

A topological characterization of $\min\{\mathfrak{r}, \mathfrak{d}\}$

Lyubomyr Zdomskyy

TU Wien

Winter School in Abstract Analysis 2026, section Set Theory &
Topology (Hejnice, Czech Republic),
February 3, 2026.

Joint work with Roman Pol and Piotr Zakrzewski

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$.

□

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$. \square

The proof gives the following:

Theorem (Sierpinski 1934)

There exists a monotone function $f_S : [0, 1] \rightarrow [0, 1]$ such that for any $\kappa \leq \mathfrak{c}$ and κ -Lusin set $X \subset [0, 1]$, $f_S \upharpoonright Y$ is not uniformly continuous on Y for any $Y \in [X]^\kappa$.

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$. \square

The proof gives the following:

Theorem (Sierpinski 1934)

There exists a monotone function $f_S : [0, 1] \rightarrow [0, 1]$ such that for any $\kappa \leq \mathfrak{c}$ and κ -Lusin set $X \subset [0, 1]$, $f_S \upharpoonright Y$ is not uniformly continuous on Y for any $Y \in [X]^\kappa$.

Proof. Let $\{q_n : n \geq 1\}$ be an injective enumeration of $\mathbb{Q} \cap (0, 1)$ and set $f_S(x) = \sum_{q_n < x} 2^{-n}$.

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$. \square

The proof gives the following:

Theorem (Sierpinski 1934)

There exists a monotone function $f_S : [0, 1] \rightarrow [0, 1]$ such that for any $\kappa \leq \mathfrak{c}$ and κ -Lusin set $X \subset [0, 1]$, $f_S \upharpoonright Y$ is not uniformly continuous on Y for any $Y \in [X]^\kappa$.

Proof. Let $\{q_n : n \geq 1\}$ be an injective enumeration of $\mathbb{Q} \cap (0, 1)$ and set $f_S(x) = \sum_{q_n < x} 2^{-n}$. f_S is continuous at any $x \notin \mathbb{Q} \cap (0, 1)$ and "jumps up" at any $x \in \mathbb{Q} \cap (0, 1)$.

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$. \square

The proof gives the following:

Theorem (Sierpinski 1934)

There exists a monotone function $f_S : [0, 1] \rightarrow [0, 1]$ such that for any $\kappa \leq \mathfrak{c}$ and κ -Lusin set $X \subset [0, 1]$, $f_S \upharpoonright Y$ is not uniformly continuous on Y for any $Y \in [X]^\kappa$.

Proof. Let $\{q_n : n \geq 1\}$ be an injective enumeration of $\mathbb{Q} \cap (0, 1)$ and set $f_S(x) = \sum_{q_n < x} 2^{-n}$. f_S is continuous at any $x \notin \mathbb{Q} \cap (0, 1)$ and "jumps up" at any $x \in \mathbb{Q} \cap (0, 1)$. As a result, if Y is somewhere dense, then $f_S \upharpoonright Y$ is not uniformly continuous:

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$. \square

The proof gives the following:

Theorem (Sierpinski 1934)

There exists a monotone function $f_S : [0, 1] \rightarrow [0, 1]$ such that for any $\kappa \leq \mathfrak{c}$ and κ -Lusin set $X \subset [0, 1]$, $f_S \upharpoonright Y$ is not uniformly continuous on Y for any $Y \in [X]^\kappa$.

Proof. Let $\{q_n : n \geq 1\}$ be an injective enumeration of $\mathbb{Q} \cap (0, 1)$ and set $f_S(x) = \sum_{q_n < x} 2^{-n}$. f_S is continuous at any $x \notin \mathbb{Q} \cap (0, 1)$ and "jumps up" at any $x \in \mathbb{Q} \cap (0, 1)$. As a result, if Y is somewhere dense, then $f_S \upharpoonright Y$ is not uniformly continuous: There exists $q \in \mathbb{Q} \cap (0, 1)$ such that Y contains two sequences, one convergent to q from the left, and one from the right.

A result of Sierpiński, starting point

Theorem (Sierpinski 1934)

(CH) There exists an uncountable $X \subset [0, 1]$ and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is not uniformly continuous for any uncountable $Y \subset X$. \square

The proof gives the following:

Theorem (Sierpinski 1934)

There exists a monotone function $f_S : [0, 1] \rightarrow [0, 1]$ such that for any $\kappa \leq \mathfrak{c}$ and κ -Lusin set $X \subset [0, 1]$, $f_S \upharpoonright Y$ is not uniformly continuous on Y for any $Y \in [X]^\kappa$.

Proof. Let $\{q_n : n \geq 1\}$ be an injective enumeration of $\mathbb{Q} \cap (0, 1)$ and set $f_S(x) = \sum_{q_n < x} 2^{-n}$. f_S is continuous at any $x \notin \mathbb{Q} \cap (0, 1)$ and "jumps up" at any $x \in \mathbb{Q} \cap (0, 1)$. As a result, if Y is somewhere dense, then $f_S \upharpoonright Y$ is not uniformly continuous: There exists $q \in \mathbb{Q} \cap (0, 1)$ such that Y contains two sequences, one convergent to q from the left, and one from the right. This destroys the uniform continuity of $f_S \upharpoonright Y$

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- ▶ $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;
- ▶ h_{KS} is continuous;

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- ▶ $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;
- ▶ h_{KS} is continuous;
- ▶ $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ is uncountable for all $q \in \mathbb{Q} \cap (0, 1)$.

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- ▶ $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;
- ▶ h_{KS} is continuous;
- ▶ $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ is uncountable for all $q \in \mathbb{Q} \cap (0, 1)$.

Indeed,

$$h_{KS} = h_{KS}^{\neq m} + h_{KS}^{=m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n} + \frac{\sin(\frac{1}{|x-q_m|})}{2^m},$$

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- ▶ $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;
- ▶ h_{KS} is continuous;
- ▶ $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ is uncountable for all $q \in \mathbb{Q} \cap (0, 1)$.

Indeed,

$$h_{KS} = h_{KS}^{\neq m} + h_{KS}^{=m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n} + \frac{\sin(\frac{1}{|x-q_m|})}{2^m},$$

$h_{KS}^{\neq m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n}$ can be extended to a

continuous function at q_m ,

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- ▶ $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;
- ▶ h_{KS} is continuous;
- ▶ $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ is uncountable for all $q \in \mathbb{Q} \cap (0, 1)$.

