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A result of Sierpiński, starting point

Theorem (Sierpinski 1934)
(CH) There exists an uncountable X ⊂ [0, 1] and continuous
f : X → [0, 1] such that f ↾ Y is not uniformly continuous for any
uncountable Y ⊂ X. 2

The proof gives the following:

Theorem (Sierpinski 1934)
There exists a monotone function fS : [0, 1] → [0, 1] such that for
any κ ≤ c and κ-Lusin set X ⊂ [0, 1], fS ↾ Y is not uniformly
continuous on Y for any Y ∈ [X]κ.
Proof. Let {qn : n ≥ 1} be an injective enumeration of Q ∩ (0, 1)
and set fS(x) =

∑
qn<x 2

−n. fS is continuous at any
x ̸∈ Q ∩ (0, 1) and “jumps up” at any x ∈ Q ∩ (0, 1). As a result, if
Y is somewhere dense, then fS ↾ Y is not uniformly continuous:
There exists q ∈ Q ∩ (0, 1) such that Y contains two sequences,
one convergent to q from the left, and one from the right. This
destroys the unifrm continuity of fS ↾ Y 2
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A function of Kuratowski and Sierpiński (1922)

hKS(x) =
∑
n≥1

sin( 1
|x−qn|)

2n
,

▶ hKS : P = [0, 1] \Q → [0, 1];
▶ hKS is continuous;
▶ G(hKS) ∩ ({q} × [0, 1]) is uncountable for all

q ∈ Q ∩ (0, 1).
Indeed,
hKS = h̸=m

KS + h=m
KS =

∑
n≥1,n ̸=m

sin( 1
|x−qn| )

2n
+

sin( 1
|x−qm| )

2m
,

h̸=m
KS =

∑
n≥1,n ̸=m

sin( 1
|x−qn| )

2n
can be extended to a

continuous function at qm, , and that allows
sin( 1

|x−qm| )

2m
to

make G(hKS) ∩ ({q} × [0, 1]) “big”.
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Theorem (Pol-Zakrzewski 2024)

▶ If d = c, then there exists X ∈ [P]c such that hKS ↾ Y is
not uniformly continuous for any Y ∈ [X]c;

▶ If c is regular and there exists X ∈
[
[0, 1]

]c and
continuous h : X → [0, 1] such that h ↾ Y is not
uniformly continuous for any Y ∈ [X]c, then c = d.

Remark. The proof of the first item heavily used that
|G(hKS) ∩ ({q} × [0, 1])| = c for all q ∈ Q ∩ (0, 1), which in a
sense says that hKS is “very non-monotone”, whereas fS is
monotone (increasing).

Question
(d = c = cof(c))
Is there a monotone f : [0, 1] → [0, 1] and X ∈ [P]c such that
f ↾ Y is not uniformly continuous for any Y ∈ [X]c?
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Theorem (Pol-Zakrzewski 2024)

▶ If d = c, then there exists X ∈ [P]c such that hKS ↾ Y is
not uniformly continuous for any Y ∈ [X]c;

▶ If c is regular and there exists X ∈ [P]c and continuous
h : X → [0, 1] such that h ↾ Y is not uniformly
continuous for any Y ∈ [X]c, then c = d.

Remark. The proof of the first item heavily used that
|G(hKS) ∩ ({q} × [0, 1])| = c for all q ∈ Q ∩ (0, 1), which in a
sense says that hKS is “very non-monotone”, whereas fS is
monotone (increasing).

Question
(d = c = cof(c)) -our assumption for a while!
Is there a monotone f : [0, 1] → [0, 1] and X ∈ [P]c such that
f ↾ Y is not uniformly continuous for any Y ∈ [X]c?
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Compacts and graphs of monotone functions

Thus, pr−1
x : prx[K] → K is uniformly continuous being a

homeomorphism between compacta, and this is f up to countably
many “mistakes” on points where f “jumps”.
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d∗(X,D0, D1)

Definition
Let X be metrizable compact and D0, D1 ∈ [X]ω be disjoint.

Then

d∗(X,D0, D1) := {min |K| : K is a compact cover of K such that
for any K ∈ K there exists i ∈ 2 with K ∩Di = ∅}.

