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f:X —[0,1] such that f | Y is uniformly continuous for any
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continuous on'Y for any Y € [X]".
Proof. Let {gn :n > 1} be an injective enumeration of QN (0, 1)
and set fs(z) =), _,27". fsis continuous
and “jumps up” . As a result, if

Y is somewhere dense, then fg [ Y is not uniformly continuous:
There exists ¢ € QN (0, 1) such that Y contains two sequences,

, and one from the right. This

destroys the unifrm continuity of fs [ Y B,
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uniformly continuous for any Y € [X]¢;
» If ¢ is regular and there exists X € [P|° and continuous
h:X —[0,1] such that h [ Y is uniformly
continuous for any Y € [X|, then ¢ = 0.

Remark. The proof of the first item heavily used that
|G(hks) N ({¢q} x [0,1])] = c forall g € @M (0,1), which in a
sense says that hxg is “very non-monotone”, whereas fg is
monotone (increasing).

Question

(0 = ¢ = cof(c) ) -our assumption for a while!
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Compacts and graphs of monotone functions
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Compacts and graphs of monotone functions
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Compacts and graphs of monotone functions

{
i
f f

Thus, pr;! : pr,[K] — K is uniformly continuous being a
homeomorphism between compacta, and this is f up to countably

many “mistakes” on points where f “jumps’. 11/19



9*(X, Dy, D)

Definition
Let X be metrizable compact and Dy, D; € [X]“ be disjoint.
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9*(X, Dy, D)

Definition
Let X be metrizable compact and Dy, D; € [X]“ be disjoint. Then

07 (X, Dy. Dy) :=={min |K| : K is a compact cover of K such that
for any K € K there exists i« € 2 with K N D; = 0}.

Observation

Ifo*(G(f),Qo, Q1) <0, then for every X C [0,1] of sized = ¢ and
monotone f : X — [0, 1] there exists Y € [X|® such that f | Y is
uniformly continuous.
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No assumption from now on.

Theorem (Pol-Zakrzewski-Z. 2027)

min{d, u} = 0*(P(w), Fin, cFin) >

> 0*(X, Do, D) for any compact metrizable X and countable
disjoint Dy, D1 C X. O
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t={|R|:R C [w]¥ and for every A C w there exists R € R with
(RCAVRNA=0)}. <

Let R be as above, |R| = t. For every R € R set

KR)={X Cw:RCX} and K(R)q—p = {X Cw: RNX = 0}.

Observation

P(w) = Uper(K(R)y UK(R)~—gp), Fin 1), p K(R)y =0 and
cFin NUper K(R)n—p = 0. ]
Corollary

v > min{d,u}, and hence min{d,t} = min{d,u}. O

The corollary above was proved by Aubrey in 2004.
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» Pol-Zakrzewski 2024: Suppose that ¢ is singular and there
exists X C [0, 1] of size ¢ and continuous f : X — [0, 1] such
that f [ Y is not uniformly continuous for all Y € [X]°.
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with the statement that for every increasing f : [0,1] — [0, 1]
and X € [0, 1] of size ¢ there exists Y € [X]° such that f [ Y
is uniformly continuous? What happens in the Laver model?
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The last slide

Thank you for your attention.
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