Indeed,

$$h_{KS} = h_{KS}^{\neq m} + h_{KS}^{=m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n} + \frac{\sin(\frac{1}{|x-q_m|})}{2^m},$$

$h_{KS}^{\neq m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n}$ can be extended to a continuous function at q_m , and that allows $\frac{\sin(\frac{1}{|x-q_m|})}{2^m}$ to make $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ “big”.

A function of Kuratowski and Sierpiński (1922)

$$h_{KS}(x) = \sum_{n \geq 1} \frac{\sin(\frac{1}{|x-q_n|})}{2^n},$$

- ▶ $h_{KS} : \mathbb{P} = [0, 1] \setminus \mathbb{Q} \rightarrow [0, 1]$;
- ▶ h_{KS} is continuous;
- ▶ $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ is uncountable for all $q \in \mathbb{Q} \cap (0, 1)$.

Indeed,

$$h_{KS} = h_{KS}^{\neq m} + h_{KS}^{=m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n} + \frac{\sin(\frac{1}{|x-q_m|})}{2^m},$$

$h_{KS}^{\neq m} = \sum_{n \geq 1, n \neq m} \frac{\sin(\frac{1}{|x-q_n|})}{2^n}$ can be extended to a continuous function at q_m , and that allows $\frac{\sin(\frac{1}{|x-q_m|})}{2^m}$ to make $\overline{G(h_{KS})} \cap (\{q\} \times [0, 1])$ “big”.

Theorem (Pol-Zakrzewski 2024)

- If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is *not* uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;

Theorem (Pol-Zakrzewski 2024)

- ▶ If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;
- ▶ If \mathfrak{c} is regular and there exists $X \in [[0, 1]]^{\mathfrak{c}}$ and continuous $h : X \rightarrow [0, 1]$ such that $h \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$, then $\mathfrak{c} = \mathfrak{d}$.

Theorem (Pol-Zakrzewski 2024)

- ▶ If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;
- ▶ If \mathfrak{c} is regular and there exists $X \in [[0, 1]]^{\mathfrak{c}}$ and continuous $h : X \rightarrow [0, 1]$ such that $h \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$, then $\mathfrak{c} = \mathfrak{d}$.

Remark. The proof of the first item heavily used that $|G(h_{KS}) \cap (\{q\} \times [0, 1])| = \mathfrak{c}$ for all $q \in \mathbb{Q} \cap (0, 1)$, which in a sense says that h_{KS} is “very non-monotone”,

Theorem (Pol-Zakrzewski 2024)

- ▶ If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;
- ▶ If \mathfrak{c} is regular and there exists $X \in [[0, 1]]^{\mathfrak{c}}$ and continuous $h : X \rightarrow [0, 1]$ such that $h \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$, then $\mathfrak{c} = \mathfrak{d}$.

Remark. The proof of the first item heavily used that $|G(h_{KS}) \cap (\{q\} \times [0, 1])| = \mathfrak{c}$ for all $q \in \mathbb{Q} \cap (0, 1)$, which in a sense says that h_{KS} is “very non-monotone”, whereas f_S is monotone (increasing).

Theorem (Pol-Zakrzewski 2024)

- ▶ If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;
- ▶ If \mathfrak{c} is regular and there exists $X \in [[0, 1]]^{\mathfrak{c}}$ and continuous $h : X \rightarrow [0, 1]$ such that $h \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$, then $\mathfrak{c} = \mathfrak{d}$.

Remark. The proof of the first item heavily used that $|G(h_{KS}) \cap (\{q\} \times [0, 1])| = \mathfrak{c}$ for all $q \in \mathbb{Q} \cap (0, 1)$, which in a sense says that h_{KS} is “very non-monotone”, whereas f_S is monotone (increasing).

Question

$(\mathfrak{d} = \mathfrak{c} = \text{cof}(\mathfrak{c}))$

Is there a monotone $f : [0, 1] \rightarrow [0, 1]$ and $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $f \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$?

Theorem (Pol-Zakrzewski 2024)

- ▶ If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;
- ▶ If \mathfrak{c} is regular and there exists $X \in [[0, 1]]^{\mathfrak{c}}$ and continuous $h : X \rightarrow [0, 1]$ such that $h \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$, then $\mathfrak{c} = \mathfrak{d}$.

Remark. The proof of the first item heavily used that $|G(h_{KS}) \cap (\{q\} \times [0, 1])| = \mathfrak{c}$ for all $q \in \mathbb{Q} \cap (0, 1)$, which in a sense says that h_{KS} is “very non-monotone”, whereas f_S is monotone (increasing).

Question

$(\mathfrak{d} = \mathfrak{c} = \text{cof}(\mathfrak{c}))$

Is there a monotone $f : [0, 1] \rightarrow [0, 1]$ and $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $f \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$?

Theorem (Pol-Zakrzewski 2024)

- ▶ If $\mathfrak{d} = \mathfrak{c}$, then there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $h_{KS} \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$;
- ▶ If \mathfrak{c} is regular and there exists $X \in [\mathbb{P}]^{\mathfrak{c}}$ and continuous $h : X \rightarrow [0, 1]$ such that $h \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$, then $\mathfrak{c} = \mathfrak{d}$.

