

Ramsey theoretic notions of convergence

Lecture 2 - Higher Dimensional Sequential Compactness

Paul Szeptycki

York University
Toronto, Canada

Convergence on Barriers

Recall Knaust's notion of a Ramsey point in his study of angelic spaces:

Definition (Knaust)

$x \in X$ is a **Ramsey point** if given a 2-dimensional array $(x_{i,j})$ in X such that $\lim_i(\lim_j(x_{i,j}) = x,$

Convergence on Barriers

Recall Knaust's notion of a Ramsey point in his study of angelic spaces:

Definition (Knaust)

$x \in X$ is a **Ramsey point** if given a 2-dimensional array $(x_{i,j})$ in X such that $\lim_i(\lim_j(x_{i,j}) = x$, then there is an infinite M such that for every open neighborhood U of x , there is an n such that $x_{i,j} \in U$ for all $i,j \in M \setminus n$.

Convergence on Barriers

Recall Knaust's notion of a Ramsey point in his study of angelic spaces:

Definition (Knaust)

$x \in X$ is a **Ramsey point** if given a 2-dimensional array $(x_{i,j})$ in X such that $\lim_i(\lim_j(x_{i,j})) = x$, then there is an infinite M such that for every open neighborhood U of x , there is an n such that $x_{i,j} \in U$ for all $i, j \in M \setminus n$.

And the class of sequentially compact spaces of Bojańczyk, Kopczyński and Toruńczyk applied to find idempotents in topological semigroups:

Definition (BKT)

X is **2-sequentially compact** if for every $f : [\omega]^2 \rightarrow X$ there is $x \in X$ and M infinite such that for every open U containing x there is n such that $[M \setminus n]^2 \subseteq f^{-1}(U)$.

n -sequential compactness

The notion of convergence implicit in both previous definitions:

The notion of convergence implicit in both previous definitions:

Definition

For $M \subseteq \omega$ infinite, $f : [M]^n \rightarrow X$ converges to x if for every neighborhood U of x there is a $k \in \omega$ such that $[M \setminus k]^n \subseteq f^{-1}(U)$.

n -sequential compactness

The notion of convergence implicit in both previous definitions:

Definition

For $M \subseteq \omega$ infinite, $f : [M]^n \rightarrow X$ converges to x if for every neighborhood U of x there is a $k \in \omega$ such that $[M \setminus k]^n \subseteq f^{-1}(U)$.

And X is n -sequentially compact if every $f : [\omega]^n \rightarrow X$ there is $x \in X$ and $M \subseteq \omega$ infinite such that $f \upharpoonright [M]^n$ converges to x .

n -sequential compactness

The notion of convergence implicit in both previous definitions:

Definition

For $M \subseteq \omega$ infinite, $f : [M]^n \rightarrow X$ converges to x if for every neighborhood U of x there is a $k \in \omega$ such that $[M \setminus k]^n \subseteq f^{-1}(U)$.

And X is n -sequentially compact if every $f : [\omega]^n \rightarrow X$ there is $x \in X$ and $M \subseteq \omega$ infinite such that $f \upharpoonright [M]^n$ converges to x .

Topological version of Ramsey's Theorem:

n -sequential compactness

The notion of convergence implicit in both previous definitions:

Definition

For $M \subseteq \omega$ infinite, $f : [M]^n \rightarrow X$ converges to x if for every neighborhood U of x there is a $k \in \omega$ such that $[M \setminus k]^n \subseteq f^{-1}(U)$.

And X is n -sequentially compact if every $f : [\omega]^n \rightarrow X$ there is $x \in X$ and $M \subseteq \omega$ infinite such that $f \upharpoonright [M]^n$ converges to x .

Topological version of Ramsey's Theorem:

Theorem

Compact metrizable spaces are n -sequentially compact for all n .

n -sequential compactness

The notion of convergence implicit in both previous definitions:

Definition

For $M \subseteq \omega$ infinite, $f : [M]^n \rightarrow X$ converges to x if for every neighborhood U of x there is a $k \in \omega$ such that $[M \setminus k]^n \subseteq f^{-1}(U)$.

