

Groupwise dense number after Combinatorial tree forcing of meager ideals

Sato Ryoichi

Kobe University

February 1, 2026

Outline

1 Introduction

2 Main Results

3 Sketch of the Proof

4 Conclusion

Introduction

- **Main Objective:**

- Investigate **cardinal invariants** after forcing with the Borel σ -algebra modulo **the σ -ideal generated by closed sets of null ideal** on 2^ω .

Introduction

- **Main Objective:**

- Investigate **cardinal invariants** after forcing with the Borel σ -algebra modulo **the σ -ideal generated by closed sets of null ideal** on 2^ω .
- Specifically, we focus on the **groupwise dense number g** .

Introduction

- **Main Objective:**

- Investigate **cardinal invariants** after forcing with the Borel σ -algebra modulo **the σ -ideal generated by closed sets of null ideal** on 2^ω .
- Specifically, we focus on the **groupwise dense number g** .

- **Combinatorial Tree Forcing $Q(J)$:**

- **Generalization:** Extends the infinite splitting property of **Miller forcing** using an ideal J on ω .

Introduction

- **Main Objective:**

- Investigate **cardinal invariants** after forcing with the Borel σ -algebra modulo **the σ -ideal generated by closed sets of null ideal** on 2^ω .
- Specifically, we focus on the **groupwise dense number g** .

- **Combinatorial Tree Forcing $Q(J)$:**

- **Generalization:** Extends the infinite splitting property of **Miller forcing** using an ideal J on ω .
- **A tree forcing representation** of the forcing of Borel σ -algebra modulo **σ -ideal generated by closed sets of σ -ideal** on 2^ω .

Introduction

- **Main Objective:**

- Investigate **cardinal invariants** after forcing with the Borel σ -algebra modulo **the σ -ideal generated by closed sets of null ideal** on 2^ω .
- Specifically, we focus on the **groupwise dense number g** .

- **Combinatorial Tree Forcing $Q(J)$:**

- **Generalization:** Extends the infinite splitting property of **Miller forcing** using an ideal J on ω .
- **A tree forcing representation** of the forcing of Borel σ -algebra modulo **σ -ideal generated by closed sets of σ -ideal** on 2^ω .

Note that the forcing of Borel σ -algebra modulo **the σ -ideal generated by closed null sets on 2^ω** is represented by a combinatorial tree forcing on a **meager ideal on ω** .

Introduction

In this talk, we consider the combinatorial tree forcing determined by **meager ideals** on ω .

Introduction

In this talk, we consider the combinatorial tree forcing determined by **meager ideals** on ω . It is known that the groupwise dense number is **large** in the **Miller model**.

Introduction

In this talk, we consider the combinatorial tree forcing determined by **meager ideals** on ω . It is known that the groupwise dense number is **large** in the **Miller model**.

Theorem 1 (Blass)

Fin denotes a **finite** ideal on ω . The countable support iteration of **combinatorial tree forcing** $Q(Fin)$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

Introduction

In this talk, we consider the combinatorial tree forcing determined by **meager ideals** on ω . It is known that the groupwise dense number is **large** in the **Miller model**.

Theorem 1 (Blass)

Fin denotes a **finite** ideal on ω . The countable support iteration of **combinatorial tree forcing** $Q(\text{Fin})$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

Theorem 2 (Main Theorem)

Assume that J is a **meager** ideal on ω . Then, the countable support iteration of **combinatorial tree forcing** $Q(J)$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

Definition 3 (Groupwise dense set)

A set $G \subseteq [\omega]^\omega$ is **groupwise dense** if

- ① For $a, b \in [\omega]^\omega$, if $a \in G$ and $b \subseteq^* a$, then $b \in G$.
- ② For any interval partition $\langle I_n : n \in \omega \rangle$ of ω , there is some $A \in [\omega]^\omega$ such that $\bigcup_{n \in A} I_n \in G$.

Definitions and Preliminaries

Definition 3 (Groupwise dense set)

A set $G \subseteq [\omega]^\omega$ is **groupwise dense** if

- ① For $a, b \in [\omega]^\omega$, if $a \in G$ and $b \subseteq^* a$, then $b \in G$.
- ② For any interval partition $\langle I_n : n \in \omega \rangle$ of ω , there is some $A \in [\omega]^\omega$ such that $\bigcup_{n \in A} I_n \in G$.

Definition 4 (Groupwise dense number)

$\mathfrak{g} := \min\{\kappa : \exists \langle G_\alpha : \alpha < \kappa \rangle \text{ groupwise dense sets, } \bigcap_{\alpha < \kappa} G_\alpha = \emptyset\}$.

Definition 5 (Combinatorial tree forcing)

Combinatorial tree forcing $Q(J)$ consists of those trees $T \subseteq \omega^{<\omega}$ for which every node $t \in T$ has an extension $s \in T$ satisfying $\text{succ}_T(s) \notin J$. $Q(J)$ is ordered by inclusion.

