

The Closed Subtree Property for Aronszajn trees

Fumiaki Nishitani (Shizuoka University, Japan)

17:30-18:00 February 3, 2026 (January 31-February 7, 2026)

Winter School in Abstract Analysis 2026 section Set Theory and Topology,
Hejnice, the Czech Republic

Summary about Aronszajn trees

In 1920, Suslin posed the Suslin Hypothesis. The Suslin Hypothesis is equivalent to the statement:

“There is no ω_1 -tree without uncountable chains or antichains (i.e., no Suslin tree exists).”

- Aronszajn first constructed an ω_1 -tree without uncountable chains in ZFC (i.e., Aronszajn trees exist in ZFC).
- The existence of a Suslin trees is consistent with ZFC.
- The Suslin Hypothesis is also consistent with ZFC.

Table of Contents

1. Background and Moore's results
2. Aronszajn trees with/without the closed subtree property
3. Some restricted forms of Martin's Axiom

Background and Moore's results

Woodin's Problem

Are there Π_2 -sentences ψ_1 and ψ_2 such that

$$(H(\aleph_2), \in) \models \text{CH} \wedge \psi_1 \text{ and}$$

$$(H(\aleph_2), \in) \models \text{CH} \wedge \psi_2$$

are each Ω -consistent but $\psi_1 \wedge \psi_2$ Ω -implies $\neg\text{CH}$.

Woodin's Problem

Are there Π_2 -sentences ψ_1 and ψ_2 such that

$$(H(\aleph_2), \in) \models \text{CH} \wedge \psi_1 \text{ and}$$

$$(H(\aleph_2), \in) \models \text{CH} \wedge \psi_2$$

are each Ω -consistent but $\psi_1 \wedge \psi_2$ Ω -implies $\neg \text{CH}$.

Theorem (Moore 2007 [1])

If there is an Aronszajn tree T with the following conditions, then $2^{\aleph_0} = 2^{\aleph_1}$.

1. T is club-embeddable into all of its uncountable subtrees.
2. Every ladder system coloring can be T -uniformized.

Woodin's problem was resolved in 2013 by Asperó-Larson-Moore [2].

Definition (Moore 2005)

$(T, <_T)$: Aronszajn tree, $W \subseteq T$: uncountable subtree.

- W is T -closed if every T -bounded increasing sequence of W has an upper bound in W .
- T has the closed subtree property if every uncountable subtree W of T has an uncountable T -closed subtree of W .

Definition (Moore 2005)

$(T, <_T)$: Aronszajn tree, $W \subseteq T$: uncountable subtree.

- W is T -closed if every T -bounded increasing sequence of W has an upper bound in W .
- T has the closed subtree property if every uncountable subtree W of T has an uncountable T -closed subtree of W .

Theorem (Moore 2005)

If there is an Aronszajn tree T with the following conditions, then $2^{\aleph_0} = 2^{\aleph_1}$.

1. *T has the closed subtree property.*
2. *Every ladder system coloring can be T -uniformized.*

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

$(\sigma_p, f_p) \in P$ iff

- $\sigma_p \in [W]^{<\aleph_0}$, $\text{dom}(f_p) \in [T_{\text{Lim}}]^{<\aleph_0}$, $f_p: \text{dom}(f_p) \rightarrow T_{\text{Succ}}$, and
- $\forall t \in \text{dom}(f_p)(f_p(t) <_T t \wedge (\sigma_p \downarrow_T) \cap [f_p(t), t]_T = \emptyset)$.

$q \leq_P p$ iff $\sigma_q \supseteq \sigma_p$ and $f_q \supseteq f_p$.

Notation —

- ▶ T_{Lim} is the set of all limit height elements of T .
- ▶ T_{Succ} is the set of all successor height elements of T .
- ▶ $\sigma_p \downarrow_T := \{x \in T \mid \exists s \in \sigma_p(x \leq_T s)\}$.
- ▶ $[f_p(t), t]_T := \{x \in T \mid f_p(t) \leq_T x \leq_T t\}$.

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

$(\sigma_p, f_p) \in P$ iff

- $\sigma_p \in [W]^{<\aleph_0}$, $\text{dom}(f_p) \in [T_{\text{Lim}}]^{<\aleph_0}$, $f_p: \text{dom}(f_p) \rightarrow T_{\text{Succ}}$, and
- $\forall t \in \text{dom}(f_p) (f_p(t) <_T t \wedge (\sigma_p \downarrow_T) \cap [f_p(t), t]_T = \emptyset)$.