And X is n -sequentially compact if every $f : [\omega]^n \rightarrow X$ there is $x \in X$ and $M \subseteq \omega$ infinite such that $f \upharpoonright [M]^n$ converges to x .

Topological version of Ramsey's Theorem:

Theorem

Compact metrizable spaces are n -sequentially compact for all n .

The properties are progressively stronger:

Proposition

If $k \leq n$ and X is n -sequentially compact, then X is k sequentially compact.

Todorčević suggested to investigate these notions for barriers.

Todorčević suggested to investigate these notions for barriers.

Definition

Given a barrier B on $M \in [\omega]^\omega$, $f : B \rightarrow X$ converges to x if for each open U containing x , there is n such that $f(B|_{(M \setminus n)}) \subseteq U$.

Todorčević suggested to investigate these notions for barriers.

Definition

Given a barrier B on $M \in [\omega]^\omega$, $f : B \rightarrow X$ converges to x if for each open U containing x , there is n such that $f(B|_{(M \setminus n)}) \subseteq U$.

Definition (Todorčević)

And for B a barrier on ω , X is B -sequentially compact if every $f : B \rightarrow X$ there is $x \in X$ and $M \subseteq \omega$ infinite such that $f \upharpoonright (B|_M)$ converges to x .

Todorčević suggested to investigate these notions for barriers.

Definition

Given a barrier B on $M \in [\omega]^\omega$, $f : B \rightarrow X$ converges to x if for each open U containing x , there is n such that $f(B|_{(M \setminus n)}) \subseteq U$.

Definition (Todorčević)

And for B a barrier on ω , X is B -sequentially compact if every $f : B \rightarrow X$ there is $x \in X$ and $M \subseteq \omega$ infinite such that $f \upharpoonright (B|_M)$ converges to x .

Nash-Williams Theorem is equivalent to

Theorem

Metrizable compact spaces are B -sequentially compact for all barriers B .

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpt

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpt

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpt

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then
there is $M' \subseteq M$ infinite, such that $\text{diam}(f(M')) < \epsilon$

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpt

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then there is $M' \subseteq M$ infinite, such that $\text{diam}(f(M')) < \epsilon$

Remark

Ramsey's Theorem \Leftrightarrow Compact metrizable spaces are n -seq cpt

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpct

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then
there is $M' \subseteq M$ infinite, such that $\text{diam}(f(M')) < \epsilon$

Remark

Ramsey's Theorem \Leftrightarrow Compact metrizable spaces are n -seq cpct

If X is compact metrizable, $f : [M]^n \rightarrow X$ and $\epsilon > 0$, then

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpct

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then
there is $M' \subseteq M$ infinite, such that $\text{diam}(f(M')) < \epsilon$

Remark

Ramsey's Theorem \Leftrightarrow Compact metrizable spaces are n -seq cpct

If X is compact metrizable, $f : [M]^n \rightarrow X$ and $\epsilon > 0$, then
there is $M' \subseteq M$ infinite, such that $\text{diam}(f([M']^n)) < \epsilon$

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpct

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then there is $M' \subseteq M$ infinite, such that $\text{diam}(f(M')) < \epsilon$

Remark

Ramsey's Theorem \Leftrightarrow Compact metrizable spaces are n -seq cpct

If X is compact metrizable, $f : [M]^n \rightarrow X$ and $\epsilon > 0$, then there is $M' \subseteq M$ infinite, such that $\text{diam}(f([M']^n)) < \epsilon$

Remark

Nash-William's \Leftrightarrow Cpct metrizable spaces are barrier-seq cpct

Remark

Pigeon hole principle \Leftrightarrow Compact metrizable spaces are seq cpct

If X is compact metrizable, $f : M \rightarrow X$ and $\epsilon > 0$, then there is $M' \subseteq M$ infinite, such that $\text{diam}(f(M')) < \epsilon$