Definitions and Preliminaries

Definition 5 (Combinatorial tree forcing)

Combinatorial tree forcing $Q(J)$ consists of those trees $T \subseteq \omega^{<\omega}$ for which every node $t \in T$ has an extension $s \in T$ satisfying $\text{succ}_T(s) \notin J$. $Q(J)$ is ordered by inclusion.

Basic Property of a meager ideal on ω (Jalani-Naini, Talagrand)

An ideal J on ω is **meager** iff:

we can find a finite interval partition $\langle I_\ell : \ell < \omega \rangle$ of ω such that for any infinite $A \subseteq \omega$, $\bigcup_{\ell \in A} I_\ell \notin J$.

Theorem 6 (Main Theorem)

Assume that J is a **meager** ideal on ω . Then, the countable support iteration of combinatorial tree forcing $Q(J)$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

Main Theorem

Theorem 6 (Main Theorem)

Assume that J is a **meager** ideal on ω . Then, the countable support iteration of combinatorial tree forcing $Q(J)$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

By a **reflection argument**, it suffices to prove the following lemma.

Main Theorem

Theorem 6 (Main Theorem)

Assume that J is a **meager** ideal on ω . Then, the countable support iteration of combinatorial tree forcing $Q(J)$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

By a **reflection argument**, it suffices to prove the following lemma.

Lemma 7 (Key Lemma)

Assume that J is a **meager** ideal on ω .

Let G be a **groupwise dense** set in the ground model V , $\dot{r} \in \omega^\omega$ be a name for the **generic real** of $Q(J)$, and $\text{ran}^*(\dot{r})$ denotes the name of the set $\{\dot{r}(j) : \forall i < j, \dot{r}(i) < \dot{r}(j)\}$.

Main Theorem

Theorem 6 (Main Theorem)

Assume that J is a **meager** ideal on ω . Then, the countable support iteration of combinatorial tree forcing $Q(J)$ of length ω_2 forces that $\mathfrak{g} = \aleph_2$.

By a **reflection argument**, it suffices to prove the following lemma.

Lemma 7 (Key Lemma)

Assume that J is a **meager** ideal on ω .

Let G be a **groupwise dense** set in the ground model V , $\dot{r} \in \omega^\omega$ be a name for the **generic real** of $Q(J)$, and $\text{ran}^*(\dot{r})$ denotes the name of the set $\{\dot{r}(j) : \forall i < j, \dot{r}(i) < \dot{r}(j)\}$.

Then $Q(J)$ forces that $\exists b \in G, \text{ran}^*(\dot{r}) \subseteq^* b$.

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{\text{stem}(T)\}$,

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{\text{stem}(T)\}$,
- $k_0 := 0$,

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{stem(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in ran(s) : s \in S_0\}) + 1$.

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{stem(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in ran(s) : s \in S_0\}) + 1$.

For $s \in S_0$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $succ_T(s)$ s.t.

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{stem(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in ran(s) : s \in S_0\}) + 1$.

For $s \in S_0$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $succ_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright succ_T(s)$, since J is **meager** in $succ_T(s)$.

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{\text{stem}(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in \text{ran}(s) : s \in S_0\}) + 1$.

For $s \in S_0$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

Take an interval L_1^s from $\langle I_n^s : n < \omega \rangle$ so that L_1^s is the **first interval** s.t. $\forall x \in I_n^s, k_1 < x$.

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{\text{stem}(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in \text{ran}(s) : s \in S_0\}) + 1$.

For $s \in S_0$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

Take an interval L_1^s from $\langle I_n^s : n < \omega \rangle$ so that L_1^s is the **first interval** s.t. $\forall x \in I_n^s, k_1 < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_1 .

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{\text{stem}(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in \text{ran}(s) : s \in S_0\}) + 1$.

For $s \in S_0$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

Take an interval L_1^s from $\langle I_n^s : n < \omega \rangle$ so that L_1^s is the **first interval** s.t. $\forall x \in I_n^s, k_1 < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_1 .

- S_1 is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in S_0, m \in L_1^s$,

Sketch of the Proof (1/2)

Proof.

Let $T \in Q(J)$ be arbitrary.

- $S_0 := \{\text{stem}(T)\}$,
- $k_0 := 0$,
- $k_1 := \sup(\{k \in \text{ran}(s) : s \in S_0\}) + 1$.

For $s \in S_0$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

Take an interval L_1^s from $\langle I_n^s : n < \omega \rangle$ so that L_1^s is the **first interval** s.t. $\forall x \in I_n^s, k_1 < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_1 .

- S_1 is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in S_0, m \in L_1^s$,
- $k_2 := \sup(\{k \in \text{ran}(s) : s \in S_1\}) + 1$.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_{i+1} , except for the nodes in L_ℓ^s ($\ell < i+1$).

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_{i+1} , except for the nodes in L_ℓ^s ($\ell < i+1$).

