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Ramsey's Theorem to Nash-Williams

Pigeon-hole Principle

For every n € w and function f : w — n, there is M infinite such
that |y is constant.

Ramsey’'s Theorem

w — (w)k: For every n € w and f : [w]k — n there is M infinite
such that f [ [M]¥ is constant.

There are, of course, Ramsey-type theorems for more general
classes F C [w]<¥

Nash-Williams's Theorem

For any barrier B C [w]<“, n € w and f : B — n, there is M
infinite such that f is constant on B|y.
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Barriers

Fors,t Cw s C tif s=tnNnfor some n.

For a family F of finite subsets of w and an infinite set M C w

Flm={se F:sC M}

Definition

For B C [w]< is called a barrier if

(1) For every A € [w]“ there is s € B such that s C A.

(2) Bis Sperner, meaning s Z t for all s, t € B.

If (2) is changed to s IZ t for all s, t (B is thin) then B is called a
front )

So, (1) is the property that every infinite A has an initial segment
that is in B
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Notation and examples

1. For all n, [w]" is a barrier.
2. If B is a barrier, and n € w, then

Bln] = {s\ {n} :s € BAn=min(s)}

is barrier on w\ n+1

3. B={s Cw:|s| =min(s)+ 1} is a barrier
(the Schreier barrier)
B satisfies B[n] = [w \ n+ 1]"
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Homework for tomorrow: Read Stevo Todorcevi¢'s book Ramsey
Methods in Analysis

Theorem (Galvin)
For every F C [w]<“ there is an infinite M such that either
Q@ Fly =0, or

@ F|m contains an barrier.

For any partition of a thin family F = Fy U F; there is an infinite
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For every F C [w]<“ there is an infinite M such that either
Q@ Fly =0, or
@ F|um contains an barrier.

A

For any partition of a thin family F = Fy U F; there is an infinite
M such that either Fo|p or Fi|p is empty.

v

For every front F there is an infinite M such that F|y is a barrier.
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Homework for tomorrow: Read Stevo Todorcevi¢'s book Ramsey
Methods in Analysis

Theorem (Galvin)

For every F C [w]<“ there is an infinite M such that either
Q@ Fly =0, or
@ F|um contains an barrier.

A

For any partition of a thin family F = Fy U F; there is an infinite
M such that either Fo|p or Fi|p is empty.

v

For every front F there is an infinite M such that F|y is a barrier.

Corollary (Nash-Williams Theorem)

For any barrier B and partition f : B — n there is an infinite M
such that f is constant on B|py.
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Rank of a barrier

For any barrier B C [w]“ the tree Tg C w<¥ is defined by first
identifying any s € [w]<“ with its increasing enumeration and

letting
sec Tgifforsomete B,sCt

Tg is formed by taking B as the set of its terminal nodes and
closing downwards.

For a rooted well-founded tree T C w=<% the rank function on the
nodes of T defined recursively:

rk(t) = 0 if t is a maximal node.
rk(t) = sup{rk(s) + 1 : s is an immediate successor of t}

The rank of the tree is the rank of its root: rk(T) = rk(0)
And the rank of the barrier B is rk(B) = rk(Tg)

= = =
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There are other essentially equivalent ways to define the rank of a
barrier. E.g., the lexicographical rank of B is the order type of B
under its lexicographically order.
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There are other essentially equivalent ways to define the rank of a
barrier. E.g., the lexicographical rank of B is the order type of B
under its lexicographically order.

1. rk([w]")=n

2. If rk(B) = n then there is m such that B|,\, = [w\ m]"
3. The rank of the Schreier barrier is w

4. Find a barrier of rank w + 1.
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There are other essentially equivalent ways to define the rank of a
barrier. E.g., the lexicographical rank of B is the order type of B
under its lexicographically order.

rk([w]") = n

If rk(B) = n then there is m such that B|,\n, = [w\ m]"
The rank of the Schreier barrier is w

Find a barrier of rank w + 1.

Prove there is a barrier of every possible rank o < wj.

Ol = ORI

Paul Szeptycki



There are other essentially equivalent ways to define the rank of a
barrier. E.g., the lexicographical rank of B is the order type of B
under its lexicographically order.

rk([w]") = n

If rk(B) = n then there is m such that B|,\n, = [w\ m]"
The rank of the Schreier barrier is w

Find a barrier of rank w + 1.

Prove there is a barrier of every possible rank o < wj.
rk(B)

en @l > W v =

The lexicographical rank of B is w

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

Definition

If pis an (ultra)filter on w, a point x € X is the p-limit of the
sequence s : w — X, if for each open U > x, {n:s(n) € U} € p.

