

Ramsey theoretic notions of convergence

Lecture 1 background/history

Paul Szeptycki

York University
Toronto, Canada

Figure: pigeons and pigeon holes

Pigeon-hole Principle

For every $n \in \omega$ and function $f : \omega \rightarrow n$, there is M infinite such that $f|_M$ is constant.

Pigeon-hole Principle

For every $n \in \omega$ and function $f : \omega \rightarrow n$, there is M infinite such that $f|_M$ is constant.

Ramsey's Theorem

$\omega \rightarrow (\omega)_n^k$: For every $n \in \omega$ and $f : [\omega]^k \rightarrow n$ there is M infinite such that $f \upharpoonright [M]^k$ is constant.

Pigeon-hole Principle

For every $n \in \omega$ and function $f : \omega \rightarrow n$, there is M infinite such that $f|_M$ is constant.

Ramsey's Theorem

$\omega \rightarrow (\omega)_n^k$: For every $n \in \omega$ and $f : [\omega]^k \rightarrow n$ there is M infinite such that $f \upharpoonright [M]^k$ is constant.

There are, of course, Ramsey-type theorems for more general classes $\mathcal{F} \subseteq [\omega]^{<\omega}$

Pigeon-hole Principle

For every $n \in \omega$ and function $f : \omega \rightarrow n$, there is M infinite such that $f|_M$ is constant.

Ramsey's Theorem

$\omega \rightarrow (\omega)_n^k$: For every $n \in \omega$ and $f : [\omega]^k \rightarrow n$ there is M infinite such that $f \upharpoonright [M]^k$ is constant.

There are, of course, Ramsey-type theorems for more general classes $\mathcal{F} \subseteq [\omega]^{<\omega}$

Nash-Williams's Theorem

For any barrier $B \subseteq [\omega]^{<\omega}$, $n \in \omega$ and $f : B \rightarrow n$, there is M infinite such that f is constant on $B|_M$.

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For a family \mathcal{F} of finite subsets of ω and an infinite set $M \subseteq \omega$

$$\mathcal{F}|_M = \{s \in \mathcal{F} : s \subseteq M\}$$

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For a family \mathcal{F} of finite subsets of ω and an infinite set $M \subseteq \omega$

$$\mathcal{F}|_M = \{s \in \mathcal{F} : s \subseteq M\}$$

Definition

For $B \subseteq [\omega]^{<\omega}$ is called a *barrier* if

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For a family \mathcal{F} of finite subsets of ω and an infinite set $M \subseteq \omega$

$$\mathcal{F}|_M = \{s \in \mathcal{F} : s \subseteq M\}$$

Definition

For $B \subseteq [\omega]^{<\omega}$ is called a *barrier* if

- (1) For every $A \in [\omega]^\omega$ there is $s \in B$ such that $s \sqsubseteq A$.

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For a family \mathcal{F} of finite subsets of ω and an infinite set $M \subseteq \omega$

$$\mathcal{F}|_M = \{s \in \mathcal{F} : s \subseteq M\}$$

Definition

For $B \subseteq [\omega]^{<\omega}$ is called a *barrier* if

- (1) For every $A \in [\omega]^\omega$ there is $s \in B$ such that $s \sqsubseteq A$.
- (2) B is *Sperner*, meaning $s \not\subseteq t$ for all $s, t \in B$.

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For a family \mathcal{F} of finite subsets of ω and an infinite set $M \subseteq \omega$

$$\mathcal{F}|_M = \{s \in \mathcal{F} : s \subseteq M\}$$

Definition

For $B \subseteq [\omega]^{<\omega}$ is called a *barrier* if

- (1) For every $A \in [\omega]^\omega$ there is $s \in B$ such that $s \sqsubseteq A$.
- (2) B is *Sperner*, meaning $s \not\subseteq t$ for all $s, t \in B$.

If (2) is changed to $s \not\sqsubseteq t$ for all s, t (B is *thin*) then B is called a *front*

For $s, t \subseteq \omega$ $s \sqsubseteq t$ if $s = t \cap n$ for some n .