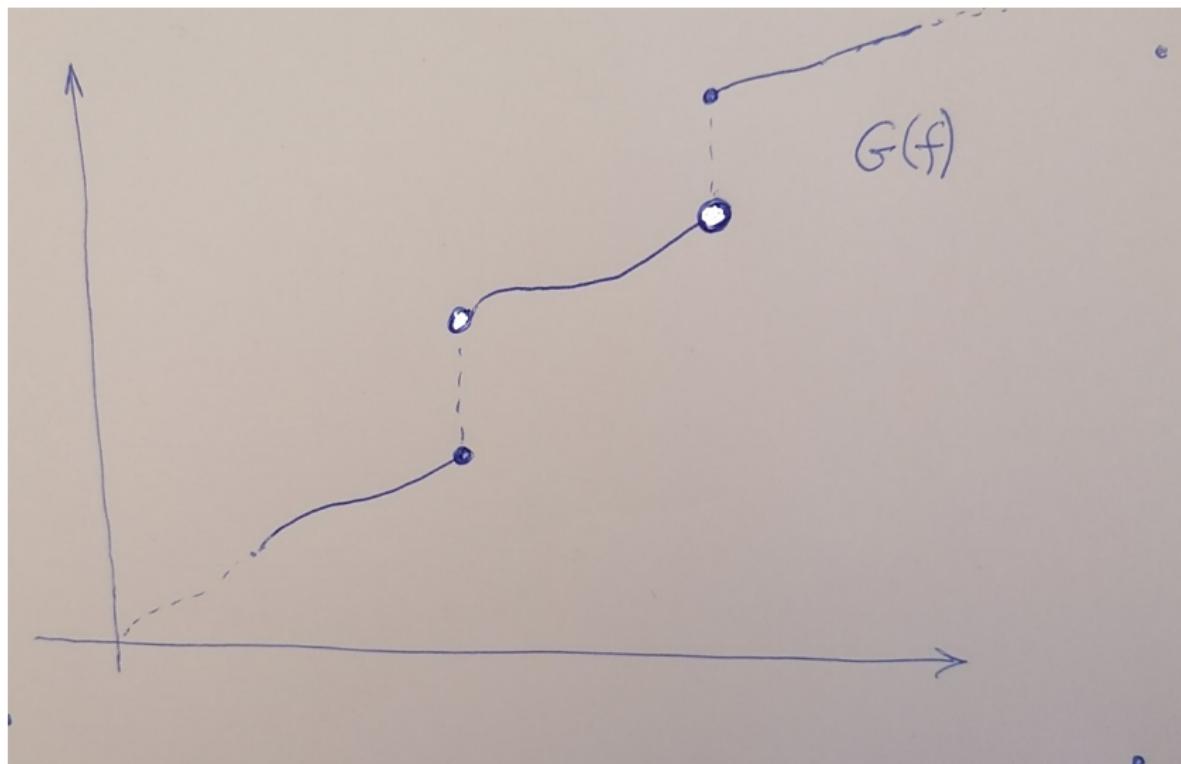
Remark. The proof of the first item heavily used that $|G(h_{KS}) \cap (\{q\} \times [0, 1])| = \mathfrak{c}$ for all $q \in \mathbb{Q} \cap (0, 1)$, which in a sense says that h_{KS} is “very non-monotone”, whereas f_S is monotone (increasing).

Question

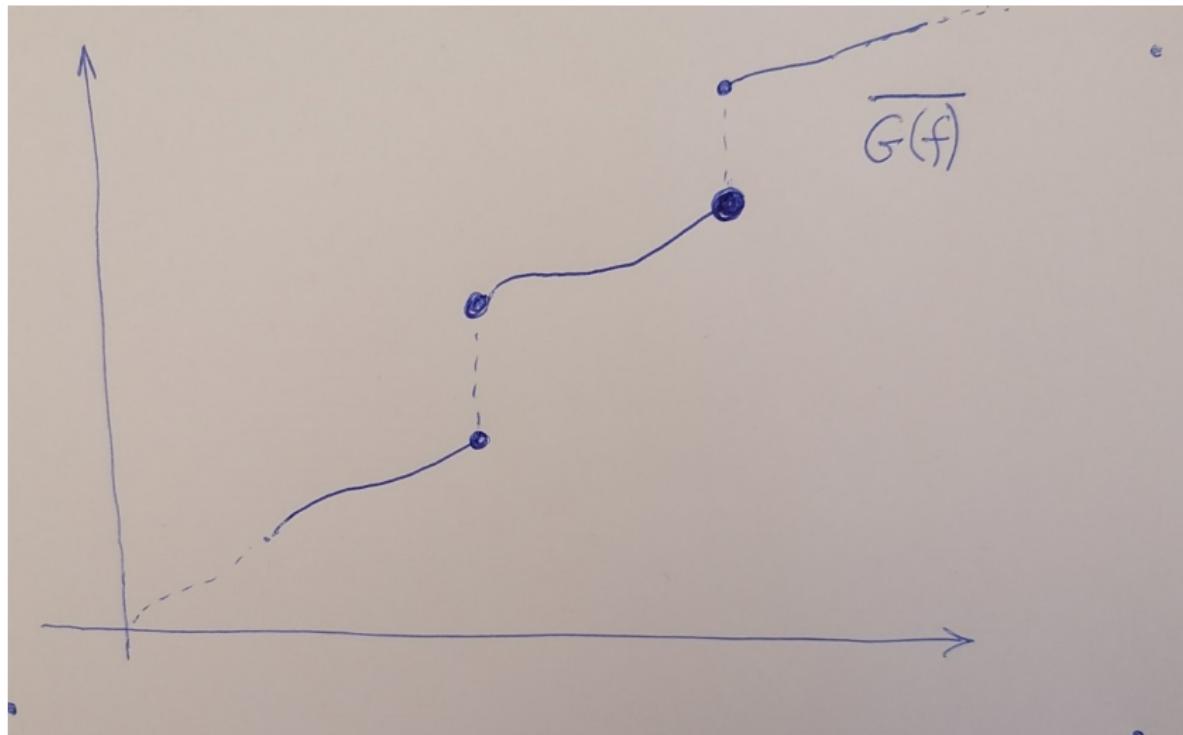
$(\mathfrak{d} = \mathfrak{c} = \text{cof}(\mathfrak{c}))$ -our assumption for a while!

Is there a monotone $f : [0, 1] \rightarrow [0, 1]$ and $X \in [\mathbb{P}]^{\mathfrak{c}}$ such that $f \upharpoonright Y$ is not uniformly continuous for any $Y \in [X]^{\mathfrak{c}}$?