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

Definition

If pis an (ultra)filter on w, a point x € X is the p-limit of the
sequence s : w — X, if for each open U > x, {n:s(n) € U} € p.
X is said to be p-compact if every sequence has a p-limit.

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

If pis an (ultra)filter on w, a point x € X is the p-limit of the
sequence s : w — X, if for each open U > x, {n:s(n) € U} € p.

X is said to be p-compact if every sequence has a p-limit.

1. If X is compact then it is p-compact for all p € w*.

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

If pis an (ultra)filter on w, a point x € X is the p-limit of the
sequence s : w — X, if for each open U > x, {n:s(n) € U} € p.

X is said to be p-compact if every sequence has a p-limit.

1. If X is compact then it is p-compact for all p € w*.

2. If X is p-compact then it is countably compact and every
power of X is p-compact.

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

If pis an (ultra)filter on w, a point x € X is the p-limit of the
sequence s : w — X, if for each open U > x, {n:s(n) € U} € p.

X is said to be p-compact if every sequence has a p-limit.

1. If X is compact then it is p-compact for all p € w*.

2. If X is p-compact then it is countably compact and every
power of X is p-compact.

3. X is countably compact if and only if for every sequence s
there is an ultrafilter p and s has a p-limit.

Paul Szeptycki



Compactness and convergence

Recall some classical notions:

If pis an (ultra)filter on w, a point x € X is the p-limit of the
sequence s : w — X, if for each open U > x, {n:s(n) € U} € p.

X is said to be p-compact if every sequence has a p-limit.

1. If X is compact then it is p-compact for all p € w*.

2. If X is p-compact then it is countably compact and every
power of X is p-compact.

3. X is countably compact if and only if for every sequence s
there is an ultrafilter p and s has a p-limit.

And, of course, X is sequentially compact if every sequence in X
has a convergent subsequence.
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Ramsey notions of compactness

[1] Bojanczyk, Kopczynski, Torunczyk, Ramsey's theorem for colors
from a metric space, Semigroup Forum 85 (2012) 182-184.

[2] Banakh, Dimitrova, Gutik. The Rees-Suschkewitsch theorem for
simple topological semigroups, Mat. Stud., 31(2) (2009) 211-218,
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Ramsey notions of compactness

[1] Bojanczyk, Kopczynski, Torunczyk, Ramsey's theorem for colors
from a metric space, Semigroup Forum 85 (2012) 182-184.

[2] Banakh, Dimitrova, Gutik. The Rees-Suschkewitsch theorem for
simple topological semigroups, Mat. Stud., 31(2) (2009) 211-218,

Definition [1]

A space X is 2-sequentially compact if every 2-dimensional array of
points in X has a convergent subarray:

le., Vf : [w]?> = X, IM € [w]* and x € X such that for any
neighborhood U of x, [M \ n]?> C f~1(U) for some n € w.

Definition [2]

X is doubly p-compact if f : [w]?> — X has a “double p-limit.”
l.e., there is x € X such that for all n, (f({n, k}))k=n has a p-limit
xp and x is the p-limit of (xp)necw
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|ldempotents in topological semigroups

Definition

A pair (S, %) is a semigroup if * is a binary associative operation on
S. A (right) topological semigroup is a semigroup with a topology
in which the operation is continuous (on the right).
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|ldempotents in topological semigroups

A pair (S, %) is a semigroup if * is a binary associative operation on

S. A (right) topological semigroup is a semigroup with a topology
in which the operation is continuous (on the right).

Theorem (Ellis?)

Any compact right topological semigroup has an idempotent. |l.e.,
an element e € S such that ex e = e.

This is related to Wallace's Theorem, that a compact cancellative
topological semigroup is a topological group and the question
whether the same holds true if compactness is weakened to
countable compactness
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Observation: If X is either 2-sequentially compact, or doubly
p-compact for some p, then

(%) for all f: [w]?> — X there is x € X so that for all U > x open,
there are distinct k, m, n € w such that [{k, m, n}]?> C f~1(V)
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(%) for all f: [w]?> — X there is x € X so that for all U > x open,
there are distinct k, m, n € w such that [{k, m, n}]?> C f~1(V)

Proposition

Any right topological semigroup S satisfying (x) has an idempotent.

PROOF (same as appears in [1] and [2]):
Fix x € S, and define f : [w]?> — S by f({m, n}) = x"~™.
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Observation: If X is either 2-sequentially compact, or doubly
p-compact for some p, then

(%) for all f: [w]?> — X there is x € X so that for all U > x open,
there are distinct k, m, n € w such that [{k, m, n}]?> C f~1(V)

Proposition

Any right topological semigroup S satisfying (x) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix x € S, and define f : [w]?> — S by f({m, n}) = x"~™.
By (x) fix x such that

YU > x open, there is M of size 3 such that [M]2 C f~1(U)

CLAIM: x is an idempotent.

