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Introduction

e Main Objective:

e Investigate cardinal invariants after forcing with the Borel o-algebra modulo the o-ideal
generated by closed sets of null ideal on 2¢.
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e Main Objective:
e Investigate cardinal invariants after forcing with the Borel o-algebra modulo the o-ideal
generated by closed sets of null ideal on 2¢.
e Specifically, we focus on the groupwise dense number g.

e Combinatorial Tree Forcing Q(J):
o Generalization: Extends the infinite splitting property of Miller forcing using an ideal J on

w.
o A tree forcing representation of the forcing of Borel o-algebra modulo o-ideal generated

by closed sets of o-ideal on 2%,

Note that the forcing of Borel o-algebra modulo the o-ideal generated by closed null sets
on 2% is represented by a combinatorial tree forcing on a meager ideal on w.
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Introduction

In this talk, we consider the combinatorial tree forcing determined by meager ideals on w.

Sato Ryoichi (Kobe University) g-num after meager c.t.f. February 1, 2026 4/11



Introduction

In this talk, we consider the combinatorial tree forcing determined by meager ideals on w.
It is known that the groupwise dense number is large in the Miller model.

Sato Ryoichi (Kobe University) g-num after meager c.t.f. February 1, 2026 4/11



Introduction

In this talk, we consider the combinatorial tree forcing determined by meager ideals on w.
It is known that the groupwise dense number is large in the Miller model.

Theorem 1 (Blass)

Fin denotes a finite ideal on w. The countable support iteration of combinatorial tree
forcing Q(Fin) of length wy forces that g = N».

Sato Ryoichi (Kobe University) g-num after meager c.t.f.

February 1, 2026 4/11



Introduction

In this talk, we consider the combinatorial tree forcing determined by meager ideals on w.
It is known that the groupwise dense number is large in the Miller model.

Theorem 1 (Blass)

Fin denotes a finite ideal on w. The countable support iteration of combinatorial tree
forcing Q(Fin) of length wy forces that g = N».

Theorem 2 (Main Theorem)

Assume that J is a meager ideal on w. Then, the countable support iteration of
combinatorial tree forcing Q(J) of length w, forces that g = N».
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Definitions and Preliminaries

Definition 3 (Groupwise dense set)

A set G C [w]“ is groupwise dense if
@ Fora,be[w]”, ifae Gand bC* a, then b € G.
@ For any interval partition (/, : n € w) of w, there is some A € [w]* such that J,caln € G.
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Definitions and Preliminaries

Definition 3 (Groupwise dense set)

A set G C [w]“ is groupwise dense if
@ Fora,be[w]”, ifae Gand bC* a, then b € G.
@ For any interval partition (/, : n € w) of w, there is some A € [w]* such that J,caln € G.

Definition 4 (Groupwise dense number)

g :=min{k : 3(G, : @ < k) groupwise dense sets, (.. Go = 0}.
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Definitions and Preliminaries

Definition 5 (Combinatorial tree forcing)

Combinatorilal tree forcing Q(J) consists of those trees T C w<“ for which every node
t € T has an extension s € T satisfying succr(s) ¢ J. Q(J) is ordered by inclusion.
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Definitions and Preliminaries

Definition 5 (Combinatorial tree forcing)

Combinatorilal tree forcing Q(J) consists of those trees T C w<“ for which every node
t € T has an extension s € T satisfying succr(s) ¢ J. Q(J) is ordered by inclusion.

Basic Property of a meager ideal on w (Jalani-Naini, Talagrand)

An ideal J on w is meager iff:
we can find a finite interval partition (I : ¢ < w) of w such that for any infinite A C w,

UzeA ly ¢ L
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Main Theorem

Theorem 6 (Main Theorem)

Assume that J is a meager ideal on w. Then, the countable support iteration of combinatorial
tree forcing Q(J) of length wy forces that g = N,.
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By a reflection argument, it suffices to prove the following lemma.
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Main Theorem

Theorem 6 (Main Theorem)

Assume that J is a meager ideal on w. Then, the countable support iteration of combinatorial
tree forcing Q(J) of length wy forces that g = N,.

By a reflection argument, it suffices to prove the following lemma.

Lemma 7 (Key Lemma)

Assume that J is a meager ideal on w.
Let G be a groupwise dense set in the ground model V, i € w* be a name for the generic
real of Q(J), and ran*(F) denotes the name of the set {i(j) : Vi < j, i(i) < r(j)}.
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Main Theorem

Theorem 6 (Main Theorem)

Assume that J is a meager ideal on w. Then, the countable support iteration of combinatorial
tree forcing Q(J) of length wy forces that g = N,.