Remark

Ramsey's Theorem \Leftrightarrow Compact metrizable spaces are n -seq cpct

If X is compact metrizable, $f : [M]^n \rightarrow X$ and $\epsilon > 0$, then there is $M' \subseteq M$ infinite, such that $\text{diam}(f([M']^n)) < \epsilon$

Remark

Nash-William's \Leftrightarrow Cpct metrizable spaces are barrier-seq cpct

If X is compact metrizable, $f : B|_M \rightarrow X$ and $\epsilon > 0$, then there is $M' \subseteq M$ infinite, such that $\text{diam}(f([B|_{M'}])) < \epsilon$

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

CONJECTURE

If $\text{rank}(B) \leq \text{rank}(C)$ and if X is C -sequentially compact, then X is B -sequentially compact.

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

CONJECTURE

If $\text{rank}(B) \leq \text{rank}(C)$ and if X is C -sequentially compact, then X is B -sequentially compact.

Alas, not true.

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

CONJECTURE

If $\text{rank}(B) \leq \text{rank}(C)$ and if X is C -sequentially compact, then X is B -sequentially compact.

Alas, not true.

Proposition

If B is a barrier of rank α then for all $M \in [\omega]^\omega$, $\text{rank}(B|_M) \leq \alpha$.

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

CONJECTURE

If $\text{rank}(B) \leq \text{rank}(C)$ and if X is C -sequentially compact, then X is B -sequentially compact.

Alas, not true.

Proposition

If B is a barrier of rank α then for all $M \in [\omega]^\omega$, $\text{rank}(B|_M) \leq \alpha$.

and the inequality may be strict:

Example

There is a barrier of rank $\omega + 1$ with a restriction of rank ω .

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

CONJECTURE

If $\text{rank}(B) \leq \text{rank}(C)$ and if X is C -sequentially compact, then X is B -sequentially compact.

Alas, not true.

Proposition

If B is a barrier of rank α then for all $M \in [\omega]^\omega$, $\text{rank}(B|_M) \leq \alpha$.

and the inequality may be strict:

Example

There is a barrier of rank $\omega + 1$ with a restriction of rank ω .

$B = \bigcup_n B_n$ where

n odd: $B_n = \{s \subseteq \omega : \min(s) = n \text{ and } |s| = n + 1\}$

Recall that for $n < m$, X is m -sequentially compact implies that X is n -sequentially compact.

CONJECTURE

If $\text{rank}(B) \leq \text{rank}(C)$ and if X is C -sequentially compact, then X is B -sequentially compact.

Alas, not true.

Proposition

If B is a barrier of rank α then for all $M \in [\omega]^\omega$, $\text{rank}(B|_M) \leq \alpha$.

and the inequality may be strict:

Example

There is a barrier of rank $\omega + 1$ with a restriction of rank ω .

$B = \bigcup_n B_n$ where

n odd: $B_n = \{s \subseteq \omega : \min(s) = n \text{ and } |s| = n + 1\}$

n even: $B_n = \{s \subseteq \omega : \min(s) = n \text{ and } |s| = \min(s \setminus \{n\})\}$

Uniform Barriers

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Definition

A barrier B on $M \in [\omega]^\omega$ being of **uniform rank α** is defined recursively:

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Definition

A barrier B on $M \in [\omega]^\omega$ being of **uniform rank α** is defined recursively:

(0) $[\omega]^1$ is uniform of rank 1, and

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Definition

A barrier B on $M \in [\omega]^\omega$ being of **uniform rank α** is defined recursively:

- (0) $[\omega]^1$ is uniform of rank 1, and
- (1) If $\alpha = \beta + 1$, then for all $n \in M$, $B[n]$ is a uniform barrier (on $M \setminus (n + 1)$) of rank β .

