

ON UNIFORMLY MENGER ELEMENTS

Mbekezeli Nxumalo

**Winter School in Abstract Analysis 2026,
Section: Set Theory & Topology,
in Hejnice, Czech Republic, Europe,
Jan 31–Feb 7, 2026**

Preliminaries

- A *poset* is a pair (L, R) where L is a set, and $R \subseteq L \times L$ is a binary relation on L satisfying:
 - ① $\forall a \in L, aRa$.
 - ② $\forall a, b, c \in L, aRb \text{ and } bRc \implies aRc$.
 - ③ $\forall a, b \in L, aRb \text{ and } bRa \implies a = b$.

When these three properties hold, R is called a *(partial) order* on L .

- If there is no danger of confusion we typically use for an order the symbol \leq , even for distinct relations on distinct sets.
- For a poset (L, \leq) , we shall write L if \leq is clear from the context.
- The *supremum* of a set $M \subseteq (L, \leq)$, denoted by $\sup M$, is the least upperbound of M . Similarly, the *infimum* of M , denoted by $\inf M$, is the greatest lowerbound of M .

Preliminaries

- For a poset L , we write $\bigvee M$ and $\bigwedge M$ for the supremum and the infimum of $M \subseteq L$, respectively. For $\{a, b\} \subseteq L$, we write $a \wedge b$ and $a \vee b$.
- Given a poset L , we have that $\sup \emptyset$ is the least element of L and we denote it by 0_L and shall be called the *bottom* element of L . Similarly, $\inf \emptyset$ is the greatest element of L and we denote it by 1_L , and shall be called the *top* element of L .
- A poset L is a *lattice* if there is an infimum $a \wedge b$ and a supremum $a \vee b$ for any two $a, b \in L$. It is a *bounded lattice* if it is a lattice that has bottom and top.
- A lattice L is distributive if there holds the equality:

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$$

Preliminaries

- A poset is a *complete lattice* if every subset has a supremum and an infimum.

Proposition 1.

Let L be a poset. If each subset of L has a supremum, then L is a complete lattice.

- Order preserving maps $f : L \rightarrow M$ and $g : M \rightarrow L$ are *Galois adjoint* - f is a left adjoint of g , and g is a right adjoint of f - if
$$\forall a \in L, \forall b \in M, \quad f(a) \leq b \iff a \leq g(b).$$
- A left (resp. right) Galois adjoint of a given map does not have to exist. If it exists, however, it is uniquely determined.

Preliminaries

Proposition 2.

If L and M are complete lattices, then an order preserving map $f : L \rightarrow M$ is a left (resp. right) adjoint if and only if it preserves all suprema (resp. infima).

- In a distributive lattice L , a *pseudocomplement* of $a \in L$ is the largest element $b \in L$ such that $a \wedge b = 0$, if it exists.
- We denote the pseudocomplement of $a \in L$ by a^* . It has a property that

$$a \wedge b = 0 \iff b \leq a^*$$

- A *Heyting algebra* is a bounded lattice L equipped with a binary operation \rightarrow satisfying

$$c \leq a \rightarrow b \iff c \wedge a \leq b.$$

Preliminaries

Proposition 3.

A complete lattice L admits a Heyting operation iff there holds the distributive law:

$$a \wedge \bigvee B = \bigvee_{b \in B} (a \wedge b)$$

for all $a \in L$, $B \subseteq L$.

Preliminaries

- A *frame* or a *locale* is a complete lattice L satisfying the following infinite distributive property:

$$a \wedge \bigvee B = \bigvee_{b \in B} (a \wedge b)$$

for all $a \in L$, $B \subseteq L$.

Example 1.

Let (X, τ) be a topological space. Then τ is a frame, where $\wedge = \cap$, and $\bigvee = \bigcup$.

- Given a space X , we set $\mathfrak{O}X = \{\text{open sets of } X\}$ and call $\mathfrak{O}X$ the *frame of opens* of X .
- A *frame homomorphism* is a function $h : L \rightarrow M$ which preserves arbitrary joins (including the bottom element) and finite meets (including the top element).

Preliminaries

Example 2.

Let $f : X \rightarrow Y$ be a continuous function between spaces X and Y . Then the map

$$\mathfrak{O}(f) : \mathfrak{O}Y \rightarrow \mathfrak{O}X, \quad \mathfrak{O}(f)(U) = f^{-1}[U]$$

is a frame homomorphism.

- Associated with any frame homomorphism $h : L \rightarrow M$ is a right adjoint $h_* : M \rightarrow L$ which is called a *localic map*.