For a family \mathcal{F} of finite subsets of ω and an infinite set $M \subseteq \omega$

$$\mathcal{F}|_M = \{s \in \mathcal{F} : s \subseteq M\}$$

Definition

For $B \subseteq [\omega]^{<\omega}$ is called a *barrier* if

- (1) For every $A \in [\omega]^\omega$ there is $s \in B$ such that $s \sqsubseteq A$.
- (2) B is *Sperner*, meaning $s \not\subseteq t$ for all $s, t \in B$.

If (2) is changed to $s \not\sqsubseteq t$ for all s, t (B is *thin*) then B is called a *front*

So, (1) is the property that every infinite A has an initial segment that is in B

Remarks

Remarks

1. For all n , $[\omega]^n$ is a barrier.

Remarks

1. For all n , $[\omega]^n$ is a barrier.
2. If B is a barrier, and $n \in \omega$, then

$$B[n] = \{s \setminus \{n\} : s \in B \wedge n = \min(s)\}$$

is barrier on $\omega \setminus n + 1$

Remarks

1. For all n , $[\omega]^n$ is a barrier.
2. If B is a barrier, and $n \in \omega$, then

$$B[n] = \{s \setminus \{n\} : s \in B \wedge n = \min(s)\}$$

is barrier on $\omega \setminus n + 1$

3. $B = \{s \subseteq \omega : |s| = \min(s) + 1\}$ is a barrier
(the Schreier barrier)

Remarks

1. For all n , $[\omega]^n$ is a barrier.
2. If B is a barrier, and $n \in \omega$, then

$$B[n] = \{s \setminus \{n\} : s \in B \wedge n = \min(s)\}$$

is barrier on $\omega \setminus n + 1$

3. $B = \{s \subseteq \omega : |s| = \min(s) + 1\}$ is a barrier
(the Schreier barrier)

B satisfies $B[n] = [\omega \setminus n + 1]^n$

Homework for tomorrow:

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Theorem (Galvin)

For every $\mathcal{F} \subseteq [\omega]^{<\omega}$ there is an infinite M such that either

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Theorem (Galvin)

For every $\mathcal{F} \subseteq [\omega]^{<\omega}$ there is an infinite M such that either

- 1 $\mathcal{F}|_M = \emptyset$, or

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Theorem (Galvin)

For every $\mathcal{F} \subseteq [\omega]^{<\omega}$ there is an infinite M such that either

- ① $\mathcal{F}|_M = \emptyset$, or
- ② $\mathcal{F}|_M$ contains an barrier.

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Theorem (Galvin)

For every $\mathcal{F} \subseteq [\omega]^{<\omega}$ there is an infinite M such that either

- ① $\mathcal{F}|_M = \emptyset$, or
- ② $\mathcal{F}|_M$ contains an barrier.

Nash-Williams v2

For any partition of a thin family $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ there is an infinite M such that either $\mathcal{F}_0|_M$ or $\mathcal{F}_1|_M$ is empty.

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Theorem (Galvin)

For every $\mathcal{F} \subseteq [\omega]^{<\omega}$ there is an infinite M such that either

- ① $\mathcal{F}|_M = \emptyset$, or
- ② $\mathcal{F}|_M$ contains a barrier.

Nash-Williams v2

For any partition of a thin family $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ there is an infinite M such that either $\mathcal{F}_0|_M$ or $\mathcal{F}_1|_M$ is empty.

Corollary

For every front \mathcal{F} there is an infinite M such that $\mathcal{F}|_M$ is a barrier.

Homework for tomorrow: Read Stevo Todorčević's book *Ramsey Methods in Analysis*

Theorem (Galvin)

For every $\mathcal{F} \subseteq [\omega]^{<\omega}$ there is an infinite M such that either

- ① $\mathcal{F}|_M = \emptyset$, or
- ② $\mathcal{F}|_M$ contains a barrier.

Nash-Williams v2

For any partition of a thin family $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ there is an infinite M such that either $\mathcal{F}_0|_M$ or $\mathcal{F}_1|_M$ is empty.

Corollary

For every front \mathcal{F} there is an infinite M such that $\mathcal{F}|_M$ is a barrier.

Corollary (Nash-Williams Theorem)

For any barrier B and partition $f : B \rightarrow n$ there is an infinite M such that f is constant on $B|_M$.

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

T_B is formed by taking B as the set of its terminal nodes and closing downwards.