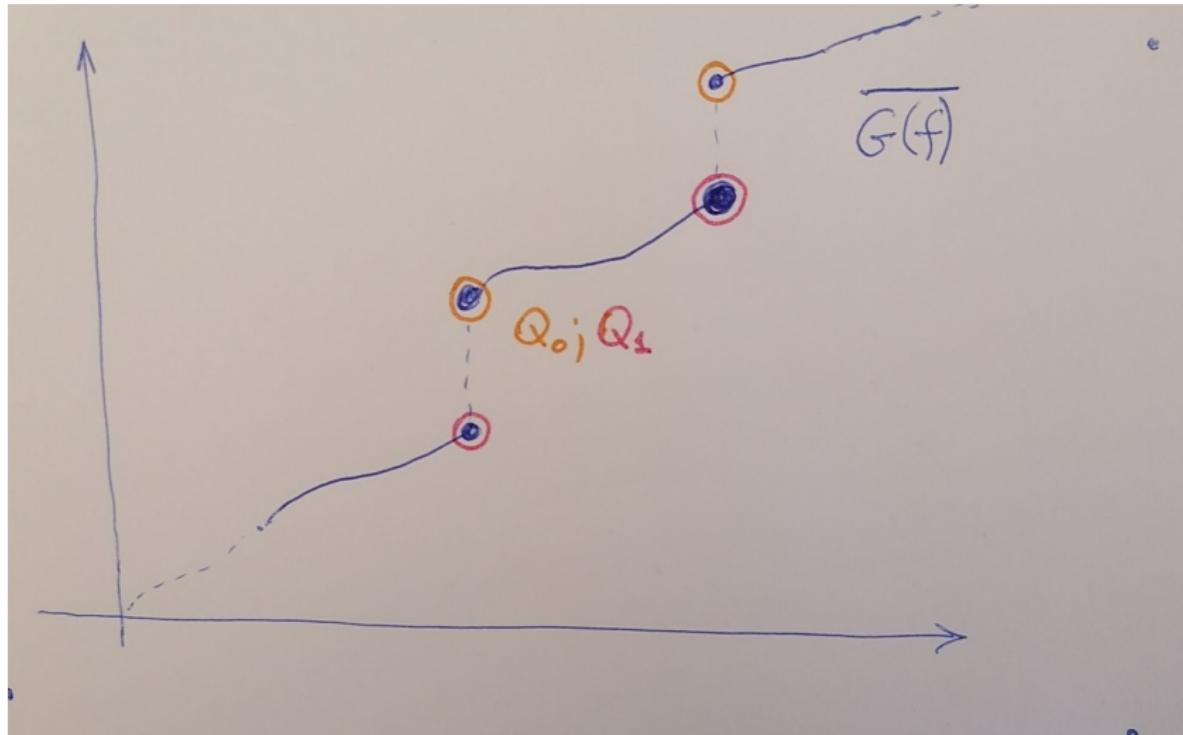
Compacts and graphs of monotone functions



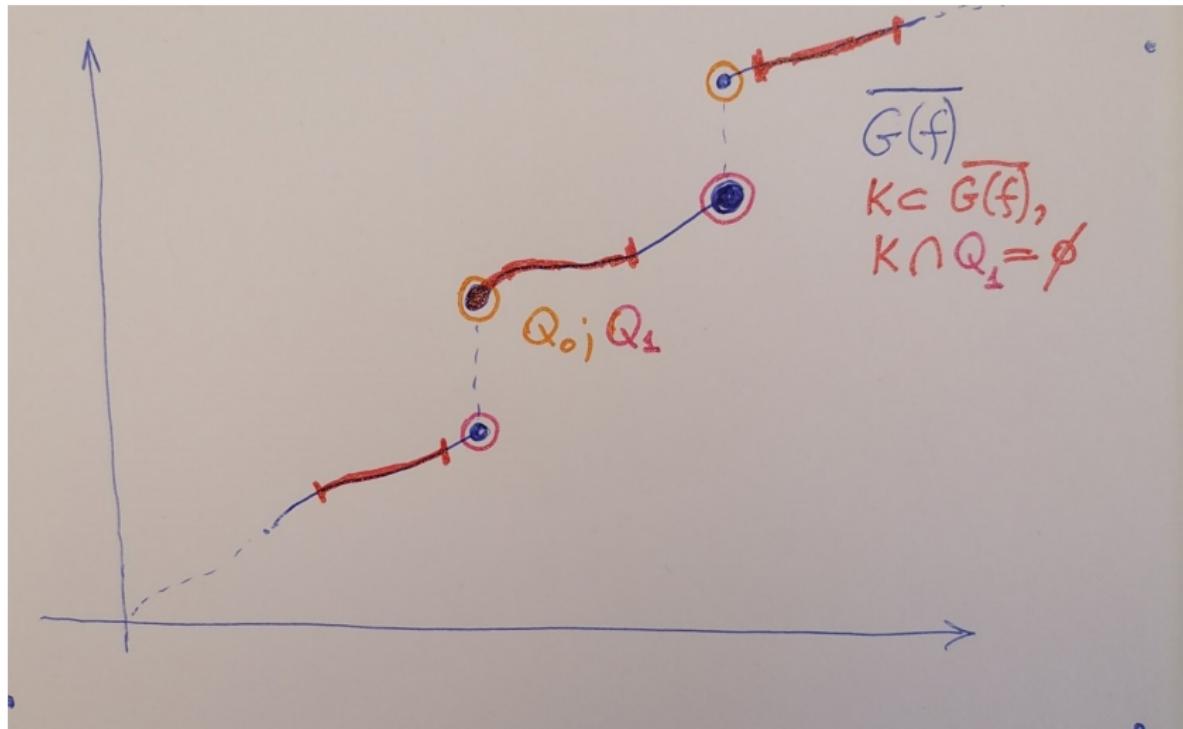
Compacts and graphs of monotone functions



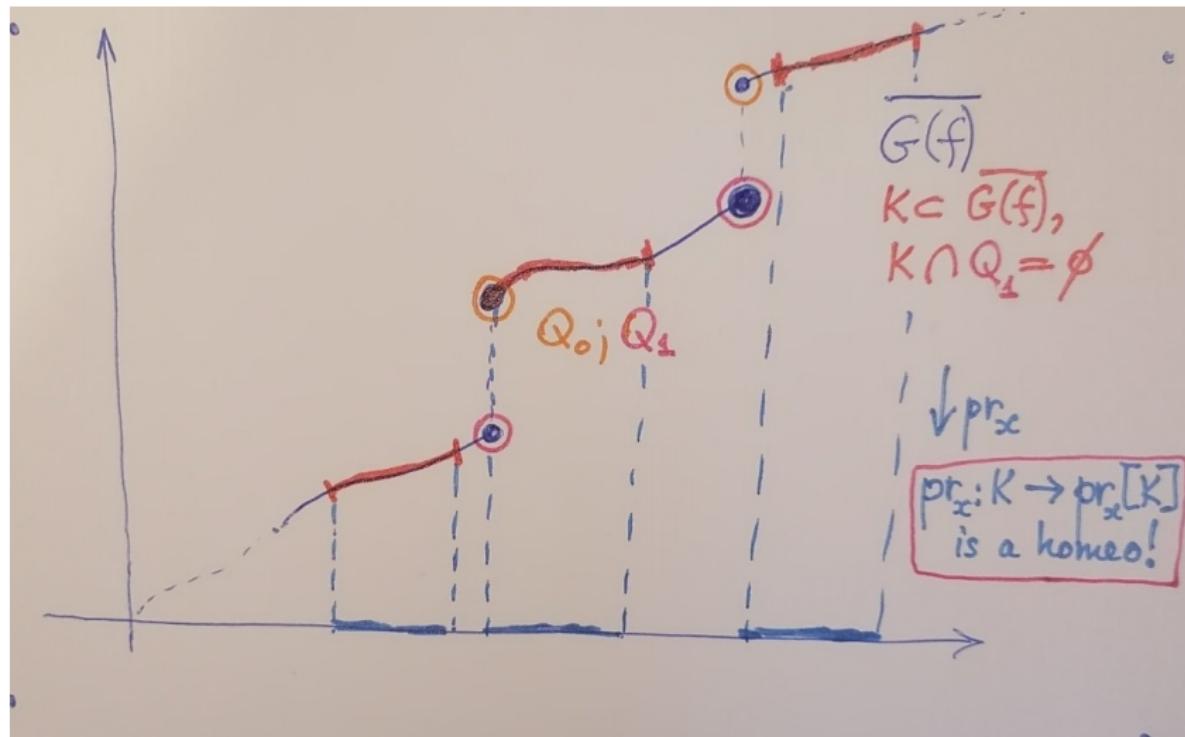
Compacts and graphs of monotone functions