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Definition

A barrier B on $M \in [\omega]^\omega$ being of **uniform rank α** is defined recursively:

- (0) $[\omega]^1$ is uniform of rank 1, and
- (1) If $\alpha = \beta + 1$, then for all $n \in M$, $B[n]$ is a uniform barrier (on $M \setminus (n + 1)$) of rank β .
- (2) If α is a limit, then there is $\{\alpha_n : n \in \omega\}$ increasing and cofinal in α such that for all $n \in M$, $B[n]$ is uniform of rank α_n .

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Definition

A barrier B on $M \in [\omega]^\omega$ being of **uniform rank α** is defined recursively:

- (0) $[\omega]^1$ is uniform of rank 1, and
- (1) If $\alpha = \beta + 1$, then for all $n \in M$, $B[n]$ is a uniform barrier (on $M \setminus (n+1)$) of rank β .
- (2) If α is a limit, then there is $\{\alpha_n : n \in \omega\}$ increasing and cofinal in α such that for all $n \in M$, $B[n]$ is uniform of rank α_n .

REMARKS:

- (1) If B is a uniform barrier of rank α then for all infinite M , $B|_M$ is also uniform of rank α .

Recall for barrier B , $B[n] = \{s \setminus \{n\} : s \in B, n = \min(s)\}$

Definition

A barrier B on $M \in [\omega]^\omega$ being of **uniform rank α** is defined recursively:

- (0) $[\omega]^1$ is uniform of rank 1, and
- (1) If $\alpha = \beta + 1$, then for all $n \in M$, $B[n]$ is a uniform barrier (on $M \setminus (n+1)$) of rank β .
- (2) If α is a limit, then there is $\{\alpha_n : n \in \omega\}$ increasing and cofinal in α such that for all $n \in M$, $B[n]$ is uniform of rank α_n .

REMARKS:

- (1) If B is a uniform barrier of rank α then for all infinite M , $B|_M$ is also uniform of rank α .
- (2) Every barrier has a restriction on which it is uniform.

Theorem

If C is a *uniform barrier* of rank α and B is any barrier of rank $\leq \alpha$ and if X is C -sequentially compact then X is B -sequentially compact.

Theorem

If C is a *uniform barrier* of rank α and B is any barrier of rank $\leq \alpha$ and if X is C -sequentially compact then X is B -sequentially compact.

$B \sqsubseteq C$ means that every $s \in B$ is an initial segment of some $t \in C$ (and each $t \in C$ has an initial segment in B).

Theorem

If C is a *uniform barrier* of rank α and B is any barrier of rank $\leq \alpha$ and if X is C -sequentially compact then X is B -sequentially compact.

$B \sqsubseteq C$ means that every $s \in B$ is an initial segment of some $t \in C$ (and each $t \in C$ has an initial segment in B).

Theorem (Todorčević?)

If B and C are any barriers, then there is an infinite M such that either $B|_M \sqsubseteq C|_M$ or $C|_M \sqsubseteq B|_M$.

Theorem

If C is a *uniform barrier* of rank α and B is any barrier of rank $\leq \alpha$ and if X is C -sequentially compact then X is B -sequentially compact.

$B \sqsubseteq C$ means that every $s \in B$ is an initial segment of some $t \in C$ (and each $t \in C$ has an initial segment in B).

Theorem (Todorčević?)

If B and C are any barriers, then there is an infinite M such that either $B|_M \sqsubseteq C|_M$ or $C|_M \sqsubseteq B|_M$.

Moreover if $\text{rank}(B) < \text{rank}(C)$ and C is of uniform rank, then necessarily $B|_M \sqsubseteq C|_M$

Theorem

If C is a *uniform barrier* of rank α and B is any barrier of rank $\leq \alpha$ and if X is C -sequentially compact then X is B -sequentially compact.

$B \sqsubseteq C$ means that every $s \in B$ is an initial segment of some $t \in C$ (and each $t \in C$ has an initial segment in B).