$q \leq_P p$ iff $\sigma_q \supseteq \sigma_p$ and $f_q \supseteq f_p$.

Claim 1 For every $t \in T_{\text{Lim}}$, $D_t := \{p \in P \mid t \in \sigma_p \cup \text{dom}(f_p)\}$ is dense.

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

$(\sigma_p, f_p) \in P$ iff

- $\sigma_p \in [W]^{<\aleph_0}$, $\text{dom}(f_p) \in [T_{\text{Lim}}]^{<\aleph_0}$, $f_p: \text{dom}(f_p) \rightarrow T_{\text{Succ}}$, and
- $\forall t \in \text{dom}(f_p) (f_p(t) <_T t \wedge (\sigma_p \downarrow_T) \cap [f_p(t), t]_T = \emptyset)$.

$q \leq_P p$ iff $\sigma_q \supseteq \sigma_p$ and $f_q \supseteq f_p$.

Claim 1 For every $t \in T_{\text{Lim}}$, $D_t := \{p \in P \mid t \in \sigma_p \cup \text{dom}(f_p)\}$ is dense.

Claim 2 A generic filter G adds T -closed subtree of W .

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

$(\sigma_p, f_p) \in P$ iff

- $\sigma_p \in [W]^{<\aleph_0}$, $\text{dom}(f_p) \in [T_{\text{Lim}}]^{<\aleph_0}$, $f_p: \text{dom}(f_p) \rightarrow T_{\text{Succ}}$, and
- $\forall t \in \text{dom}(f_p) (f_p(t) <_T t \wedge (\sigma_p \downarrow_T) \cap [f_p(t), t]_T = \emptyset)$.

$q \leq_P p$ iff $\sigma_q \supseteq \sigma_p$ and $f_q \supseteq f_p$.

Claim 1 For every $t \in T_{\text{Lim}}$, $D_t := \{p \in P \mid t \in \sigma_p \cup \text{dom}(f_p)\}$ is dense.

Claim 2 A generic filter G adds T -closed subtree of W .

Proof of Claim 2 Define the subtree $X := \bigcup \{\sigma_p \downarrow_T \mid p \in G\}$.

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

$(\sigma_p, f_p) \in P$ iff

- $\sigma_p \in [W]^{<\aleph_0}$, $\text{dom}(f_p) \in [T_{\text{Lim}}]^{<\aleph_0}$, $f_p: \text{dom}(f_p) \rightarrow T_{\text{Succ}}$, and
- $\forall t \in \text{dom}(f_p) (f_p(t) <_T t \wedge (\sigma_p \downarrow_T) \cap [f_p(t), t]_T = \emptyset)$.

$q \leq_P p$ iff $\sigma_q \supseteq \sigma_p$ and $f_q \supseteq f_p$.

Claim 1 For every $t \in T_{\text{Lim}}$, $D_t := \{p \in P \mid t \in \sigma_p \cup \text{dom}(f_p)\}$ is dense.

Claim 2 A generic filter G adds T -closed subtree of W .

Proof of Claim 2 Define the subtree $X := \bigcup \{\sigma_p \downarrow_T \mid p \in G\}$. By

Claim 1, for every $t \in T_{\text{Lim}}$, either $t \in X$ or

$\exists p \in G ([f_p(t), t] \cap X = \emptyset)$. Hence, X is a T -closed subtree of W .

Theorem (Moore 2005)

MA_{\aleph_1} implies that every Aronszajn tree has the closed subtree property.

Sketch. T : Aronszajn tree, W : uncountable subtree of T .

$(\sigma_p, f_p) \in P$ iff

- $\sigma_p \in [W]^{<\aleph_0}$, $\text{dom}(f_p) \in [T_{\text{Lim}}]^{<\aleph_0}$, $f_p: \text{dom}(f_p) \rightarrow T_{\text{Succ}}$, and
- $\forall t \in \text{dom}(f_p) (f_p(t) <_T t \wedge (\sigma_p \downarrow_T) \cap [f_p(t), t]_T = \emptyset)$.

$q \leq_P p$ iff $\sigma_q \supseteq \sigma_p$ and $f_q \supseteq f_p$.

Claim 1 For every $t \in T_{\text{Lim}}$, $D_t := \{p \in P \mid t \in \sigma_p \cup \text{dom}(f_p)\}$ is dense.