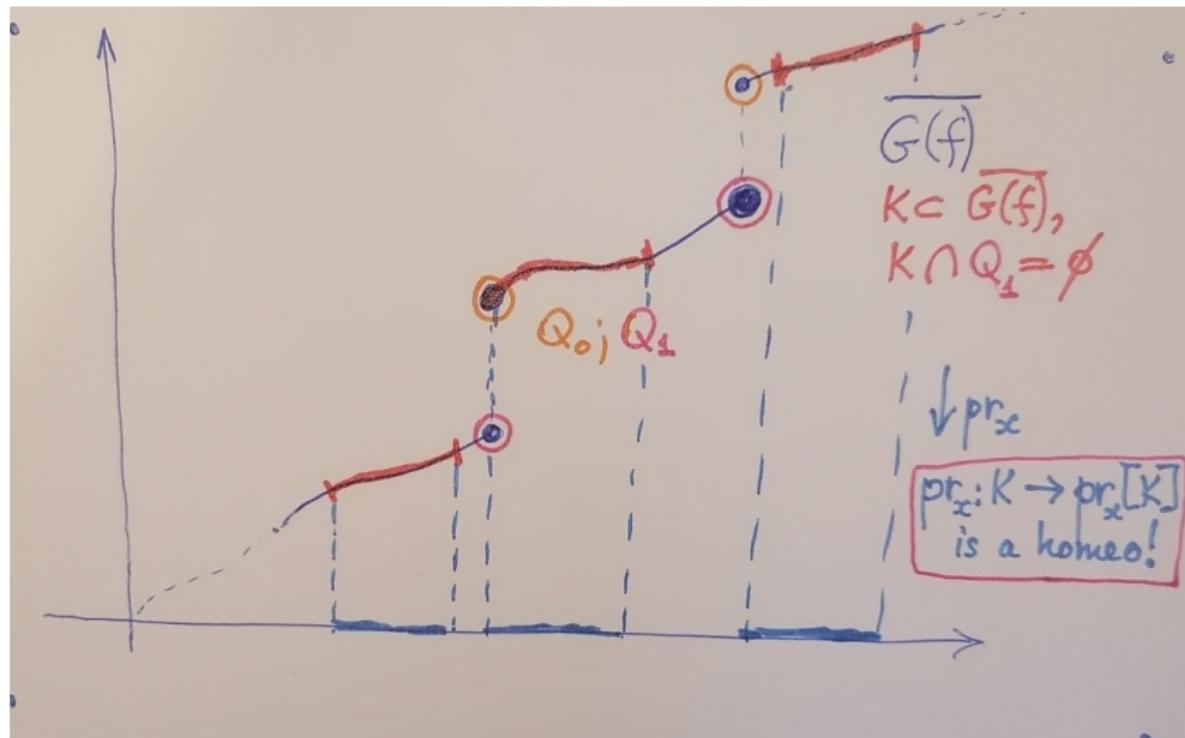
Compacts and graphs of monotone functions



Compacts and graphs of monotone functions



Compacts and graphs of monotone functions



Thus, $\text{pr}_x^{-1} : \text{pr}_x[K] \rightarrow K$ is uniformly continuous being a homeomorphism between compacta, and this is f up to countably many “mistakes” on points where f “jumps”.

Definition

Let X be metrizable compact and $D_0, D_1 \in [X]^\omega$ be disjoint.

$$\mathfrak{d}^*(X, D_0, D_1)$$

Definition

Let X be metrizable compact and $D_0, D_1 \in [X]^\omega$ be disjoint. Then

$\mathfrak{d}^*(X, D_0, D_1) := \{\min |\mathcal{K}| : \mathcal{K} \text{ is a compact cover of } K \text{ such that}$
 $\text{for any } K \in \mathcal{K} \text{ there exists } i \in 2 \text{ with } K \cap D_i = \emptyset\}.$