Theorem (Todorčević?)

If B and C are any barriers, then there is an infinite M such that either $B|_M \sqsubseteq C|_M$ or $C|_M \sqsubseteq B|_M$.

Moreover if $\text{rank}(B) < \text{rank}(C)$ and C is of uniform rank, then necessarily $B|_M \sqsubseteq C|_M$

Remark: If B and C are any barriers on M and $s \in B|_M$ there is $t \in C|_M$ such that $s \sqsubseteq t$ or $t \sqsubseteq s$

Proposition

If X is C -sequentially compact and $B \sqsubseteq C$ then X is also B -sequentially compact.

Proposition

If X is C -sequentially compact and $B \sqsubseteq C$ then X is also B -sequentially compact.

Hence, if B is of uniform rank α , and if X is B -sequentially compact then X is C -sequentially compact for any barrier of rank $< \alpha$.

Proposition

If X is C -sequentially compact and $B \sqsubseteq C$ then X is also B -sequentially compact.

Hence, if B is of uniform rank α , and if X is B -sequentially compact then X is C -sequentially compact for any barrier of rank $< \alpha$.

However, it seems analysis of \sqsubseteq is not enough to prove that

Difficult case

If B and C are uniform barriers and $\text{rk}(B) = \text{rk}(C)$ then X is C -sequentially compact if and only if X is B -sequentially compact.

Proposition

If X is C -sequentially compact and $B \sqsubseteq C$ then X is also B -sequentially compact.

Hence, if B is of uniform rank α , and if X is B -sequentially compact then X is C -sequentially compact for any barrier of rank $< \alpha$.

However, it seems analysis of \sqsubseteq is not enough to prove that

Difficult case

If B and C are uniform barriers and $\text{rk}(B) = \text{rk}(C)$ then X is C -sequentially compact if and only if X is B -sequentially compact.

For example, consider variations of the Schreier barrier:

$$B_f = \{s \in [\omega]^{<\omega} : |s| = f(\min(s))\} \quad (f \in \omega^\omega \text{ strictly increasing}).$$

Proposition

If X is C -sequentially compact and $B \sqsubseteq C$ then X is also B -sequentially compact.

Hence, if B is of uniform rank α , and if X is B -sequentially compact then X is C -sequentially compact for any barrier of rank $< \alpha$.

However, it seems analysis of \sqsubseteq is not enough to prove that

Difficult case

If B and C are uniform barriers and $\text{rk}(B) = \text{rk}(C)$ then X is C -sequentially compact if and only if X is B -sequentially compact.

For example, consider variations of the Schreier barrier:

$$B_f = \{s \in [\omega]^{<\omega} : |s| = f(\min(s))\} \quad (f \in \omega^\omega \text{ strictly increasing}).$$

and note that if $f \leq g$ then $B_f \sqsubseteq B_g$

Definition

Given two barriers B and C on $[\omega]^\omega$, we write $B \preceq C$ if there is a finite-to-one, non-decreasing function $f : \omega \rightarrow \omega$ such that for all $M \in [\omega]^\omega$ there is $N \in [M]^\omega$ such that $f \upharpoonright N$ is one-to-one and

$$\forall c \in (C|_N) \exists b \in B (b \sqsubseteq f[c])$$

Definition

Given two barriers B and C on $[\omega]^\omega$, we write $B \preceq C$ if there is a finite-to-one, non-decreasing function $f : \omega \rightarrow \omega$ such that for all $M \in [\omega]^\omega$ there is $N \in [M]^\omega$ such that $f \upharpoonright N$ is one-to-one and

$$\forall c \in (C|_N) \exists b \in B (b \sqsubseteq f[c])$$

Note that if $B \sqsubseteq C$ then $B \preceq C$ is witnessed by the identity function.