Rank of a barrier

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

T_B is formed by taking B as the set of its terminal nodes and closing downwards.

Definition

For a rooted well-founded tree $T \subseteq \omega^{<\omega}$ the rank function on the nodes of T defined recursively:

Rank of a barrier

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

T_B is formed by taking B as the set of its terminal nodes and closing downwards.

Definition

For a rooted well-founded tree $T \subseteq \omega^{<\omega}$ the rank function on the nodes of T defined recursively:

$$rk(t) = 0 \text{ if } t \text{ is a maximal node.}$$

Rank of a barrier

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

T_B is formed by taking B as the set of its terminal nodes and closing downwards.

Definition

For a rooted well-founded tree $T \subseteq \omega^{<\omega}$ the rank function on the nodes of T defined recursively:

$$rk(t) = 0 \text{ if } t \text{ is a maximal node.}$$

$$rk(t) = \sup\{rk(s) + 1 : s \text{ is an immediate successor of } t\}$$

Rank of a barrier

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

T_B is formed by taking B as the set of its terminal nodes and closing downwards.

Definition

For a rooted well-founded tree $T \subseteq \omega^{<\omega}$ the rank function on the nodes of T defined recursively:

$$rk(t) = 0 \text{ if } t \text{ is a maximal node.}$$

$$rk(t) = \sup\{rk(s) + 1 : s \text{ is an immediate successor of } t\}$$

The rank of the tree is the rank of its root: $rk(T) = rk(\emptyset)$

Rank of a barrier

Definition

For any barrier $B \subseteq [\omega]^\omega$ the tree $T_B \subseteq \omega^{<\omega}$ is defined by first identifying any $s \in [\omega]^{<\omega}$ with its increasing enumeration and letting

$$s \in T_B \text{ if for some } t \in B, s \sqsubseteq t$$

T_B is formed by taking B as the set of its terminal nodes and closing downwards.

Definition

For a rooted well-founded tree $T \subseteq \omega^{<\omega}$ the rank function on the nodes of T defined recursively:

$$rk(t) = 0 \text{ if } t \text{ is a maximal node.}$$

$$rk(t) = \sup\{rk(s) + 1 : s \text{ is an immediate successor of } t\}$$

The rank of the tree is the rank of its root: $rk(T) = rk(\emptyset)$

And the rank of the barrier B is $rk(B) = rk(T_B)$

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

Exercises

1. $rk([\omega]^n) = n$

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

Exercises

1. $rk([\omega]^n) = n$
2. If $rk(B) = n$ then there is m such that $B|_{\omega \setminus m} = [\omega \setminus m]^n$

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

Exercises

1. $rk([\omega]^n) = n$
2. If $rk(B) = n$ then there is m such that $B|_{\omega \setminus m} = [\omega \setminus m]^n$
3. The rank of the Schreier barrier is ω

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

Exercises

1. $rk([\omega]^n) = n$
2. If $rk(B) = n$ then there is m such that $B|_{\omega \setminus m} = [\omega \setminus m]^n$
3. The rank of the Schreier barrier is ω
4. Find a barrier of rank $\omega + 1$.

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

Exercises

1. $rk([\omega]^n) = n$
2. If $rk(B) = n$ then there is m such that $B|_{\omega \setminus m} = [\omega \setminus m]^n$
3. The rank of the Schreier barrier is ω
4. Find a barrier of rank $\omega + 1$.
5. Prove there is a barrier of every possible rank $\alpha < \omega_1$.

There are other essentially equivalent ways to define the rank of a barrier. E.g., the *lexicographical rank* of B is the order type of B under its lexicographically order.

Exercises

1. $\text{rk}([\omega]^n) = n$
2. If $\text{rk}(B) = n$ then there is m such that $B|_{\omega \setminus m} = [\omega \setminus m]^n$
3. The rank of the Schreier barrier is ω
4. Find a barrier of rank $\omega + 1$.
5. Prove there is a barrier of every possible rank $\alpha < \omega_1$.
6. The lexicographical rank of B is $\omega^{\text{rk}(B)}$

Recall some classical notions:

Recall some classical notions:

Definition

If p is an (ultra)filter on ω , a point $x \in X$ is the **p -limit of the sequence** $s : \omega \rightarrow X$, if for each open $U \ni x$, $\{n : s(n) \in U\} \in p$.