$$\mathfrak{d}^*(X, D_0, D_1)$$

Definition

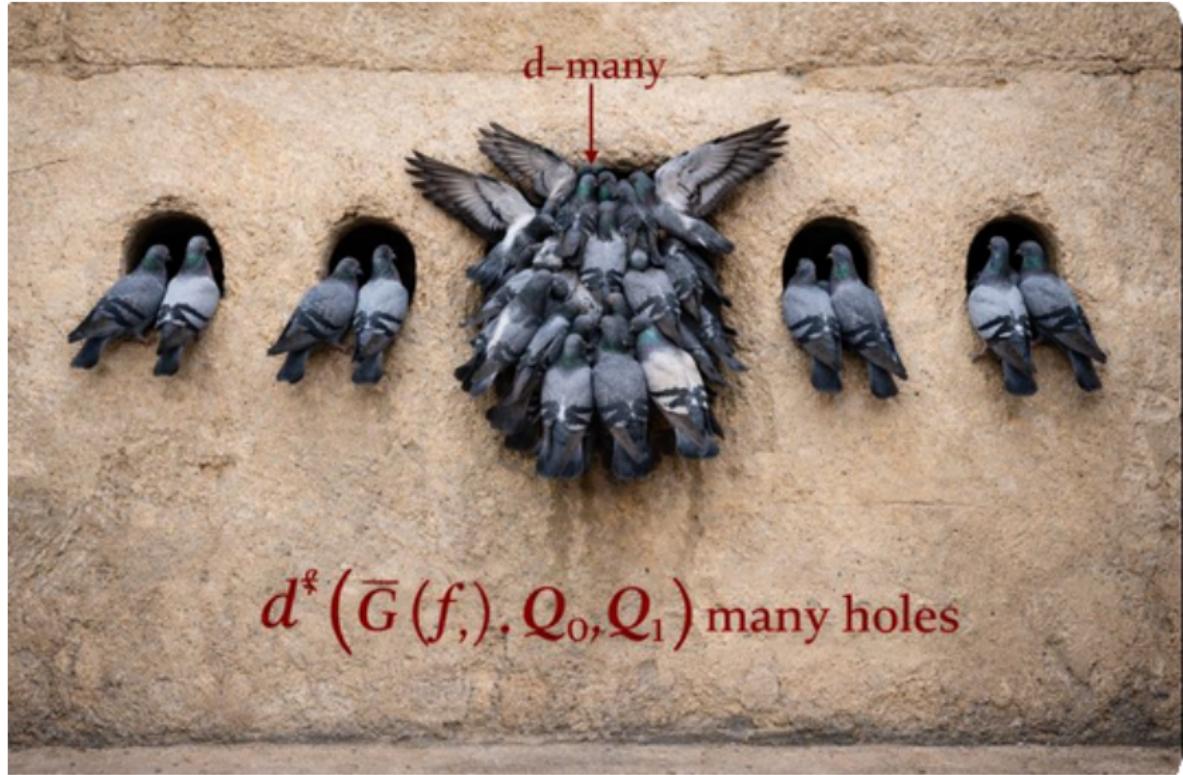
Let X be metrizable compact and $D_0, D_1 \in [X]^\omega$ be disjoint. Then

$\mathfrak{d}^*(X, D_0, D_1) := \{\min |\mathcal{K}| : \mathcal{K} \text{ is a compact cover of } K \text{ such that}$
 $\text{for any } K \in \mathcal{K} \text{ there exists } i \in 2 \text{ with } K \cap D_i = \emptyset\}.$

Observation

If $\mathfrak{d}^(\overline{G(f)}, Q_0, Q_1) < \mathfrak{d}$, then for every $X \subset [0, 1]$ of size $\mathfrak{d} = \mathfrak{c}$ and monotone $f : X \rightarrow [0, 1]$ there exists $Y \in [X]^\mathfrak{c}$ such that $f \upharpoonright Y$ is uniformly continuous.*

Proof



No blue assumption from now on.

Theorem (Pol-Zakrzewski-Z. 202?)

$$\min\{\mathfrak{d}, \mathfrak{u}\} = \mathfrak{d}^*(\mathcal{P}(\omega), \text{Fin}, \text{cFin}) \geq$$

$\geq \mathfrak{d}^*(X, D_0, D_1)$ for any compact metrizable X and countable disjoint $D_0, D_1 \subset X$.

□

No blue assumption from now on.

Theorem (Pol-Zakrzewski-Z. 202?)

$$\min\{\mathfrak{d}, \mathfrak{u}\} = \mathfrak{d}^*(\mathcal{P}(\omega), \text{Fin}, \text{cFin}) \geq$$

$\geq \mathfrak{d}^*(X, D_0, D_1)$ for any compact metrizable X and countable disjoint $D_0, D_1 \subset X$.

□

Corollary

If $\mathfrak{u} < \mathfrak{d} = \mathfrak{c}$, then for every $X \subset [0, 1]$ of size \mathfrak{c} and monotone $f : X \rightarrow [0, 1]$ there exists $Y \in [X]^{\mathfrak{c}}$ such that $f \upharpoonright Y$ is uniformly continuous.

□

No blue assumption from now on.

Theorem (Pol-Zakrzewski-Z. 202?)

$$\min\{\mathfrak{d}, \mathfrak{u}\} = \mathfrak{d}^*(\mathcal{P}(\omega), \text{Fin}, \text{cFin}) \geq$$

$\geq \mathfrak{d}^*(X, D_0, D_1)$ for any compact metrizable X and countable disjoint $D_0, D_1 \subset X$. □

Corollary

If $\mathfrak{u} < \mathfrak{d} = \mathfrak{c}$, then for every $X \subset [0, 1]$ of size \mathfrak{c} and monotone $f : X \rightarrow [0, 1]$ there exists $Y \in [X]^{\mathfrak{c}}$ such that $f \upharpoonright Y$ is uniformly continuous. □

Note that there are plenty models of $\mathfrak{u} < \mathfrak{d} = \mathfrak{c}$ and $\mathfrak{u} < \mathfrak{d}$ implies that \mathfrak{d} is regular.

No blue assumption from now on.

Theorem (Pol-Zakrzewski-Z. 202?)

$$\min\{\mathfrak{d}, \mathfrak{u}\} = \mathfrak{d}^*(\mathcal{P}(\omega), \text{Fin}, \text{cFin}) \geq$$

$\geq \mathfrak{d}^*(X, D_0, D_1)$ for any compact metrizable X and countable disjoint $D_0, D_1 \subset X$. □

Corollary

If $\mathfrak{u} < \mathfrak{d} = \mathfrak{c}$, then for every $X \subset [0, 1]$ of size \mathfrak{c} and monotone $f : X \rightarrow [0, 1]$ there exists $Y \in [X]^{\mathfrak{c}}$ such that $f \upharpoonright Y$ is uniformly continuous. □

Note that there are plenty models of $\mathfrak{u} < \mathfrak{d} = \mathfrak{c}$ and $\mathfrak{u} < \mathfrak{d}$ implies that \mathfrak{d} is regular.