Claim 2 A generic filter G adds T -closed subtree of W .

Claim 3 P has the countable chain condition. □

Aronszajn trees with/without the closed subtree property

Natural Question

What relationship do the csp Aronszajn trees have with other Aronszajn trees? (e.g., Special Aronszajn trees, Suslin trees)

Proposition

Every Suslin tree has the closed subtree property.

Proposition

Every Suslin tree has the closed subtree property.

Proof. Let S be a Suslin tree and W an uncountable subtree of S . We may assume that W is well-prouned. For every $t \in S \setminus W$, we define $\alpha_t := \min\{\alpha \leq \text{ht}(t) \mid t \upharpoonright \alpha \notin W\}$.

Proposition

Every Suslin tree has the closed subtree property.

Proof. Let S be a Suslin tree and W an uncountable subtree of S . We may assume that W is well-prouned. For every $t \in S \setminus W$, we define $\alpha_t := \min\{\alpha \leq \text{ht}(t) \mid t \upharpoonright \alpha \notin W\}$. Then

$$A := \{t \upharpoonright \alpha_t \mid t \in S \setminus W\}$$

is an antichain of S .

Proposition

Every Suslin tree has the closed subtree property.

Proof. Let S be a Suslin tree and W an uncountable subtree of S . We may assume that W is well-prouned. For every $t \in S \setminus W$, we define $\alpha_t := \min\{\alpha \leq \text{ht}(t) \mid t \upharpoonright \alpha \notin W\}$. Then

$$A := \{t \upharpoonright \alpha_t \mid t \in S \setminus W\}$$

is an antichain of S . Hence, we can take a countable limit ordinal δ such that $A \subseteq S_{<\delta}$. Fix a node $w \in W_\delta$.

Proposition

Every Suslin tree has the closed subtree property.

Proof. Let S be a Suslin tree and W an uncountable subtree of S . We may assume that W is well-pruned. For every $t \in S \setminus W$, we define $\alpha_t := \min\{\alpha \leq \text{ht}(t) \mid t \upharpoonright \alpha \notin W\}$. Then

$$A := \{t \upharpoonright \alpha_t \mid t \in S \setminus W\}$$

is an antichain of S . Hence, we can take a countable limit ordinal δ such that $A \subseteq S_{<\delta}$. Fix a node $w \in W_\delta$.

Then $X := \{x \in S \mid x \not\perp_S w\}$ is uncountable and S -closed.

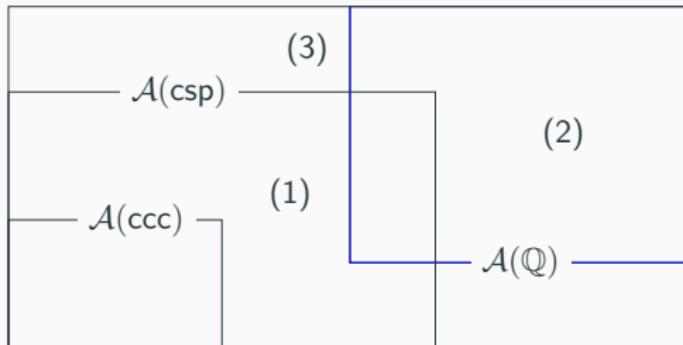
$(\because) \forall x \in S \setminus W (\text{ht}(x) \geq \delta \rightarrow x \upharpoonright \delta \notin W)$

□

Theorem

- $\mathcal{A}(\text{ccc}) \subseteq \mathcal{A}(\text{csp})$.

- (1) If a Suslin tree exists, then $\mathcal{A}(\text{csp}) \setminus (\mathcal{A}(\mathbb{Q}) \cup \mathcal{A}(\text{ccc})) \neq \emptyset$.
- (2) If \diamond holds, then $\mathcal{A}(\mathbb{Q}) \setminus \mathcal{A}(\text{csp}) \neq \emptyset$.
- (3) If \diamond holds, then $\mathcal{A} \setminus (\mathcal{A}(\mathbb{Q}) \cup \mathcal{A}(\text{csp})) \neq \emptyset$.



Some restricted forms of Martin's Axiom

Given an Aronszajn tree T and its uncountable subtree W , Moore found a ccc forcing notion $P_{T,W}$ such that it adds an uncountable T -closed subtree of W in an extension.