Recall some classical notions:

Definition

If p is an (ultra)filter on ω , a point $x \in X$ is the **p -limit of the sequence** $s : \omega \rightarrow X$, if for each open $U \ni x$, $\{n : s(n) \in U\} \in p$. X is said to be **p -compact** if every sequence has a p -limit.

Recall some classical notions:

Definition

If p is an (ultra)filter on ω , a point $x \in X$ is the **p -limit of the sequence** $s : \omega \rightarrow X$, if for each open $U \ni x$, $\{n : s(n) \in U\} \in p$. X is said to be **p -compact** if every sequence has a p -limit.

Exercises

1. If X is compact then it is p -compact for all $p \in \omega^*$.

Recall some classical notions:

Definition

If p is an (ultra)filter on ω , a point $x \in X$ is the **p -limit of the sequence** $s : \omega \rightarrow X$, if for each open $U \ni x$, $\{n : s(n) \in U\} \in p$. X is said to be **p -compact** if every sequence has a p -limit.

Exercises

1. If X is compact then it is p -compact for all $p \in \omega^*$.
2. If X is p -compact then it is countably compact and every power of X is p -compact.

Recall some classical notions:

Definition

If p is an (ultra)filter on ω , a point $x \in X$ is the **p -limit of the sequence** $s : \omega \rightarrow X$, if for each open $U \ni x$, $\{n : s(n) \in U\} \in p$. X is said to be **p -compact** if every sequence has a p -limit.

Exercises

1. If X is compact then it is p -compact for all $p \in \omega^*$.
2. If X is p -compact then it is countably compact and every power of X is p -compact.
3. X is countably compact if and only if for every sequence s there is an ultrafilter p and s has a p -limit.

Recall some classical notions:

Definition

If p is an (ultra)filter on ω , a point $x \in X$ is the **p -limit of the sequence** $s : \omega \rightarrow X$, if for each open $U \ni x$, $\{n : s(n) \in U\} \in p$. X is said to be **p -compact** if every sequence has a p -limit.

Exercises

1. If X is compact then it is p -compact for all $p \in \omega^*$.
2. If X is p -compact then it is countably compact and every power of X is p -compact.
3. X is countably compact if and only if for every sequence s there is an ultrafilter p and s has a p -limit.

And, of course, X is sequentially compact if every sequence in X has a convergent subsequence.

Ramsey notions of compactness

- [1] Bojanczyk, Kopczynski, Torunczyk, *Ramsey's theorem for colors from a metric space*, Semigroup Forum 85 (2012) 182-184.
- [2] Banakh, Dimitrova, Gutik. *The Rees-Suszkewitsch theorem for simple topological semigroups*, Mat. Stud., 31(2) (2009) 211-218,

- [1] Bojanczyk, Kopczynski, Torunczyk, *Ramsey's theorem for colors from a metric space*, Semigroup Forum 85 (2012) 182-184.
- [2] Banakh, Dimitrova, Gutik. *The Rees-Suszkewitsch theorem for simple topological semigroups*, Mat. Stud., 31(2) (2009) 211-218,

Definition [1]

A space X is **2-sequentially compact** if every 2-dimensional array of points in X has a convergent subarray:

- [1] Bojanczyk, Kopczynski, Torunczyk, *Ramsey's theorem for colors from a metric space*, Semigroup Forum 85 (2012) 182-184.
- [2] Banakh, Dimitrova, Gutik. *The Rees-Suszkewitsch theorem for simple topological semigroups*, Mat. Stud., 31(2) (2009) 211-218,

Definition [1]

A space X is **2-sequentially compact** if every 2-dimensional array of points in X has a convergent subarray:

I.e., $\forall f : [\omega]^2 \rightarrow X$, $\exists M \in [\omega]^\omega$ and $x \in X$ such that for any neighborhood U of x , $[M \setminus n]^2 \subseteq f^{-1}(U)$ for some $n \in \omega$.

