

.

Define Hκ to be ≤κ-complete ideal generated by bodies of
halving trees T ⊆ <κ2.



Avoiding measures: the naive way 6/20

Proposition
Hκ = Mκ.

Proof. Easily [T ] is nowhere dense for every halving T ⊆ <κ2.
We show the reverse by picture.

s dom(s)

s ∈ T

t dom(t) = dom(s) + γ
s ⊆ t /∈ T where γ ≥ ω

αs := dom(s) + γ · 2
2|γ|

2|γ·2| = 2|γ|



Characterising E with slaloms 7/20

Let IP denote the set of interval partitions of ω. Given
I = ⟨In | n ∈ ω⟩ ∈ IP and φ ∈

∏
n∈ω P

(
In2

)
, we write

[φ]∗ = {x ∈ ω2 | ∀∞n ∈ ω(x ↾ In ∈ φ(n))}.

· · ·

Theorem Bartoszyński and Shelah 1992, Theorem 4.3

E is the set of all X ⊆ ω2 such that there are ⟨In | n ∈ ω⟩ ∈ IP

and φ ∈
∏

n∈ω P
(
In2

)
with X ⊆ [φ]∗ and for which

∑
n∈ω

|φ(n)|
2|In|

converges.

IP may be replaced by partitions of ω into finite parts.



How to deal with the convergent sum? 8/20

As mentioned, in the higher context we have no infinite
summation. So, how to deal with

∑
n∈ω

|φ(n)|
2|In| ?

Theorem Cardona, Marton, and Šupina 2025

X ∈ E iff there are a convergent series of positive terms∑
n∈ω εn and I ∈ IP and φ ∈

∏
n∈ω P

(
In2

)
with X ⊆ [φ]∗ and

lim
n→∞

|φ(n)|
2|In| · εn

= 0.

We rewrite the limit as:

∀m ∈ ω ∀∞n ∈ ω

(
|φ(n)| · m · 1

εn
< 2|In|

)
Now we can use that

∑
n∈ω εn converges if 1

εn
grows fast.



Generalising the classical definition 9/20

Classical:
X ∈ E iff there are a fast growing h ∈ ωω and I ∈ IP and
φ ∈

∏
n∈ω P

(
In2

)
with X ⊆ [φ]∗ and

∀m ∈ ω ∀∞n ∈ ω
(
|φ(n)| ·m · h(n) < 2|In|

)
.

Higher:
We want limα∈κ|Iα| = κ and |Iα| < κ. Hence, let κ be weakly
inaccessible and IPκ be the family of interval partitions
⟨Iα | α ∈ κ⟩ of κ with limα∈κ|Iα| = κ.

X ∈ E−
κ iff there are a fast growing h ∈ κκ and I ∈ IPκ and

φ ∈
∏

α∈κ P
(
Iα2

)
with X ⊆ [φ]∗ and

∀µ < κ∀∞α ∈ κ
(
|φ(α)| · µ · h(α) < 2|Iα|

)
.



Simplifying the higher definition 10/20

Lemma Marton, Šupina, Repický, and vdV.

The following are equivalent for weakly inaccessible κ:

1. X ∈ E−
κ

2. there are a fast growing h ∈ κκ and I ∈ IPκ and
φ ∈

∏
α∈κ P

(
Iα2

)
with X ⊆ [φ]∗ and

∀µ < κ∀∞α ∈ κ
(
|φ(α)| · µ · h(α) < 2|Iα|

)
,

3. there are I ∈ IPκ and φ ∈
∏

α∈κ P
(
Iα2

)
with X ⊆ [φ]∗ and

∀∞α ∈ κ
(
|φ(α)| < 2|Iα|

)
.



Bounded partitions and completeness 11/20

Let BPκ be the set of partitions ⟨Bα | α ∈ κ⟩ of κ such that
Bα ∈ [κ]<κ and limα∈κ|Bα| = κ.

Define BE−
κ as the family of sets X ⊆ κ2 such that there are

B ∈ BPκ and φ ∈
∏

α∈κ P
(
Bα2

)
with X ⊆ [φ]∗ and

∀∞α ∈ κ
(
|φ(α)| < 2|Bα|

)
.

Theorem Marton, Šupina, Repický, and vdV.

For weakly inaccessible κ, we have:

E−
κ ⊊ BE−

κ ⊊ Mκ.



Not ideal 12/20

One may ask if E−
κ = Eκ and BE−

κ = BEκ.
This turns out to be false.

Theorem Marton, Šupina, Repický, and vdV.

If κ is weakly inaccessible, then there are X,Y ∈ BE−
κ such

that X ∪ Y /∈ BE−
κ .

If κ is strongly inaccessible, then there are X,Y ∈ E−
κ such

that X ∪ Y /∈ E−
κ .

Let Eκ and BEκ be the ≤κ-complete ideals generated by E−
κ

and BE−
κ , respectively. Then:

Eκ ⊊ BEκ ⊊ Mκ.