By a reflection argument, it suffices to prove the following lemma.

Lemma 7 (Key Lemma)

Assume that J is a meager ideal on w.

Let G be a groupwise dense set in the ground model V, i € w* be a name for the generic
real of Q(J), and ran*(F) denotes the name of the set {i(j) : Vi < j, i(i) < r(j)}.

Then Q(J) forces that 3b € G, ran*(i) C* b.
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Sketch of the Proof (1/2)

Let T € Q(J) be arbitary.
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Sketch of the Proof (2/2)

For s € 5, we can find a finite interval partition (/7 : n < w) of succr(s) s.t.
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Sketch of the Proof (2/2)

For s € 5, we can find a finite interval partition (/7 : n < w) of succr(s) s.t.
for any A € [w]¥,Upeals ¢ J | succt(s), since J is meager in succr(s).
For each s € U, ; Sx, take intervals L7, ; from (/5 : n < w) so that Lf,; is the first interval
s.t. Vx € I7, kip1 < x.
Chop off the nodes in succt(s) less than ki1, except for the nodes in Lj (£ < i+1).
@ Si;1 is the set of immediate splitting nodes after s~ m for s € J,; Sx,m € L},

o kiyo:=sup({k €ran(s):s€ Si;1})+ 1.
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For s € 5, we can find a finite interval partition (/7 : n < w) of succr(s) s.t.
for any A € [w]¥,Upeals ¢ J | succt(s), since J is meager in succr(s).

For each s € U, ; Sx, take intervals L7, ; from (/5 : n < w) so that Lf,; is the first interval
s.t. Vx € I7, kip1 < x.

Chop off the nodes in succt(s) less than ki1, except for the nodes in Lj (£ < i+1).
@ Si;1 is the set of immediate splitting nodes after s~ m for s € J,; Sx,m € L},
o kivo :=sup({k € ran(s) :s € Sjy1})+ 1.

For the interval partition ([k;, ki+1) : i < w), take B € [w]¥ s.t. U;eplki, ki+1) € G.
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For s € 5, we can find a finite interval partition (/7 : n < w) of succr(s) s.t.
for any A € [w]¥,Upeals ¢ J | succt(s), since J is meager in succr(s).

For each s € U, ; Sx, take intervals L7, ; from (/5 : n < w) so that Lf,; is the first interval
s.t. Vx € I7, kip1 < x.

Chop off the nodes in succt(s) less than ki1, except for the nodes in Lj (£ < i+1).
@ Si;1 is the set of immediate splitting nodes after s~ m for s € J,; Sx,m € L},
o kivo :=sup({k € ran(s) :s € Sjy1})+ 1.

For the interval partition ([k;, kiy1) : i < w), take B € [w]* s.t. U,-GB[k,-, kiy1) € G.
If n ¢ B, chop off the nodes in L} from (L} : n < w) for s € |J

x<w
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Sketch of the Proof (2/2)

For s € 5, we can find a finite interval partition (/7 : n < w) of succr(s) s.t.
for any A € [w]¥,Upeals ¢ J | succt(s), since J is meager in succr(s).

For each s € U, ; Sx, take intervals L7, ; from (/5 : n < w) so that Lf,; is the first interval
s.t. Vx € I7, kip1 < x.

Chop off the nodes in succt(s) less than ki1, except for the nodes in Lj (£ < i+1).
@ Si;1 is the set of immediate splitting nodes after s~ m for s € J,; Sx,m € L},
o kivo :=sup({k € ran(s) :s € Sjy1})+ 1.

For the interval partition ([k;, kiy1) : i < w), take B € [w]* s.t. U,-GB[k,-, kiy1) € G.
If n ¢ B, chop off the nodes in L} from (L} : n < w) for s € |J

x<w

Finally, the pruned condition forces that ran*(i) C* U;cplki, ki+1) € G. O

Sato Ryoichi (Kobe University) g-num after meager c.t.f. February 1, 2026 9/11



Conclusion

Summary:

@ We proved that the combinatorial tree forcing of a meager ideal on w increases the
groupwise dense number g.
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Question:

o Combinatorial tree forcings of non-meager ideals also increase the groupwise dense
number?
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Conclusion

Summary:

@ We proved that the combinatorial tree forcing of a meager ideal on w increases the
groupwise dense number g.

@ Remark: Our result is valid for a Laver-type forcing modulo a meager ideal.

Question:

o Combinatorial tree forcings of non-meager ideals also increase the groupwise dense
number?

Thank you for your attention!
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