- [1] Bojanczyk, Kopczynski, Torunczyk, *Ramsey's theorem for colors from a metric space*, Semigroup Forum 85 (2012) 182-184.
- [2] Banakh, Dimitrova, Gutik. *The Rees-Suszkewitsch theorem for simple topological semigroups*, Mat. Stud., 31(2) (2009) 211-218,

Definition [1]

A space X is **2-sequentially compact** if every 2-dimensional array of points in X has a convergent subarray:

I.e., $\forall f : [\omega]^2 \rightarrow X$, $\exists M \in [\omega]^\omega$ and $x \in X$ such that for any neighborhood U of x , $[M \setminus n]^2 \subseteq f^{-1}(U)$ for some $n \in \omega$.

Definition [2]

X is **doubly p -compact** if $f : [\omega]^2 \rightarrow X$ has a “double p -limit.”

- [1] Bojanczyk, Kopczynski, Torunczyk, *Ramsey's theorem for colors from a metric space*, Semigroup Forum 85 (2012) 182-184.
- [2] Banakh, Dimitrova, Gutik. *The Rees-Suszkewitsch theorem for simple topological semigroups*, Mat. Stud., 31(2) (2009) 211-218,

Definition [1]

A space X is **2-sequentially compact** if every 2-dimensional array of points in X has a convergent subarray:

I.e., $\forall f : [\omega]^2 \rightarrow X$, $\exists M \in [\omega]^\omega$ and $x \in X$ such that for any neighborhood U of x , $[M \setminus n]^2 \subseteq f^{-1}(U)$ for some $n \in \omega$.

Definition [2]

X is **doubly p -compact** if $f : [\omega]^2 \rightarrow X$ has a “double p -limit.”

I.e., there is $x \in X$ such that for all n , $(f(\{n, k\}))_{k > n}$ has a p -limit x_n and x is the p -limit of $(x_n)_{n \in \omega}$

Definition

A pair $(S, *)$ is a semigroup if $*$ is a binary associative operation on S . A (right) topological semigroup is a semigroup with a topology in which the operation is continuous (on the right).

Definition

A pair $(S, *)$ is a semigroup if $*$ is a binary associative operation on S . A (right) topological semigroup is a semigroup with a topology in which the operation is continuous (on the right).

Theorem (Ellis?)

Any compact right topological semigroup has an idempotent. I.e., an element $e \in S$ such that $e * e = e$.

Definition

A pair $(S, *)$ is a semigroup if $*$ is a binary associative operation on S . A (right) topological semigroup is a semigroup with a topology in which the operation is continuous (on the right).

Theorem (Ellis?)

Any compact right topological semigroup has an idempotent. I.e., an element $e \in S$ such that $e * e = e$.

This is related to Wallace's Theorem, that a compact cancellative topological semigroup is a topological group and the question whether the same holds true if compactness is weakened to countable compactness

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix $x \in S$, and define $f : [\omega]^2 \rightarrow S$ by $f(\{m, n\}) = x^{n-m}$.

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix $x \in S$, and define $f : [\omega]^2 \rightarrow S$ by $f(\{m, n\}) = x^{n-m}$.

By (*) fix x such that

$\forall U \ni x$ open, there is M of size 3 such that $[M]^2 \subseteq f^{-1}(U)$

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix $x \in S$, and define $f : [\omega]^2 \rightarrow S$ by $f(\{m, n\}) = x^{n-m}$.

By (*) fix x such that

$\forall U \ni x$ open, there is M of size 3 such that $[M]^2 \subseteq f^{-1}(U)$

CLAIM: x is an idempotent.

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix $x \in S$, and define $f : [\omega]^2 \rightarrow S$ by $f(\{m, n\}) = x^{n-m}$.

By (*) fix x such that

$\forall U \ni x$ open, there is M of size 3 such that $[M]^2 \subseteq f^{-1}(U)$

CLAIM: x is an idempotent.

EXERCISE: If $x \neq x^2$ then $\exists U \ni x$ open such that $U \cap U^2 = \emptyset$.

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix $x \in S$, and define $f : [\omega]^2 \rightarrow S$ by $f(\{m, n\}) = x^{n-m}$.

By (*) fix x such that

$\forall U \ni x$ open, there is M of size 3 such that $[M]^2 \subseteq f^{-1}(U)$

CLAIM: x is an idempotent.

EXERCISE: If $x \neq x^2$ then $\exists U \ni x$ open such that $U \cap U^2 = \emptyset$.