Curiosity 1

$\text{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$

Curiosity 1

$\text{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\text{r} \leq \text{u}.$

Curiosity 1

$\text{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\text{r} \leq \text{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \text{r}.$

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset}),$$

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset}),$$

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset}),$ $\text{Fin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\uparrow} = \emptyset$ and

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset})$, $\text{Fin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\uparrow} = \emptyset$ and
 $\text{cFin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\cap=\emptyset} = \emptyset.$ \square

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset})$, $\text{Fin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\uparrow} = \emptyset$ and
 $\text{cFin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\cap=\emptyset} = \emptyset.$ \square

Corollary

$$\mathfrak{r} \geq \min\{\mathfrak{d}, \mathfrak{u}\},$$

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset})$, $\text{Fin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\uparrow} = \emptyset$ and
 $\text{cFin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\cap=\emptyset} = \emptyset.$ □

Corollary

$\mathfrak{r} \geq \min\{\mathfrak{d}, \mathfrak{u}\}$, and hence $\min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$ □

Curiosity 1

$\mathfrak{r} = \{|\mathcal{R}| : \mathcal{R} \subset [\omega]^\omega \text{ and for every } A \subset \omega \text{ there exists } R \in \mathcal{R} \text{ with } (R \subset A) \vee (R \cap A = \emptyset)\}.$ $\mathfrak{r} \leq \mathfrak{u}.$

Let \mathcal{R} be as above, $|\mathcal{R}| = \mathfrak{r}$. For every $R \in \mathcal{R}$ set

$$K(R)_{\uparrow} = \{X \subset \omega : R \subset X\} \text{ and } K(R)_{\cap=\emptyset} = \{X \subset \omega : R \cap X = \emptyset\}.$$

Observation

$\mathcal{P}(\omega) = \bigcup_{R \in \mathcal{R}} (K(R)_{\uparrow} \cup K(R)_{\cap=\emptyset})$, $\text{Fin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\uparrow} = \emptyset$ and
 $\text{cFin} \cap \bigcup_{R \in \mathcal{R}} K(R)_{\cap=\emptyset} = \emptyset.$ □

Corollary

$\mathfrak{r} \geq \min\{\mathfrak{d}, \mathfrak{u}\}$, and hence $\min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$ □

The corollary above was proved by Aubrey in 2004.

Curiosity 2

Definition (Szewczak-Tsaban 2017)

bidi is the minimal cardinality of $\mathcal{X} \subset [\omega]^\omega$ such that for every $A \in [\omega]^\omega$ there exists $X \in \mathcal{X}$ such that either $A \leq^* X$ or $\omega \setminus A \leq^* X$.

□

Curiosity 2

Definition (Szewczak-Tsaban 2017)

bidi is the minimal cardinality of $\mathcal{X} \subset [\omega]^\omega$ such that for every $A \in [\omega]^\omega$ there exists $X \in \mathcal{X}$ such that either $A \leq^* X$ or $\omega \setminus A \leq^* X$.

□

Observation. $\text{bidi} \leq \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}$.

□

Curiosity 2

Definition (Szewczak-Tsaban 2017)

bidi is the minimal cardinality of $\mathcal{X} \subset [\omega]^\omega$ such that for every $A \in [\omega]^\omega$ there exists $X \in \mathcal{X}$ such that either $A \leq^* X$ or $\omega \setminus A \leq^* X$. □

Observation. $\text{bidi} \leq \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}$. □

Observation. If \mathcal{G} is a family of G_δ -subsets of $\mathcal{P}(\omega)$ such that each $G \in \mathcal{G}$ contains either Fin or cFin and $|\mathcal{G}| < \min\{\mathfrak{d}, \mathfrak{r}\}$, then $\cap \mathcal{G} \neq \emptyset$.

Curiosity 2

Definition (Szewczak-Tsaban 2017)

bidi is the minimal cardinality of $\mathcal{X} \subset [\omega]^\omega$ such that for every $A \in [\omega]^\omega$ there exists $X \in \mathcal{X}$ such that either $A \leq^* X$ or $\omega \setminus A \leq^* X$. □

Observation. $\text{bidi} \leq \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}$. □

Observation. If \mathcal{G} is a family of G_δ -subsets of $\mathcal{P}(\omega)$ such that each $G \in \mathcal{G}$ contains either Fin or cFin and $|\mathcal{G}| < \min\{\mathfrak{d}, \mathfrak{r}\}$, then $\cap \mathcal{G} \neq \emptyset$. Moreover, $|\cap \mathcal{G}| > \omega$. □

Curiosity 2

Definition (Szewczak-Tsaban 2017)

bidi is the minimal cardinality of $\mathcal{X} \subset [\omega]^\omega$ such that for every $A \in [\omega]^\omega$ there exists $X \in \mathcal{X}$ such that either $A \leq^* X$ or $\omega \setminus A \leq^* X$. □

Observation. $\text{bidi} \leq \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}$. □

Observation. If \mathcal{G} is a family of G_δ -subsets of $\mathcal{P}(\omega)$ such that each $G \in \mathcal{G}$ contains either Fin or cFin and $|\mathcal{G}| < \min\{\mathfrak{d}, \mathfrak{r}\}$, then $\cap \mathcal{G} \neq \emptyset$. Moreover, $|\cap \mathcal{G}| > \omega$. □

Theorem [Szewczak-Tsaban 2017].

$$\mathfrak{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Theorem [Szewczak-Tsaban 2017].

$$\mathfrak{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\mathfrak{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$.

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

Theorem [Szewczak-Tsaban 2017].

$$\mathfrak{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\mathfrak{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{slow}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

Theorem [Szewczak-Tsaban 2017].

$$\mathfrak{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\mathfrak{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{slow}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{fast}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))) = \emptyset)\}.$$

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{slow}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{fast}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))) = \emptyset)\}.$$

$$G_{slow}(X) \supset \text{cFin},$$

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{slow}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{fast}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))) = \emptyset)\}.$$

$$G_{slow}(X) \supset \text{cFin}, G_{fast}(X) \supset \text{Fin},$$

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{slow}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{fast}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))) = \emptyset)\}.$$

$G_{slow}(X) \supset \text{cFin}$, $G_{fast}(X) \supset \text{Fin}$, they are G_δ -sets,

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{slow}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{fast}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))] = \emptyset)\}.$$

$G_{slow}(X) \supset \text{cFin}$, $G_{fast}(X) \supset \text{Fin}$, they are G_δ -sets, $A \not\leq^* X$ if $A \in G_{fast}(X) \setminus \text{Fin}$,

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{\text{slow}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{\text{fast}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))) = \emptyset)\}.$$

$G_{\text{slow}}(X) \supset \text{cFin}$, $G_{\text{fast}}(X) \supset \text{Fin}$, they are G_δ -sets, $A \not\leq^* X$ if $A \in G_{\text{fast}}(X) \setminus \text{Fin}$, and $\omega \setminus A \not\leq^* X$ if $A \in G_{\text{slow}}(X) \setminus \text{cFin}$,

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{\text{slow}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{\text{fast}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))) = \emptyset)\}.$$

$G_{\text{slow}}(X) \supset \text{cFin}$, $G_{\text{fast}}(X) \supset \text{Fin}$, they are G_δ -sets, $A \not\leq^* X$ if $A \in G_{\text{fast}}(X) \setminus \text{Fin}$, and $\omega \setminus A \not\leq^* X$ if $A \in G_{\text{slow}}(X) \setminus \text{cFin}$, hence any

$A \in \bigcap_{X \in \mathcal{X}} (G_{\text{slow}}(X) \cap G_{\text{fast}}(X)) \setminus (\text{Fin} \cup \text{cFin})$ witnesses that \mathcal{X} is not like in the definition of bidi .