Definition

Given two barriers B and C on $[\omega]^\omega$, we write $B \preceq C$ if there is a finite-to-one, non-decreasing function $f : \omega \rightarrow \omega$ such that for all $M \in [\omega]^\omega$ there is $N \in [M]^\omega$ such that $f \upharpoonright N$ is one-to-one and

$$\forall c \in (C|_N) \exists b \in B (b \sqsubseteq f[c])$$

Note that if $B \sqsubseteq C$ then $B \preceq C$ is witnessed by the identity function.

Theorem

If C is uniform of rank α and B is of rank $\beta \leq \alpha$ then $B \preceq C$.

Another Preorder on Barriers

Definition

Given two barriers B and C on $[\omega]^\omega$, we write $B \preceq C$ if there is a finite-to-one, non-decreasing function $f : \omega \rightarrow \omega$ such that for all $M \in [\omega]^\omega$ there is $N \in [M]^\omega$ such that $f \upharpoonright N$ is one-to-one and

$$\forall c \in (C|_N) \exists b \in B (b \sqsubseteq f[c])$$

Note that if $B \sqsubseteq C$ then $B \preceq C$ is witnessed by the identity function.

Theorem

If C is uniform of rank α and B is of rank $\beta \leq \alpha$ then $B \preceq C$.

Theorem

If $B \preceq C$ and X is C -seq compact, then X is B -seq compact.

Definition

X is **α -sequentially compact** if it is B -sequentially compact for some barrier of uniform rank α . Equivalently, for all barriers of rank $\leq \alpha$. And **X is ω_1 -sequentially compact** if it is α -sequentially compact for all $\alpha < \omega_1$.

Example

Let \mathcal{A} be a maximal almost disjoint family, (or a completely separable almost disjoint family on ω). Then the one-point compactification of $\Psi(\mathcal{A})$ is sequentially compact but not 2-sequentially compact.

Example

Let \mathcal{A} be a maximal almost disjoint family, (or a completely separable almost disjoint family on ω). Then the one-point compactification of $\Psi(\mathcal{A})$ is sequentially compact but not 2-sequentially compact.

Example ($\mathfrak{b} = c$)

For every $\alpha < \omega_1$ there is a $< \alpha$ -sequentially compact that is not α -sequentially compact.

Example

Let \mathcal{A} be a maximal almost disjoint family, (or a completely separable almost disjoint family on ω). Then the one-point compactification of $\Psi(\mathcal{A})$ is sequentially compact but not 2-sequentially compact.

Example ($\mathfrak{b} = c$)

For every $\alpha < \omega_1$ there is a $< \alpha$ -sequentially compact that is not α -sequentially compact.

Definitions

For B a barrier on ω the following are ideals on B

Example

Let \mathcal{A} be a maximal almost disjoint family, (or a completely separable almost disjoint family on ω). Then the one-point compactification of $\Psi(\mathcal{A})$ is sequentially compact but not 2-sequentially compact.

Example ($\mathfrak{b} = c$)

For every $\alpha < \omega_1$ there is a $< \alpha$ -sequentially compact that is not α -sequentially compact.

Definitions

For B a barrier on ω the following are ideals on B

- 1 $\text{FIN}^B = \{A \subseteq B : \{n : A[n] \notin \text{FIN}^{B[n]}\} \text{ is finite}\}$

Example

Let \mathcal{A} be a maximal almost disjoint family, (or a completely separable almost disjoint family on ω). Then the one-point compactification of $\Psi(\mathcal{A})$ is sequentially compact but not 2-sequentially compact.

Example ($\mathfrak{b} = c$)

For every $\alpha < \omega_1$ there is a $< \alpha$ -sequentially compact that is not α -sequentially compact.

Definitions

For B a barrier on ω the following are ideals on B

- ① $\text{FIN}^B = \{A \subseteq B : \{n : A[n] \notin \text{FIN}^{B[n]}\} \text{ is finite}\}$
- ② $G_c(B) = \{A \subseteq B \text{ such that } B|_M \not\subseteq A \text{ for any } M\}$

Definition

Given ideals I and J on some countable M , we say that I is Katětov below J if there is $f : M \rightarrow M$ with $f^{-1}(A) \in J$ for all $A \in I$.