Let $k < m < n$ be such that $x^{n-m}, x^{m-k}, x^{n-k} \in U$

Observation: If X is either 2-sequentially compact, or doubly p -compact for some p , then

(*) for all $f : [\omega]^2 \rightarrow X$ there is $x \in X$ so that for all $U \ni x$ open, there are distinct $k, m, n \in \omega$ such that $[\{k, m, n\}]^2 \subseteq f^{-1}(U)$

Proposition

Any right topological semigroup S satisfying (*) has an idempotent.

PROOF (same as appears in [1] and [2]):

Fix $x \in S$, and define $f : [\omega]^2 \rightarrow S$ by $f(\{m, n\}) = x^{n-m}$.

By (*) fix x such that

$\forall U \ni x$ open, there is M of size 3 such that $[M]^2 \subseteq f^{-1}(U)$

CLAIM: x is an idempotent.

EXERCISE: If $x \neq x^2$ then $\exists U \ni x$ open such that $U \cap U^2 = \emptyset$.

Let $k < m < n$ be such that $x^{n-m}, x^{m-k}, x^{n-k} \in U$

But then $x^{n-k} = x^{n-m}x^{m-k} \in U^2$.

□

H. Knaust has two relevant papers:

[3] *Array convergence of functions of the first Baire class* Proc. AMS 112 (2), (1991) 529-532

[4] *Angelic Spaces with the Ramsey Property*, Chapter 25 in
Interaction Between Functional Analysis, Harmonic Analysis, and
Probability (Nigel Kalton, Elias Saab, Stephen Montgomery-Smith
eds.) CRC Press (1995).

H. Knaust has two relevant papers:

[3] *Array convergence of functions of the first Baire class* Proc. AMS 112 (2), (1991) 529-532

[4] *Angelic Spaces with the Ramsey Property*, Chapter 25 in Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Nigel Kalton, Elias Saab, Stephen Montgomery-Smith eds.) CRC Press (1995).

Definition (Knaust)

A point x in a Hausdorff space X is **Ramsey point** if for any double indexed sequence $(x_{i,j})_{i,j \in \omega}$, such that $\lim_i(\lim_j(x_{i,j})) = x$, there is an infinite M such that for each neighborhood of x , there is n such that $\{x_{i,j} : i, j \in M \setminus n\} \subseteq U$.

H. Knaust has two relevant papers:

[3] *Array convergence of functions of the first Baire class* Proc. AMS 112 (2), (1991) 529-532

[4] *Angelic Spaces with the Ramsey Property*, Chapter 25 in Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Nigel Kalton, Elias Saab, Stephen Montgomery-Smith eds.) CRC Press (1995).

Definition (Knaust)

A point x in a Hausdorff space X is **Ramsey point** if for any double indexed sequence $(x_{i,j})_{i,j \in \omega}$, such that $\lim_i(\lim_j(x_{i,j})) = x$, there is an infinite M such that for each neighborhood of x , there is n such that $\{x_{i,j} : i, j \in M \setminus n\} \subseteq U$.

EXAMPLE: The limit point in the Fréchet-Urysohn fan S_ω is not a Ramsey point.

A space X is **angelic** if (1) every relatively countably compact subset is relatively compact and (2) every cluster point of a relatively compact subset A is the limit of a sequence from A .

A space X is **angelic** if (1) every relatively countably compact subset is relatively compact and (2) every cluster point of a relatively compact subset A is the limit of a sequence from A .

(1) A compact spaces is Fréchet iff it is angelic.

A space X is **angelic** if (1) every relatively countably compact subset is relatively compact and (2) every cluster point of a relatively compact subset A is the limit of a sequence from A .

- (1) A compact spaces is Fréchet iff it is angelic.
- (2) Any space of functions of the first Baire class is angelic, e.g., Rosenthal compacta are angelic.

A space X is **angelic** if (1) every relatively countably compact subset is relatively compact and (2) every cluster point of a relatively compact subset A is the limit of a sequence from A .

- (1) A compact spaces is Fréchet iff it is angelic.
- (2) Any space of functions of the first Baire class is angelic, e.g., Rosenthal compacta are angelic.