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{\text{slow}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{\text{fast}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))] = \emptyset)\}.$$

$G_{\text{slow}}(X) \supset \text{cFin}$, $G_{\text{fast}}(X) \supset \text{Fin}$, they are G_δ -sets, $A \not\leq^* X$ if $A \in G_{\text{fast}}(X) \setminus \text{Fin}$, and $\omega \setminus A \not\leq^* X$ if $A \in G_{\text{slow}}(X) \setminus \text{cFin}$, hence any

$A \in \bigcap_{X \in \mathcal{X}} (G_{\text{slow}}(X) \cap G_{\text{fast}}(X)) \setminus (\text{Fin} \cup \text{cFin})$ witnesses that \mathcal{X} is not like in the definition of bidi .

More precisely, suppose that $A \in G_{\text{fast}}(X)$ and fix n with $A \cap [X(n), X(X(n))] = \emptyset$. Then $A(X(n)) \geq X(X(n))$.

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{\text{slow}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{\text{fast}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))] = \emptyset)\}.$$

$G_{\text{slow}}(X) \supset \text{cFin}$, $G_{\text{fast}}(X) \supset \text{Fin}$, they are G_δ -sets, $A \not\leq^* X$ if $A \in G_{\text{fast}}(X) \setminus \text{Fin}$, and $\omega \setminus A \not\leq^* X$ if $A \in G_{\text{slow}}(X) \setminus \text{cFin}$, hence any

$$A \in \bigcap_{X \in \mathcal{X}} (G_{\text{slow}}(X) \cap G_{\text{fast}}(X)) \setminus (\text{Fin} \cup \text{cFin})$$

witnesses that \mathcal{X} is not like in the definition of bidi .

More precisely, suppose that $A \in G_{\text{fast}}(X)$ and fix n with $A \cap [X(n), X(X(n))] = \emptyset$. Then $A(X(n)) \geq X(X(n))$. Thus, $A(m) \geq X(m)$ for infinitely many $m \in \omega$. □

Theorem [Szewczak-Tsaban 2017].

$$\text{bidi} = \min\{\mathfrak{d}, \mathfrak{r}\} = \min\{\mathfrak{d}, \mathfrak{u}\}.$$

Proof.

Need $\text{bidi} \geq \min\{\mathfrak{d}, \mathfrak{r}\}$. Fix $\mathcal{X} \subset [\omega]^\omega$ of size $|\mathcal{X}| < \min\{\mathfrak{d}, \mathfrak{r}\}$.

For every $X \in \mathcal{X}$ set

$$G_{\text{slow}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \supset [X(n), X(X(n))])\} \text{ and}$$

$$G_{\text{fast}}(X) = \{A \subset \omega : \exists^\infty n \in \omega (A \cap [X(n), X(X(n))] = \emptyset)\}.$$

$G_{\text{slow}}(X) \supset \text{cFin}$, $G_{\text{fast}}(X) \supset \text{Fin}$, they are G_δ -sets, $A \not\leq^* X$ if $A \in G_{\text{fast}}(X) \setminus \text{Fin}$, and $\omega \setminus A \not\leq^* X$ if $A \in G_{\text{slow}}(X) \setminus \text{cFin}$, hence any

$$A \in \bigcap_{X \in \mathcal{X}} (G_{\text{slow}}(X) \cap G_{\text{fast}}(X)) \setminus (\text{Fin} \cup \text{cFin})$$

witnesses that \mathcal{X} is not like in the definition of bidi .

More precisely, suppose that $A \in G_{\text{fast}}(X)$ and fix n with $A \cap [X(n), X(X(n))] = \emptyset$. Then $A(X(n)) \geq X(X(n))$. Thus, $A(m) \geq X(m)$ for infinitely many $m \in \omega$. □

Questions

- ▶ *Pol-Zakrzewski 2024:* Suppose that \mathfrak{c} is singular and there exists $X \subset [0, 1]$ of size \mathfrak{c} and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is **not** uniformly continuous for all $Y \in [X]^\mathfrak{c}$.

Questions

- ▶ *Pol-Zakrzewski 2024:* Suppose that \mathfrak{c} is singular and there exists $X \subset [0, 1]$ of size \mathfrak{c} and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is **not** uniformly continuous for all $Y \in [X]^\mathfrak{c}$. Does this imply $\mathfrak{c} = \mathfrak{d}$?

Questions

- ▶ *Pol-Zakrzewski 2024:* Suppose that \mathfrak{c} is singular and there exists $X \subset [0, 1]$ of size \mathfrak{c} and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is **not** uniformly continuous for all $Y \in [X]^\mathfrak{c}$. Does this imply $\mathfrak{c} = \mathfrak{d}$?
- ▶ *Pol-Zakrzewski-Z. 202?:* Is $\mathfrak{r} = \mathfrak{d} = \mathfrak{c} (= \text{cof}(\mathfrak{c}))$ consistent with the statement that for every increasing $f : [0, 1] \rightarrow [0, 1]$ and $X \in [0, 1]$ of size \mathfrak{c} there exists $Y \in [X]^\mathfrak{c}$ such that $f \upharpoonright Y$ is uniformly continuous?

Questions

- ▶ *Pol-Zakrzewski 2024:* Suppose that \mathfrak{c} is singular and there exists $X \subset [0, 1]$ of size \mathfrak{c} and continuous $f : X \rightarrow [0, 1]$ such that $f \upharpoonright Y$ is **not** uniformly continuous for all $Y \in [X]^\mathfrak{c}$. Does this imply $\mathfrak{c} = \mathfrak{d}$?
- ▶ *Pol-Zakrzewski-Z. 202?:* Is $\mathfrak{c} = \mathfrak{d} = \mathfrak{c} (= \text{cof}(\mathfrak{c}))$ consistent with the statement that for every increasing $f : [0, 1] \rightarrow [0, 1]$ and $X \in [0, 1]$ of size \mathfrak{c} there exists $Y \in [X]^\mathfrak{c}$ such that $f \upharpoonright Y$ is uniformly continuous? What happens in the Laver model?

The last slide

Thank you for your attention.