- S_{i+1} is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in \bigcup_{x < i} S_x, m \in L_{i+1}^s$,

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_{i+1} , except for the nodes in L_ℓ^s ($\ell < i+1$).

- S_{i+1} is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in \bigcup_{x < i} S_x, m \in L_{i+1}^s$,
- $k_{i+2} := \sup(\{k \in \text{ran}(s) : s \in S_{i+1}\}) + 1$.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_{i+1} , except for the nodes in L_ℓ^s ($\ell < i+1$).

- S_{i+1} is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in \bigcup_{x < i} S_x, m \in L_{i+1}^s$,
- $k_{i+2} := \sup(\{k \in \text{ran}(s) : s \in S_{i+1}\}) + 1$.

For the interval partition $\langle [k_i, k_{i+1}) : i < \omega \rangle$, take $B \in [\omega]^\omega$ s.t. $\bigcup_{i \in B} [k_i, k_{i+1}) \in G$.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_{i+1} , except for the nodes in L_ℓ^s ($\ell < i+1$).

- S_{i+1} is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in \bigcup_{x < i} S_x, m \in L_{i+1}^s$,
- $k_{i+2} := \sup(\{k \in \text{ran}(s) : s \in S_{i+1}\}) + 1$.

For the interval partition $\langle [k_i, k_{i+1}) : i < \omega \rangle$, take $B \in [\omega]^\omega$ s.t. $\bigcup_{i \in B} [k_i, k_{i+1}) \in G$.

If $n \notin B$, **chop off the nodes** in L_n^s from $\langle L_n^s : n < \omega \rangle$ for $s \in \bigcup_{x < \omega} S_x$.

Sketch of the Proof (2/2)

Proof.

For $s \in S_i$, we can find a finite interval partition $\langle I_n^s : n < \omega \rangle$ of $\text{succ}_T(s)$ s.t. for any $A \in [\omega]^\omega$, $\bigcup_{n \in A} I_n^s \notin J \upharpoonright \text{succ}_T(s)$, since J is **meager** in $\text{succ}_T(s)$.

For each $s \in \bigcup_{x < i} S_x$, take intervals L_{i+1}^s from $\langle I_n^s : n < \omega \rangle$ so that L_{i+1}^s is the **first interval** s.t. $\forall x \in I_n^s, k_{i+1} < x$.

Chop off the nodes in $\text{succ}_T(s)$ less than k_{i+1} , except for the nodes in L_ℓ^s ($\ell < i+1$).

- S_{i+1} is the set of **immediate splitting nodes** after $s \smallfrown m$ for $s \in \bigcup_{x < i} S_x, m \in L_{i+1}^s$,
- $k_{i+2} := \sup(\{k \in \text{ran}(s) : s \in S_{i+1}\}) + 1$.

For the interval partition $\langle [k_i, k_{i+1}] : i < \omega \rangle$, take $B \in [\omega]^\omega$ s.t. $\bigcup_{i \in B} [k_i, k_{i+1}] \in G$.

If $n \notin B$, **chop off the nodes** in L_n^s from $\langle L_n^s : n < \omega \rangle$ for $s \in \bigcup_{x < \omega} S_x$.

Finally, the pruned condition forces that $\text{ran}^*(\dot{r}) \subseteq^* \bigcup_{i \in B} [k_i, k_{i+1}] \in G$. □

Conclusion

Summary:

- We proved that the **combinatorial tree forcing of a meager ideal on ω** increases the **groupwise dense number g** .

Conclusion

Summary:

- We proved that the **combinatorial tree forcing of a meager ideal on ω** increases the **groupwise dense number g** .
- **Remark:** Our result is valid for a Laver-type forcing modulo a meager ideal.

Conclusion

Summary:

- We proved that the **combinatorial tree forcing of a meager ideal on ω** increases the **groupwise dense number g** .
- **Remark:** Our result is valid for a Laver-type forcing modulo a meager ideal.

Question:

- Combinatorial tree forcings of **non-meager** ideals also increase the **groupwise dense number?**

Conclusion

Summary:

- We proved that the **combinatorial tree forcing of a meager ideal on ω** increases the **groupwise dense number g** .
- **Remark:** Our result is valid for a Laver-type forcing modulo a meager ideal.

Question:

- Combinatorial tree forcings of **non-meager** ideals also increase the **groupwise dense number?**

Thank you for your attention!

References

- M. Sabok and J. Zapletal, *Forcing properties of ideals of closed sets*, The Journal of Symbolic Logic **76** (2011), no. 3, 1075–1095.
- A. Blass, *Applications of superperfect forcing and its relatives*, in: *Set Theory and its Applications* (J. Steprāns and S. Watson, eds.), Springer, Berlin, Heidelberg, 1989, pp. 18–40.
- M. Talagrand, *Compacts de fonctions mesurables et filtres non mesurables*, Studia Math. **67** (1980), no. 1, 13–43.