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Summary about Aronszajn trees

In 1920, Suslin posed the Suslin Hypothesis. The Suslin

Hypothesis is equivalent to the statement:

“There is no ω1-tree without uncountable chains or antichains

(i.e., no Suslin tree exists).”

• Aronszajn first constructed an ω1-tree without uncountable

chains in ZFC (i.e., Aronszajn trees exist in ZFC).

• The existence of a Suslin trees is consistent with ZFC.

• The Suslin Hypothesis is also consistent with ZFC.
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Background and Moore’s results
.
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Woodin’s Problem

Are there Π2-sentences ψ1 and ψ2 such that

(H(ℵ2),∈) |= CH ∧ ψ1 and

(H(ℵ2),∈) |= CH ∧ ψ2

are each Ω-consistent but ψ1 ∧ ψ2 Ω-implies ¬CH.

Theorem (Moore 2007 [1])

If there is an Aronszajn tree T with the following conditions, then

2ℵ0 = 2ℵ1 .

1. T is club-embeddable into all of its uncountable subtrees.

2. Every ladder system coloring can be T -uniformized.

Woodin’s problem was resolved in 2013 by Asperó-Larson-Moore

[2].
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Definition (Moore 2005)

(T,<T ): Aronszajn tree, W ⊆ T : uncountable subtree.

• W is T -closed if every T -bounded increasing sequence of W

has an upper bound in W .

• T has the closed subtree property if every uncountable subtree

W of T has an uncountable T -closed subtree of W .

Theorem (Moore 2005)

If there is an Aronszajn tree T with the following conditions, then
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Theorem (Moore 2005)

MAℵ1 implies that every Aronszajn tree has the closed subtree

property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

(σp, fp) ∈ P iff

• σp ∈ [W ]<ℵ0 , dom(fp) ∈ [TLim]
<ℵ0 , fp : dom(fp) → TSucc,

and

• ∀t ∈ dom(fp)(fp(t) <T t ∧ (σp ↓T ) ∩ [fp(t), t]T = ∅).

q ≤P p iff σq ⊇ σp and fq ⊇ fp.

Notation� �
▶ TLim is the set of all limit height elements of T .

▶ TSucc is the set of all successor height elements of T .

▶ σp ↓T := {x ∈ T | ∃s ∈ σp(x ≤T s)}.
▶ [fp(t), t]T := {x ∈ T | fp(t) ≤T x ≤T t}.� �

Claim 1 For every t ∈ TLim, Dt := {p ∈ P | t ∈ σp ∪ dom(fp)} is

dense.

Claim 2 A generic filter G adds T -closed subtree of W . In

particular,

X :=
∪

{σp ↓T | p ∈ G} is a T -closed subtree of W .

Claim 3 P has the countable chain condition.

We can find a condition p ∈ P such that X is uncountable. □
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Aronszajn trees with/without the

closed subtree property
.
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Natural Question

What relationship do the csp Aronszajn trees have with other

Aronszajn trees? (e.g., Special Aronszajn trees, Suslin trees)
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Proposition

Every Suslin tree has the closed subtree property.

Proof. Let S be a Suslin tree and W an uncountable subtree of S.

We may assume that W is well-prouned. For every t ∈ S \W , we

define αt := min{α ≤ ht(t) | t↾ α ̸∈W}. Then

A := {t↾ αt | t ∈ S \W}

is an antichain of S. Hence, we can take a countable limit ordinal

δ such that A ⊆ S<δ. Fix a node w ∈Wδ.

Then X := {x ∈ S | x ̸⊥S w} is uncountable and S-closed.

(∵) ∀x ∈ S \W (ht(x) ≥ δ → x↾ δ ̸∈W ) □
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Theorem

• A(ccc) ⊆ A(csp).

(1) If a Suslin tree exists, then A(csp) \ (A(Q) ∪ A(ccc)) ̸= ∅.
(2) If ♢ holds, then A(Q) \ A(csp) ̸= ∅.
(3) If ♢ holds, then A \ (A(Q) ∪ A(csp)) ̸= ∅.

..

A(ccc)

.

A(Q)

.

A(csp)

.

(2)

.

(3)

.

(1)
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Some restricted forms of Martin’s

Axiom
.
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Given an Aronszajn tree T and its uncountable subtree W , Moore

found a ccc forcing notion PT,W such that it adds an uncountable

T -closed subtree of W in an extension.

Definition

(Larson-Todorčević [3], Yorioka [4, Definition 2.4])

Let P be a forcing notion. P has rec if there exists an

assignment π from P into [ω1]
<ℵ0 with [com] and [rec].