Definition

Given ideals I and J on some countable M , we say that I is Katětov below J if there is $f : M \rightarrow M$ with $f^{-1}(A) \in J$ for all $A \in I$.

Theorem

If B and C are barriers on ω and $\text{rank}(B) < \text{rank}(C)$ then FIN^C is not Katětov below $G(B)$.

Definition

Given ideals I and J on some countable M , we say that I is Katětov below J if there is $f : M \rightarrow M$ with $f^{-1}(A) \in J$ for all $A \in I$.

Theorem

If B and C are barriers on ω and $\text{rank}(B) < \text{rank}(C)$ then FIN^C is not Katětov below $G(B)$.

For $n < m < \omega$ this says:

Definition

Given ideals I and J on some countable M , we say that I is Katětov below J if there is $f : M \rightarrow M$ with $f^{-1}(A) \in J$ for all $A \in I$.

Theorem

If B and C are barriers on ω and $\text{rank}(B) < \text{rank}(C)$ then FIN^C is not Katětov below $G(B)$.

For $n < m < \omega$ this says:

Proposition

For any $n < m$ and $f : [\omega]^n \rightarrow [\omega]^m$ there is an infinite M such that $f([M]^n) \in \text{FIN}^m$.

Theorem

Sequentially compact spaces of character $< \mathfrak{b}$ are ω_1 -sequentially compact.

Theorem

Sequentially compact spaces of character $< \mathfrak{b}$ are ω_1 -sequentially compact.

Definition

X is bisequential at a point $x \in X$ if every ultrafilter converging to x contains a countably generated filter also converging to x .

Theorem

Sequentially compact spaces of character $< \mathfrak{b}$ are ω_1 -sequentially compact.

Definition

X is bisequential at a point $x \in X$ if every ultrafilter converging to x contains a countably generated filter also converging to x .

Theorem (Todorčević)

Compact bisequential spaces are ω_1 -sequentially compact.

Some theorems

Theorem

Sequentially compact spaces of character $< \mathfrak{b}$ are ω_1 -sequentially compact.

Definition

X is bisequential at a point $x \in X$ if every ultrafilter converging to x contains a countably generated filter also converging to x .

Theorem (Todorčević)

Compact bisequential spaces are ω_1 -sequentially compact.

Corollary

Rosenthal compacta are ω_1 -sequentially compact.

Knaust convergence property

The natural generalization of Knaust's notion of a Ramsey point:

The natural generalization of Knaust's notion of a Ramsey point:

Definition (Knaust-Todorčević-Corral)

Given a space X and a point $x \in X$, x is a B -Ramsey point in X if for all $f : B \rightarrow X$ such that $B \setminus f^{-1}(U) \in FIN^B$ for every neighborhood U of x , there is M infinite such that $f \upharpoonright (B|_M)$ converges to x .

The natural generalization of Knaust's notion of a Ramsey point:

Definition (Knaust-Todorčević-Corral)

Given a space X and a point $x \in X$, x is a B -Ramsey point in X if for all $f : B \rightarrow X$ such that $B \setminus f^{-1}(U) \in FIN^B$ for every neighborhood U of x , there is M infinite such that $f \upharpoonright (B|_M)$ converges to x .

We say X is B -Ramsey if every point is a B -Ramsey point.

Knaust convergence property

The natural generalization of Knaust's notion of a Ramsey point:

Definition (Knaust-Todorčević-Corral)

Given a space X and a point $x \in X$, x is a B -Ramsey point in X if for all $f : B \rightarrow X$ such that $B \setminus f^{-1}(U) \in FIN^B$ for every neighborhood U of x , there is M infinite such that $f \upharpoonright (B|_M)$ converges to x .