Example 3.

Let $f : X \rightarrow Y$ be a continuous function between spaces X and Y . Then the map

$$\text{Lc}(f) : \mathfrak{O}X \rightarrow \mathfrak{O}Y, \quad \text{Lc}(f)(U) = \mathfrak{O}(f)_*(U) = Y \setminus \overline{f[X \setminus U]}$$

is a localic map.

Preliminaries

- Denote by:
 - **Top** the category of topological spaces whose morphisms are continuous functions.
 - **Frm** the category of frames whose morphisms are frame homomorphisms.
 - **Loc** the category of locales whose morphisms are localic maps.
- There is a contravariant functor $\mathfrak{O} : \mathbf{Top} \rightarrow \mathbf{Frm}$ which acts as follows:

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ & \mathfrak{O} \downarrow & \\ \mathfrak{O}X & \xleftarrow{f^{-1}} & \mathfrak{O}Y \end{array}$$

Preliminaries

- A *sublocale* of a frame L is a subset $S \subseteq L$ satisfying:
 - $\bigwedge^S = \bigwedge^L$
 - For each $x \in L$ and each $s \in S$, $x \rightarrow s \in S$.
- $\mathcal{S}(L)$ denotes the collection of all sublocales of a frame L .

Example 4.

Let X be a space. For each $A \subseteq X$, set

$$\tilde{A} = \{\text{int}((X \setminus A) \cup W) : W \in \mathfrak{O}X\}.$$

\tilde{A} is a sublocale of $\mathfrak{O}X$ and is called *the sublocale induced by A*.

- In a T_D -space X , $A \subseteq B$ if and only if $\tilde{A} \subseteq \tilde{B}$.
- Given $a \in L$, we denote by $\mathfrak{c}(a) = \{x \in L : a \leq x\}$ the *closed sublocale of L induced by a* and by $\mathfrak{o}(a) = \{a \rightarrow x : x \in L\}$ the *open sublocale of L induced by a*.

Preliminaries

Example 5.

Let X be a space and let $U \in \mathfrak{O}X$. Then

$$\mathfrak{o}(U) = \tilde{U}$$

and

$$\mathfrak{c}(U) = \uparrow U.$$

- By a *cover* of a frame L we refer to $C \subseteq L$ in which $\bigvee C = 1$. Denote by $\text{Cov}(L)$ the collection of all covers of a frame L .
- A collection $\mathcal{C} \subseteq \mathcal{S}(L)$ is a *covering* of L if $\bigvee\{C : C \in \mathcal{C}\} = L$, where the join is calculated in $\mathcal{S}(L)$.
- Let L be a frame and $A, B \in \text{Cov}(L)$. Then $A \leq B$ in case for each $a \in A$, there is $b \in B$ such that $a \leq b$.
- For $A, B \in \text{Cov}(L)$, we write $A \wedge B = \{a \wedge b : a \in A, b \in B\}$.

Preliminaries

- For $A \in \text{Cov}(L)$, set $Ax = \bigvee\{t \in A : t \wedge x \neq 0\}$.
- For $\mu \subseteq \text{Cov}(L)$, we write $a \triangleleft_\mu b$ if there exists $A \in \mu$ such that $Aa \leq b$.
- Let L be a frame. A collection $\mu \subseteq \text{Cov}(L)$ is called a *nearness* on L if:

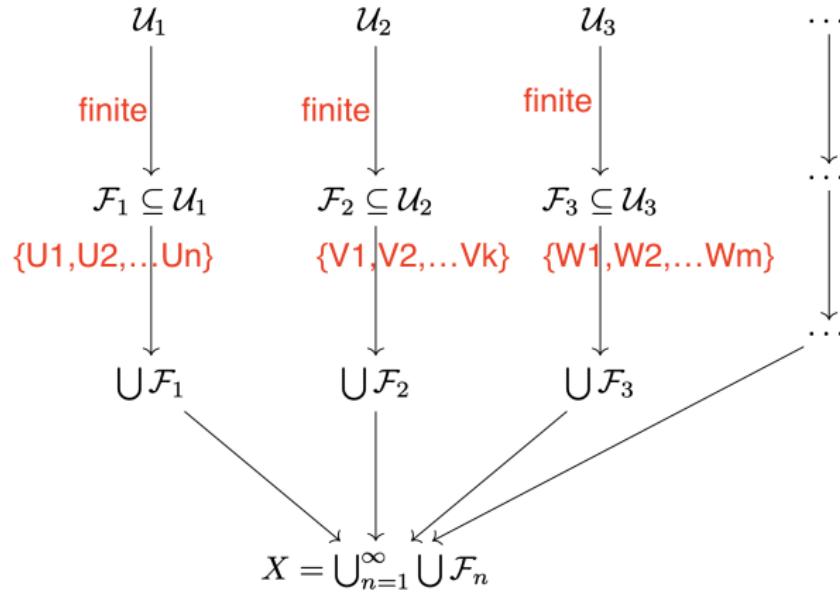
- ① Whenever $A \in \text{Cov}(L)$ and $B \in \mu$ with $B \leq A$, we have $A \in \mu$;
- ② $A, B \in \mu$ implies $A \wedge B \in \mu$;
- ③ For each $x \in L$,