Given an Aronszajn tree T and its uncountable subtree W , Moore found a ccc forcing notion $P_{T,W}$ such that it adds an uncountable T -closed subtree of W in an extension.

Definition

(Larson-Todorčević [3], Yorioka [4, Definition 2.4])

Let P be a forcing notion. P has **rec** if there exists an assignment π from P into $[\omega_1]^{<\aleph_0}$ with **[com]** and **[rec]**.

[com] For any pair of compatible conditions $p, q \in P$, there is a common extension r of p and q in P such that

$$\pi(r) = \pi(p) \cup \pi(q).$$

[rec] For any pair of disjoint uncountable subsets I and J of P , if $\{\pi(p) \mid p \in I \cup J\}$ forms a Δ -system, then there are uncountable subsets I' and J' of I and J , respectively, such that any member of I' is compatible with any member of J' in P .

Given an Aronszajn tree T and its uncountable subtree W , Moore found a ccc forcing notion $P_{T,W}$ such that it adds an uncountable T -closed subtree of W in an extension.

Definition (Yorioka [4, Definition 2.4])

Let P be a forcing notion. P has R_{1,\aleph_1} if there exists an assignment π from P into $[\omega_1]^{<\aleph_0}$ with [com] and $\mathbf{[R_{1,\aleph_1}]}$.

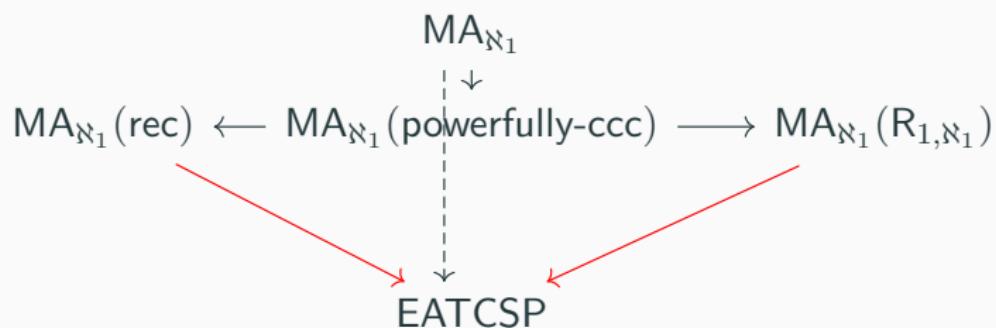
[com] For any pair of compatible conditions $p, q \in P$, there is a common extension r of p and q in P such that $\pi(r) = \pi(p) \cup \pi(q)$.

$\mathbf{[R_{1,\aleph_1}]}$ For any uncountable subset I of P , for any countable elementary submodel N of $H(\theta)$ with $\{P, \pi, I\} \in N$ and for any $p \in P \setminus N$, if $\{\pi(q) \mid q \in I\}$ forms a Δ -system with root $\pi(p) \cap N$, then there is an uncountable subset I' of I such that $I' \in N$ and any member of I' is compatible with p in P .

Given an Aronszajn tree T and its uncountable subtree W , Moore found a ccc forcing notion $P_{T,W}$ such that it adds an uncountable T -closed subtree of W in an extension.

Proposition

The forcing notion $P_{T,W}$ defined by Moore actually has two properties rec and R_{1,\aleph_1} which are stronger than the countable chain condition.



Proposition

If Suslin Axiom holds, then the Suslin tree forces that every Aronszajn tree has the closed subtree property.

Y. Aoki introduced a forcing property named the eventual precaliber \aleph_1 ($\text{EPC}_{\aleph_1}^*$) in his 2024 paper [5].

Definition (N.)

A forcing notion P has wE^* -ccc if whenever $\langle p_\alpha \mid \alpha < \omega_1 \rangle$ is an uncountable sequence of P , there exists an uncountable subset I of ω_1 and a sequence $\langle \tilde{p}_\alpha \mid \alpha \in I \rangle$ such that each \tilde{p}_α is an extension of p_α , and the following holds:

$$\exists p^* \in P \forall p \leq_P p^* \forall J \in [I]^{\aleph_1} \exists \alpha \in J (\tilde{p}_\alpha \not\perp_P p).$$

- Every wE^* -ccc forcing notion has powerfully-ccc. In particular, the forcing notion has ccc.
- Every finite support iteration of wE^* -ccc forcings has wE^* -ccc.