[com] For any pair of compatible conditions p, q ∈ P , there is a

common extension r of p and q in P such that

π(r) = π(p) ∪ π(q).

[rec] For any pair of disjoint uncountable subsets I and J of P ,

if {π(p) | p ∈ I ∪ J} forms a ∆-system, then there are

uncountable subsets I ′ and J ′ of I and J , respectively, such that

any member of I ′ is compatible with any member of J ′ in P .

..

. ..MAℵ1 .

..MAℵ1(rec) ..MAℵ1(powerfully-ccc) ..MAℵ1(R1,ℵ1)

. . ..MAℵ1(wE
∗-ccc)

. ..EATCSP ..MAℵ1(EPC
∗
ℵ1
)

.
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Given an Aronszajn tree T and its uncountable subtree W , Moore

found a ccc forcing notion PT,W such that it adds an uncountable

T -closed subtree of W in an extension.

Proposition

The forcing notion PT,W defined by Moore actually has two

properties rec and R1,ℵ1 which are stronger than the countable

chain condition.

..

. ..MAℵ1 .

..MAℵ1(rec) ..MAℵ1(powerfully-ccc) ..MAℵ1(R1,ℵ1)

. . ..MAℵ1(wE
∗-ccc)

. ..EATCSP ..MAℵ1(EPC
∗
ℵ1
)

.

Proposition

If Suslin Axiom holds, then the Suslin tree forces that every

Aronszajn tree has the closed subtree property.
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Y. Aoki introduced a forcing property named the eventual

precaliber ℵ1 (EPC∗
ℵ1
) in his 2024 paper [5].

Definition (N.)

A forcing notion P has wE∗-ccc if whenever ⟨pα | α < ω1⟩ is an
uncountable sequence of P , there exists an uncountable subset I

of ω1 and a sequenece ⟨p̃α | α ∈ I⟩ such that each p̃α is an

extension of pα, and the following holds:

∃p∗ ∈ P∀p ≤P p∗∀J ∈ [I]ℵ1∃α ∈ J(p̃α ̸⊥P p).

• Every wE∗-ccc forcing notion has powerfully-ccc. In particular,

the forcing notion has ccc.

• Every finite support iteration of wE∗-ccc forcings has wE∗-ccc.
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Theorem

If T is an Aronszajn tree without the closed subtree property,

then every forcing notion P with wE∗-ccc preserves an

uncountable subtree with no uncountable T -closed subtree.

Proof. Let W be an uncountable subtree of T with no uncountable

T -closed subtree. Suppose that q ⊩P “Ẋ ∈ [W ]ℵ1 is a subtree”.

We take a condition pα ≤P q and a node tα ∈Wα such that

pα ⊩P “tα ∈ Ẋ” for every α < ω1. By the property wE∗-ccc, we

take an I ∈ [ω1]
ℵ1 and a sequence ⟨p̃α ≤P pα | α ∈ I⟩ such that

∃p∗ ∈ P∀p ≤P p∗∀J ∈ [I]ℵ1∃α ∈ J(p̃α ̸⊥P p). · · · (⋆)

Then we can find a node t ∈ T \W such that

{α ∈ I | t↾ ξ ≤T tα} is uncountable for every ξ < htT (t).

If such a node does not exists, then the following set becomes an

uncountable T -closed subtree of W :

{s ∈ T | ∀ξ < htT (s)(|{α ∈ I | s↾ ξ ≤T tα}| = ℵ1)}.
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We take a condition pα ≤P q and a node tα ∈Wα such that
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Then we can find a node t ∈ T \W such that

{α ∈ I | t↾ ξ ≤T tα} is uncountable for every ξ < htT (t).
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Theorem

Every wE∗-ccc forcing preserve an Aronszajn tree.

..

. ..MAℵ1 .

..MAℵ1(rec) ..MAℵ1(powerfully-ccc) ..MAℵ1(R1,ℵ1)

. . ..MAℵ1(wE
∗-ccc)

. ..EATCSP ..MAℵ1(EPC
∗
ℵ1
)

.

.

/

22/26



Open question

Question

Is there a property φ for Aronszajn trees such that the following

hold?

• It is consistent that every Aronszajn tree has the property φ.

• It is consistent that every Aronszajn tree has the property ¬φ.

▶ The speciality on Aromszajn trees satisfies the first statement,

but fails the second statement.

▶ Conversely, the countable chain condition on Aronszajn trees

satisfies the second statement, but fails the first statement.
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Thank you for your attention
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