EXERCISE: If x # x? then 3U > x open such that U N U? = ).
Let k < m < n be such that x"~™ x™—k x"=k c U

But then x"—k = x"=mxm—k ¢ (2. O
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Ramsey notions of convergence

H. Knaust has two relevant papers:

[3] Array convergence of functions of the first Baire class Proc.
AMS 112 (2), (1991) 529-532

[4] Angelic Spaces with the Ramsey Property, Chapter 25 in
Interaction Between Functional Analysis, Harmonic Analysis, and
Probability (Nigel Kalton, Elias Saab, Stephen Montgomery-Smith
eds.) CRC Press (1995).
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Definition (Knaust)

A point x in a Hausdorff space X is Ramsey point if for any double
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Ramsey notions of convergence

H. Knaust has two relevant papers:

[3] Array convergence of functions of the first Baire class Proc.
AMS 112 (2), (1991) 529-532

[4] Angelic Spaces with the Ramsey Property, Chapter 25 in
Interaction Between Functional Analysis, Harmonic Analysis, and
Probability (Nigel Kalton, Elias Saab, Stephen Montgomery-Smith
eds.) CRC Press (1995).

Definition (Knaust)

A point x in a Hausdorff space X is Ramsey point if for any double
indexed sequence (X; )i jew. such that lim;(lim;(x;)) = x,

there is an infinite M such that for each neighborhood of x, there is
n such that {x;; :i,j € M\ n} C U.

EXAMPLE: The limit point in the Fréchet-Urysohn fan S, is not a
Ramsey point.
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A space X is angelic if (1) every relatively countably compact
subset is relatively compact and (2) every cluster point of a
relatively compact subset A is the limit of a sequence from A.
(1) A compact spaces is Fréchet iff it is angelic.

(2) Any space of functions of the first Baire class is angelic, e.g.,
Rosenthal compacta are angelic.

Theorem (Knaust)

Every point in a Rosenthal compact spaces is Ramsey

While the product of two compact Fréchet spaces may not be
Fréchet,

Theorem (Knaust)

The class of angelic spaces with the Ramsey property is countably
productive.
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Definition (Arhangel’skii)

A point x in a topological space is an «; point if for each family
{Sn : n € w} of nontrivial sequences converging to x, there is a
single sequence S converging to x such that

(a1) Sp C* S for all n.
(ap) SN S, is infinite for all n.
(az) SN S, is infinite for infinitely many n.

Proposition: Any Ramsey point is an a3 point.

Problems

(1) For X, clarify the relationship between x € X being Ramsey vs
a; i <3
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Being a Ramsey point is closely related to Arhangel’skii's a;
properties.

Definition (Arhangel’skii)

A point x in a topological space is an «; point if for each family
{Sn : n € w} of nontrivial sequences converging to x, there is a
single sequence S converging to x such that

(a1) Sp C* S for all n.
(ap) SN S, is infinite for all n.
(az) SN S, is infinite for infinitely many n.

Proposition: Any Ramsey point is an a3 point.

Problems

(1) For X, clarify the relationship between x € X being Ramsey vs
a; i <3

(2) (Knaust) Cp(X) is Ramsey if X is “quasi-Suslin.” What if X is
“web-compact’?
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Discrete images in Hausdorff spaces

[5] T. J. Carlson, N. Hindman, and D. Strauss. Discrete n-tuples in
Hausdorff spaces, Fundam. Math., 187(2) (2005) 111-126.
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Discrete images in Hausdorff spaces

[5] T. J. Carlson, N. Hindman, and D. Strauss. Discrete n-tuples in
Hausdorff spaces, Fundam. Math., 187(2) (2005) 111-126.
Definition [5]

Let M be an infinite set and let n € w. The n-Ramsey filter on
[M]™ is

Rn(M) = {AC [M]": VN € [M]*,[N]" A # 0}

And x is an R,(M)-limit point of f : [M]" — X if
f=1(U) € Ry(M) for all nbhds U of x.
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For any f : [w]™ — X where X is any Hausdorff space, there is an
infinite M C w such that f([M]") is discrete.
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Ra(M)={AC[M]":VB e [M]“,[B]"NA#0}

(1) Rp(M) is a filter, and

(2) if A€ Ry(M) and N € [M]“, there is R € [N]“ such that
[RI"C A

(3) Relate R,(M) convergence to other convergence properties (to
be) discussed.

For any f : [w]™ — X where X is any Hausdorff space, there is an
infinite M C w such that f([M]") is discrete.

If B is the Schreier barrier, there is a linearly ordered space X and
f : B — X such that f(B]|uy) is not discrete for any M 6 [w]‘*’
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