$$x = \bigvee\{y \in L : y \triangleleft_\mu x\}.$$

- The pair (L, μ) , where μ is a nearness on L , is called a *nearness frame*, and members of μ are called *uniform covers*.

Introducing uniformly Menger elements

- **Menger space:** A space X is *Menger* if for every sequence $\{\mathcal{C}_n : n \in \mathbb{N}\}$ of open covers of X we can select, for each n , a finite set $\mathcal{V}_n \subseteq \mathcal{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is a cover of X .



Introducing uniformly Menger elements

- **Menger frame:** (Bayih, Dube, Ighedo 2021) In pointfree topology, a frame L is *Menger* if for every sequence (\mathcal{C}_n) of open coverings of L , there exists, for each n , a finite $\mathcal{D}_n \subseteq \mathcal{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{D}_n$ is a covering of L .

Proposition 4.

Let X be a space. Then X is a Menger space if and only if $\mathfrak{D}X$ is a Menger frame.

- **Relatively Menger subset:** (Sen 2023) A subset A of a space X is *relatively Menger* if for every sequence $\{\mathcal{C}_n : n \in \mathbb{N}\}$ of open covers of X , there exists, for each n , a finite set $J_n \subseteq \mathcal{C}_n$ such that $A \subseteq \bigcup_{n \in \mathbb{N}} J_n$.

Introducing uniformly Menger elements

- **Relatively Menger sublocale:** In frames, a sublocale S of a frame L is *relatively Menger* if for every sequence $\{\mathcal{C}_n : n \in \mathbb{N}\}$ of open coverings of L , there exists, for each n , a finite set $\mathcal{D}_n \subseteq \mathcal{C}_n$ such that $S \subseteq \bigcup_{n \in \mathbb{N}} \bigcup \mathcal{D}_n$.

Proposition 5.

Let X be a T_D -space and $S \subseteq X$. Then S is a relatively Menger subset of X if and only if \tilde{S} is a relatively Menger subublocale of $\mathfrak{O}X$.

Introducing uniformly Menger elements

- **Menger element:** An element a of a frame L is *Menger* if for every countable collection $\{C_n : n \in \mathbb{N}\}$ of covers of L , there exists, for each n , a finite set $D_n \subseteq C_n$ such that $a \leq \bigvee_{n \in \mathbb{N}} (\bigvee D_n)$.
- **Uniform Menger property:** Let (X, \mathcal{U}) be a uniform space. Then X has the *uniform Menger property* if for every sequence $\{\mathcal{C}_n : n \in \mathbb{N}\}$ of uniform covers of X there exists, for each n , a finite set $\mathcal{V}_n \subseteq \mathcal{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ covers X .

Definition 6.

Let (L, μ) be a nearness frame. An element $a \in L$ is *uniformly Menger* if for every countable collection $\{C_n : n \in \mathbb{N}\}$ of uniform covers of L , there exists, for each n , a finite set $D_n \subseteq C_n$ such that $a \leq \bigvee_{n \in \mathbb{N}} (\bigvee D_n)$.

References

- ① T. Bayih, T. Dube, and O. Ighedo, *Quasi-Menger and Weakly Menger Frames*, Filomat, 38(18), 2022, 6375–6392.
- ② L.D. Kocinac, 2003. *Selection principles in uniform spaces*. Note di Matematica, 22(2) 2003, 2004.
- ③ R. Sen, *Unification of relative versions of some star-covering properties*, Analele Științifice ale Universității 'Al. I. Cuza'din Iași. Matematică, 69(1), 2023, 1–17.

THANK YOU.
NGIYABONGA.
NDIYABULELA.
DANKIE.
KEA LEBOHA.
NGIYATHOKOZA.
INKOMU.
KE A LEBOGA.
NDO LIVHUWA.
DĚKUJU.