Overview of families 13/20

E−
κ BE−

κ

Eκ BEκ

NWDκ

Mκ P(κ2)

All inclusions are strict.



Classical cardinal characteristics 14/20

ℵ1

2ℵ0

add(N )

cov(N )

add(M)

b

non(M)

cov(M)

d

cof(M)

non(N )

cof(N )

non(E)

cov(E)

add(E)

cof(E)

=

=

s

r

e

v



The localisation number 15/20

Let φ ∈
∏

α∈κ[κ]
|α| and f ∈ κκ, then we say φ localises f if

f(α) ∈ φ(α) for almost all α ∈ κ.

A family L ⊆
∏

α∈κ[κ]
|α| is called localising if every f ∈ κκ is

localised by some φ ∈ L, and let us call a family U ⊆ κκ

unlocalisable if no φ ∈
∏

α∈κ[κ]
|α| localises all f ∈ U .

The localisation and unlocalisation numbers dκ(∈∗) and
bκ(∈∗) are the least size of localising and unlocalisable
families, respectively.

Theorem Bartoszyński 1987

cof(N ) = d(∈∗) and add(N ) = b(∈∗).



From classical to higher 16/20

ℵ1 b(∈∗) add(M)

b

non(M)

cov(M)

d

cof(M) d(∈∗) 2ℵ0

s

r

e

v



From classical to higher 16/20

κ+ bκ(∈∗) add(Mκ)

bκ

non(Mκ)

cov(Mκ)

dκ

cof(Mκ) dκ(∈∗) 2κ

sκ

rκ

eκ

vκ

(b)

(b)

(a)

(c)

Assumptions
κ = κ<κ is regular
(a) κ > ℶω

(b) κ is inaccessible
(c) κ is weakly compact



Overview of the classical & higher relations 17/20

We have the following ZFC-provable results for κ strongly
inaccessible:

Classical Eκ BEκ

non(E) ≤ non(M) non(Eκ) ≤ non(BEκ) ≤ non(Mκ)

add(E) ≤ b add(Eκ) ≤ bκ ?
s ≤ non(E) ? sκ ≤ non(BEκ)

e ≤ non(E) ? eκ ≤ non(BEκ)

b(∈∗) ≤ add(E) bκ(∈∗) ≤ non(Eκ) bκ(∈∗) ≤ non(BEκ)

add(M) ≤ non(E) ? ?
add(M) ≤ add(E) ? ?
add(E) ≤ cov(M) ? ?

Those results that are known also dualise.



Unbounding and club unbounding 18/20

For f, g ∈ κκ, define f ≤cl g if there is a club set C ⊆ κ such
that f(α) ≤ g(α) for all α ∈ C. We define bclκ as the least size
of a ≤cl-unbounded family.

Theorem Cummings and Shelah 1995, Theorem 6

bclκ = bκ.

We may dually describe dclκ as the least size of a
≤cl-dominating family. There is the following long-standing
open question:

Theorem Cummings and Shelah 1995

Is dclκ = dκ?

Theorem Cummings and Shelah 1995, Theorem 8

If κ > ℶω, then dclκ = dκ. (E.g. κ strongly inaccessible)



Unbounding and additivity of higher closed null 19/20

Theorem Marton, Šupina, Repický, and vdV.

add(Eκ) ≤ bclκ .

Main point of the proof. If I ∈ IPκ, then {min(Iα) | α ∈ κ} is a
club set.

Hence, if
⋃

ξ∈κ
[
ψξ

]
∗ ∈ Eκ, where each slalom ψξ has

associated partition Jξ ∈ IPκ, then there is a club C such that
C is almost contained in

{
min(Jξ

α)
∣∣ α ∈ κ

}
for each ξ.

To finish a proof, one constructs slaloms φb for each b ∈ B,
where B is a ≤cl-unbounded. Then show that

[φb]∗ ⊈
⋃

ξ∈κ
[
ψξ

]
∗

for one of those b ∈ B.

This does not work for BEκ ...



The comparing the splitting number with BEκ 20/20

Theorem Marton, Šupina, Repický, and vdV.

sκ ≤ non(BEκ).

Proof. If A ⊆ κ2 and A /∈ BEκ, then
{
x−1(1)

∣∣ x ∈ A
}

is a
splitting family.

Let Y ∈ [κ]κ and without loss we assume |κ \ Y | = κ, then we
define B ∈ BPκ such that |Bα ∩ Y | = 2|α| and |Bα \ Y | = |α|.
Define φ ∈

∏
P
(
Bα2

)
by

φ(α) =
{
s ∈ Bα2

∣∣ s ↾ (Bα ∩ Y ) is constant
}

Since A /∈ BEκ, there is x ∈ A with x /∈ [φ]∗. Hence, for
cofinally many α ∈ κ we see that x ↾ (Bα ∩ Y ) is not constant.
It follows that

∣∣{x(ξ) = i | ξ ∈ Y }
∣∣ = κ for both i ∈ 2.

This does not work for Eκ ...



Thank you!
Děkuji za pozornost!