Theorem (Knaust)

Every point in a Rosenthal compact spaces is Ramsey

A space X is **angelic** if (1) every relatively countably compact subset is relatively compact and (2) every cluster point of a relatively compact subset A is the limit of a sequence from A .

- (1) A compact spaces is Fréchet iff it is angelic.
- (2) Any space of functions of the first Baire class is angelic, e.g., Rosenthal compacta are angelic.

Theorem (Knaust)

Every point in a Rosenthal compact spaces is Ramsey

While the product of two compact Fréchet spaces may not be Fréchet,

A space X is **angelic** if (1) every relatively countably compact subset is relatively compact and (2) every cluster point of a relatively compact subset A is the limit of a sequence from A .

- (1) A compact spaces is Fréchet iff it is angelic.
- (2) Any space of functions of the first Baire class is angelic, e.g., Rosenthal compacta are angelic.

Theorem (Knaust)

Every point in a Rosenthal compact spaces is Ramsey

While the product of two compact Fréchet spaces may not be Fréchet,

Theorem (Knaust)

The class of angelic spaces with the Ramsey property is countably productive.

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

(α_1) $S_n \subseteq^* S$ for all n .

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

- (α_1) $S_n \subseteq^* S$ for all n .
- (α_2) $S \cap S_n$ is infinite for all n .

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

- (α_1) $S_n \subseteq^* S$ for all n .
- (α_2) $S \cap S_n$ is infinite for all n .
- (α_3) $S \cap S_n$ is infinite for infinitely many n .

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

- (α_1) $S_n \subseteq^* S$ for all n .
- (α_2) $S \cap S_n$ is infinite for all n .
- (α_3) $S \cap S_n$ is infinite for infinitely many n .

Proposition: Any Ramsey point is an α_3 point.

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

- (α_1) $S_n \subseteq^* S$ for all n .
- (α_2) $S \cap S_n$ is infinite for all n .
- (α_3) $S \cap S_n$ is infinite for infinitely many n .

Proposition: Any Ramsey point is an α_3 point.

Problems

- (1) For X , clarify the relationship between $x \in X$ being Ramsey vs α_i $i \leq 3$

Being a Ramsey point is closely related to Arhangel'skii's α_i properties.

Definition (Arhangel'skii)

A point x in a topological space is an α_i point if for each family $\{S_n : n \in \omega\}$ of nontrivial sequences converging to x , there is a single sequence S converging to x such that

- (α_1) $S_n \subseteq^* S$ for all n .
- (α_2) $S \cap S_n$ is infinite for all n .
- (α_3) $S \cap S_n$ is infinite for infinitely many n .

Proposition: Any Ramsey point is an α_3 point.

Problems

- (1) For X , clarify the relationship between $x \in X$ being Ramsey vs α_i , $i \leq 3$
- (2) (Knaust) $C_p(X)$ is Ramsey if X is “quasi-Suslin.” What if X is “web-compact”?

[5] T. J. Carlson, N. Hindman, and D. Strauss. *Discrete n-tuples in Hausdorff spaces*, Fundam. Math., 187(2) (2005) 111-126.

[5] T. J. Carlson, N. Hindman, and D. Strauss. *Discrete n -tuples in Hausdorff spaces*, Fundam. Math., 187(2) (2005) 111-126.

Definition [5]

Let M be an infinite set and let $n \in \omega$. The n -Ramsey filter on $[M]^n$ is

[5] T. J. Carlson, N. Hindman, and D. Strauss. *Discrete n-tuples in Hausdorff spaces*, Fundam. Math., 187(2) (2005) 111-126.

Definition [5]

Let M be an infinite set and let $n \in \omega$. The n -Ramsey filter on $[M]^n$ is

$$R_n(M) = \{A \subseteq [M]^n : \forall N \in [M]^\omega, [N]^n \cap A \neq \emptyset\}$$

[5] T. J. Carlson, N. Hindman, and D. Strauss. *Discrete n-tuples in Hausdorff spaces*, Fundam. Math., 187(2) (2005) 111-126.