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^ -ccc preserves an uncountable subtree with no uncountable T -closed subtree.*

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^ -ccc preserves an uncountable subtree with no uncountable T -closed subtree.*

Proof. Let W be an uncountable subtree of T with no uncountable T -closed subtree. Suppose that $q \Vdash_P \dot{X} \in [W]^{\aleph_1}$ is a subtree".

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^ -ccc preserves an uncountable subtree with no uncountable T -closed subtree.*

Proof. Let W be an uncountable subtree of T with no uncountable T -closed subtree. Suppose that $q \Vdash_P \dot{X} \in [W]^{\aleph_1}$ is a subtree".

We take a condition $p_\alpha \leq_P q$ and a node $t_\alpha \in W_\alpha$ such that $p_\alpha \Vdash_P "t_\alpha \in \dot{X}"$ for every $\alpha < \omega_1$.

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^* -ccc preserves an uncountable subtree with no uncountable T -closed subtree.

Proof. Let W be an uncountable subtree of T with no uncountable T -closed subtree. Suppose that $q \Vdash_P \dot{X} \in [W]^{\aleph_1}$ is a subtree".

We take a condition $p_\alpha \leq_P q$ and a node $t_\alpha \in W_\alpha$ such that $p_\alpha \Vdash_P "t_\alpha \in \dot{X}"$ for every $\alpha < \omega_1$. By the property wE^* -ccc, we take an $I \in [\omega_1]^{\aleph_1}$ and a sequence $\langle \tilde{p}_\alpha \leq_P p_\alpha \mid \alpha \in I \rangle$ such that

$$\exists p^* \in P \forall p \leq_P p^* \forall J \in [I]^{\aleph_1} \exists \alpha \in J (\tilde{p}_\alpha \not\perp_P p) \dots (\star)$$

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^* -ccc preserves an uncountable subtree with no uncountable T -closed subtree.

Proof. Let W be an uncountable subtree of T with no uncountable T -closed subtree. Suppose that $q \Vdash_P \dot{X} \in [W]^{\aleph_1}$ is a subtree".

We take a condition $p_\alpha \leq_P q$ and a node $t_\alpha \in W_\alpha$ such that $p_\alpha \Vdash_P "t_\alpha \in \dot{X}"$ for every $\alpha < \omega_1$. By the property wE^* -ccc, we take an $I \in [\omega_1]^{\aleph_1}$ and a sequence $\langle \tilde{p}_\alpha \leq_P p_\alpha \mid \alpha \in I \rangle$ such that

$$\exists p^* \in P \forall p \leq_P p^* \forall J \in [I]^{\aleph_1} \exists \alpha \in J (\tilde{p}_\alpha \not\perp_P p) \dots (\star)$$

Then we can find a node $t \in T \setminus W$ such that $\{\alpha \in I \mid t \upharpoonright \xi \leq_T t_\alpha\}$ is uncountable for every $\xi < \text{ht}_T(t)$.

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^* -ccc preserves an uncountable subtree with no uncountable T -closed subtree.

Proof. Let W be an uncountable subtree of T with no uncountable T -closed subtree. Suppose that $q \Vdash_P \dot{X} \in [W]^{\aleph_1}$ is a subtree".

We take a condition $p_\alpha \leq_P q$ and a node $t_\alpha \in W_\alpha$ such that $p_\alpha \Vdash_P "t_\alpha \in \dot{X}"$ for every $\alpha < \omega_1$. By the property wE^* -ccc, we take an $I \in [\omega_1]^{\aleph_1}$ and a sequence $\langle \tilde{p}_\alpha \leq_P p_\alpha \mid \alpha \in I \rangle$ such that

$$\exists p^* \in P \forall p \leq_P p^* \forall J \in [I]^{\aleph_1} \exists \alpha \in J (\tilde{p}_\alpha \not\perp_P p) \dots (\star)$$

Then we can find a node $t \in T \setminus W$ such that

$\{\alpha \in I \mid t \upharpoonright \xi \leq_T t_\alpha\}$ is uncountable for every $\xi < \text{ht}_T(t)$.

If such a node does not exists, then the following set becomes an uncountable T -closed subtree of W :

$$\{s \in T \mid \forall \xi < \text{ht}_T(s) (|\{\alpha \in I \mid s \upharpoonright \xi \leq_T t_\alpha\}| = \aleph_1)\}.$$

Theorem

If T is an Aronszajn tree without the closed subtree property, then every forcing notion P with wE^* -ccc preserves an uncountable subtree with no uncountable T -closed subtree.