We say X is B -Ramsey if every point is a B -Ramsey point.

Theorem

Sequentially compact B -Ramsey spaces are B -sequentially compact.

Knaust convergence property

The natural generalization of Knaust's notion of a Ramsey point:

Definition (Knaust-Todorčević-Corral)

Given a space X and a point $x \in X$, x is a B -Ramsey point in X if for all $f : B \rightarrow X$ such that $B \setminus f^{-1}(U) \in FIN^B$ for every neighborhood U of x , there is M infinite such that $f \upharpoonright (B|_M)$ converges to x .

We say X is B -Ramsey if every point is a B -Ramsey point.

Theorem

Sequentially compact B -Ramsey spaces are B -sequentially compact.

Theorem

Points of character $< \mathfrak{b}$ and countably bisequential points are B -Ramsey points.

Theorem (van Douwen)

The minimum κ such that 2^κ is not sequentially compact is the splitting number \mathfrak{s} .

Theorem (van Douwen)

The minimum κ such that 2^κ is not sequentially compact is the splitting number \mathfrak{s} .

Definition

For a barrier B , let \mathfrak{par}_B be the minimum κ such that for all $\mathcal{F} \in [2^B]^{<\kappa}$, there is M infinite such that for all $f \in \mathcal{F}$ there is an n such that f is constant on $B|_{(M \setminus n)}$.

Theorem (van Douwen)

The minimum κ such that 2^κ is not sequentially compact is the splitting number \mathfrak{s} .

Definition

For a barrier B , let \mathfrak{par}_B be the minimum κ such that for all $\mathcal{F} \in [2^B]^{<\kappa}$, there is M infinite such that for all $f \in \mathcal{F}$ there is an n such that f is constant on $B|_{(M \setminus n)}$.

Exercises

$\mathfrak{s} = \mathfrak{par}_1 \leq \mathfrak{par}_2 \leq \dots \leq \mathfrak{par}_B \leq \mathfrak{par}_C \dots$
(whenever $B \sqsubseteq C$ are of infinite rank)

But in fact:

Theorem

For every barrier B of rank ≥ 2 , $\text{par}_B = \min\{\mathfrak{b}, \mathfrak{s}\}$

But in fact:

Theorem

For every barrier B of rank ≥ 2 , $\text{par}_B = \min\{\mathfrak{b}, \mathfrak{s}\}$

And the generalization to barriers of van Douwen's result on the splitting number:

Theorem

par_B is the minimal cardinal κ such that 2^κ is not B -sequentially compact

But in fact:

Theorem

For every barrier B of rank ≥ 2 , $\text{par}_B = \min\{\mathfrak{b}, \mathfrak{s}\}$

And the generalization to barriers of van Douwen's result on the splitting number:

Theorem

par_B is the minimal cardinal κ such that 2^κ is not B -sequentially compact

So if $\mathfrak{b} < \mathfrak{s}$ we have another example of a sequentially compact not 2-sequentially compact space.

Bibliography

1. S. Todorčević, *High-Dimensional Ramsey Theory and Banach Space Geometry* Section B in *Ramsey Methods in Analysis* by Argyros and Todorčević, Birkhauser (2005).
2. W. Kubiś and P. Szeptycki, *On a topological Ramsey theorem*, Can. Math. Bull. 66 (1), 2023, pp. 156-165
3. C. Corral and O. Guzmán and C. López-Callejas, High dimensional sequential compactness, Fund. Math., 264, (2024), 21-54.
4. C. Corral, O. Guzmán, C. López-Callejas, P. Memarpanahi, P. Szeptycki and S. Todorčević, *Infinite dimensional sequential compactness: Sequential compactness based on barriers*, Canadian Journal of Mathematics , Volume 77 , Issue 6 , December 2025, pp. 2083 - 2110
5. Corral, Szeptycki et al *Ramsey notions of convergence* in preparation.