Definition [5]

Let M be an infinite set and let $n \in \omega$. The n -Ramsey filter on $[M]^n$ is

$$R_n(M) = \{A \subseteq [M]^n : \forall N \in [M]^\omega, [N]^n \cap A \neq \emptyset\}$$

And x is an $R_n(M)$ -limit point of $f : [M]^n \rightarrow X$ if $f^{-1}(U) \in R_n(M)$ for all nbhds U of x .

$$R_n(M) = \{A \subseteq [M]^n : \forall B \in [M]^\omega, [B]^n \cap A \neq \emptyset\}$$

Remarks

$$R_n(M) = \{A \subseteq [M]^n : \forall B \in [M]^\omega, [B]^n \cap A \neq \emptyset\}$$

Remarks

(1) $R_n(M)$ is a filter, and

$$R_n(M) = \{A \subseteq [M]^n : \forall B \in [M]^\omega, [B]^n \cap A \neq \emptyset\}$$

Remarks

- (1) $R_n(M)$ is a filter, and
- (2) if $A \in R_n(M)$ and $N \in [M]^\omega$, there is $R \in [N]^\omega$ such that $[R]^n \subseteq A$

$$R_n(M) = \{A \subseteq [M]^n : \forall B \in [M]^\omega, [B]^n \cap A \neq \emptyset\}$$

Remarks

- (1) $R_n(M)$ is a filter, and
- (2) if $A \in R_n(M)$ and $N \in [M]^\omega$, there is $R \in [N]^\omega$ such that $[R]^n \subseteq A$
- (3) Relate $R_n(M)$ convergence to other convergence properties (to be) discussed.

$$R_n(M) = \{A \subseteq [M]^n : \forall B \in [M]^\omega, [B]^n \cap A \neq \emptyset\}$$

Remarks

- (1) $R_n(M)$ is a filter, and
- (2) if $A \in R_n(M)$ and $N \in [M]^\omega$, there is $R \in [N]^\omega$ such that $[R]^n \subseteq A$
- (3) Relate $R_n(M)$ convergence to other convergence properties (to be) discussed.

Theorem [5]

For any $f : [\omega]^n \rightarrow X$ where X is any Hausdorff space, there is an infinite $M \subseteq \omega$ such that $f([M]^n)$ is discrete.

$$R_n(M) = \{A \subseteq [M]^n : \forall B \in [M]^\omega, [B]^n \cap A \neq \emptyset\}$$

Remarks

- (1) $R_n(M)$ is a filter, and
- (2) if $A \in R_n(M)$ and $N \in [M]^\omega$, there is $R \in [N]^\omega$ such that $[R]^n \subseteq A$
- (3) Relate $R_n(M)$ convergence to other convergence properties (to be) discussed.

Theorem [5]

For any $f : [\omega]^n \rightarrow X$ where X is any Hausdorff space, there is an infinite $M \subseteq \omega$ such that $f([M]^n)$ is discrete.

Theorem

If B is the Schreier barrier, there is a linearly ordered space X and $f : B \rightarrow X$ such that $f(B|_M)$ is not discrete for any $M \in [\omega]^\omega$.

Bibliography

1. Bojanczyk, Kopczynski, Torunczyk, *Ramsey's theorem for colors from a metric space*, Semigroup Forum 85 (2012) 182-184.
2. Banakh, Dimitrova, Gutik. *The Rees-Suszkewitsch theorem for simple topological semigroups*, Mat. Stud., 31(2) (2009) 211-218,
3. H. Knaust, *Array convergence of functions of the first Baire class* Proc. AMS 112 (2), (1991) 529-532
4. H. Knaust *Angelic Spaces with the Ramsey Property*, Chapter 25 in *Interaction Between Functional Analysis, Harmonic Analysis, and Probability* (Nigel Kalton, Elias Saab, Stephen Montgomery-Smith eds.) CRC Press (1995).
5. T. J. Carlson, N. Hindman, and D. Strauss. *Discrete n -tuples in Hausdorff spaces*, Fundam. Math., 187(2) (2005) 111-126.

Bibliography, continued

For background on barriers see

6. S. Todorčević, *High-Dimensional Ramsey Theory and Banach Space Geometry* Section B in *Ramsey Methods in Analysis* by Argyros and Todorčević, Birkhauser (2005).

This work was initiated while on sabbatical with Wiesław Kubiś in the fall of 2021:

7. W. Kubiś and P. Szeptycki, *On a topological Ramsey theorem*, Can. Math. Bull. 66 (1), 2023, pp. 156-165