Observation
If d∗(G(f), Q0, Q1) < d, then for every X ⊂ [0, 1] of size d = c and
monotone f : X → [0, 1] there exists Y ∈ [X]c such that f ↾ Y is
uniformly continuous.
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Proof
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No blue assumption from now on.

Theorem (Pol-Zakrzewski-Z. 202?)
min{d, u} = d∗(P(ω),Fin, cFin) ≥
≥ d∗(X,D0, D1) for any compact metrizable X and countable
disjoint D0, D1 ⊂ X. 2

Corollary
If u < d = c, then for every X ⊂ [0, 1] of size c and monotone
f : X → [0, 1] there exists Y ∈ [X]c such that f ↾ Y is uniformly
continuous. 2

Note that there are plenty models of u < d = c and u < d implies
that d is regular.
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Curiosity 1

r = {|R| : R ⊂ [ω]ω and for every A ⊂ ω there exists R ∈ R with
(R ⊂ A) ∨ (R ∩A = ∅)}.

r ≤ u.

Let R be as above, |R| = r. For every R ∈ R set

K(R)↑ = {X ⊂ ω : R ⊂ X} and K(R)∩=∅ = {X ⊂ ω : R∩X = ∅}.

Observation
P(ω) =

⋃
R∈R(K(R)↑ ∪K(R)∩=∅), Fin ∩

⋃
R∈RK(R)↑ = ∅ and

cFin ∩
⋃

R∈RK(R)∩=∅ = ∅. 2

Corollary
r ≥ min{d, u}, and hence min{d, r} = min{d, u}. 2

The corollary above was proved by Aubrey in 2004.
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Curiosity 2

Definition (Szewczak-Tsaban 2017)
bidi is the minimal cardinality of X ⊂ [ω]ω such that for every
A ∈ [ω]ω there exists X ∈ X such that either A ≤∗ X or
ω \A ≤∗ X. 2

Observation. bidi ≤ min{d, r} = min{d, u}. 2

Observation. If G is a family of Gδ-subsets of P(ω) such that each
G ∈ G contains either Fin or cFin and |G| < min{d, r}, then
∩G ̸= ∅. Moreover, | ∩ G| > ω. 2
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Theorem [Szewczak-Tsaban 2017].
bidi = min{d, r} = min{d, u}.

Proof.
Need bidi ≥ min{d, r}. Fix X ⊂ [ω]ω of size |X | < min{d, r}.
For every X ∈ X set

Gslow (X) =
{
A ⊂ ω : ∃∞ n ∈ ω

(
A ⊃ [X(n), X(X(n)))

)}
and

Gfast(X) =
{
A ⊂ ω : ∃∞ n ∈ ω

(
A ∩ [X(n), X(X(n))) = ∅

)}
.

Gslow (X) ⊃ cFin, Gfast(X) ⊃ Fin, they are Gδ-sets, A ̸≤∗ X if
A ∈ Gfast(X) \ Fin, and ω \A ̸≤∗ X if A ∈ Gslow (X) \ cFin,
hence any
A ∈

⋂
X∈X (Gslow (X) ∩Gfast(X)) \ (Fin ∪ cFin)

witnesses that X is not like in the definition of bidi.

More precisely, suppose that A ∈ Gfast(X) and fix n with
A ∩ [X(n), X(X(n))) = ∅. Then A(X(n)) ≥ X(X(n)). Thus,
A(m) ≥ X(m) for infinitely many m ∈ ω. 2
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Questions

▶ Pol-Zakrzewski 2024: Suppose that c is singular and there
exists X ⊂ [0, 1] of size c and continuous f : X → [0, 1] such
that f ↾ Y is not uniformly continuous for all Y ∈ [X]c.

Does
this imply c = d?

▶ Pol-Zakrzewski-Z. 202?: Is r = d = c(= cof(c)) consistent
with the statement that for every increasing f : [0, 1] → [0, 1]
and X ∈ [0, 1] of size c there exists Y ∈ [X]c such that f ↾ Y
is uniformly continuous? What happens in the Laver model?
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The last slide

Thank you for your attention.
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