Proof. Let W be an uncountable subtree of T with no uncountable T -closed subtree. Suppose that $q \Vdash_P \dot{X} \in [W]^{\aleph_1}$ is a subtree".

We take a condition $p_\alpha \leq_P q$ and a node $t_\alpha \in W_\alpha$ such that $p_\alpha \Vdash_P "t_\alpha \in \dot{X}"$ for every $\alpha < \omega_1$. By the property wE^* -ccc, we take an $I \in [\omega_1]^{\aleph_1}$ and a sequence $\langle \tilde{p}_\alpha \leq_P p_\alpha \mid \alpha \in I \rangle$ such that

$$\exists p^* \in P \forall p \leq_P p^* \forall J \in [I]^{\aleph_1} \exists \alpha \in J (\tilde{p}_\alpha \not\perp_P p) \dots (\star)$$

Then we can find a node $t \in T \setminus W$ such that

$\{\alpha \in I \mid t \upharpoonright \xi \leq_T t_\alpha\}$ is uncountable for every $\xi < \text{ht}_T(t)$.

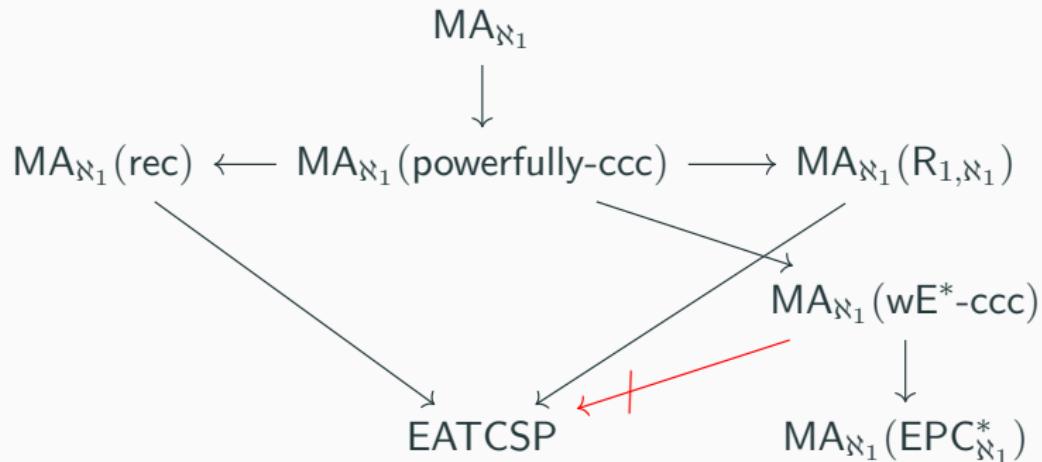
By (\star) , $p^* \Vdash_P "\forall \xi < \text{ht}_T(t) (t \upharpoonright \xi \in \dot{X})"$. And,

$p^* \Vdash_P "t \notin \dot{X} \subseteq W"$ because $t \notin W$.

□

Theorem

Every wE^* -ccc forcing preserve an Aronszajn tree.



Open question

Question

Is there a property φ for Aronszajn trees such that the following hold?

- It is consistent that every Aronszajn tree has the property φ .
- It is consistent that every Aronszajn tree has the property $\neg\varphi$.

- ▶ The speciality on Aronszajn trees satisfies the first statement, but fails the second statement.
- ▶ Conversely, the countable chain condition on Aronszajn trees satisfies the second statement, but fails the first statement.

[1] J. T. Moore.

ω_1 and $-\omega_1$ may be the only minimal uncountable linear orders.

Michigan Math. J., 55(2):437–457, 2007.

[2] D. Asperó, P. Larson, and J. T. Moore.

Forcing axioms and the continuum hypothesis.

Acta Math., 210(1):1–29, 2013.

[3] P. Larson and S. Todorčević.

Katětov's problem.

Trans. Amer. Math. Soc., 354(5):1783–1791, 2002.

[4] T. Yorioka.

Two chain conditions and their Todorčević's fragments of Martin's axiom.

Ann. Pure Appl. Logic, 175(1):Paper No. 103320, 28, 2024.

[5] Y. Aoki.

Discontinuous homomorphisms on $C(X)$ with the negation of CH and a weak forcing axiom.

J. Lond. Math. Soc. (2), 110(1):Paper No. e12956, 39, 2024.

Thank you for your attention