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Convergence on Barriers
Recall Knaust’s notion of a Ramsey point in his study of angelic
spaces:

Definition (Knaust)

x ∈ X is a Ramsey point if given a 2-dimensional array (xi ,j) in X
such that limi (limj(xi ,j) = x ,

then there is an infinite M such that
for every open neighborhood U of x , there is an n such that
xi ,j ∈ U for all i , j ∈ M \ n.

And the class of sequentially compact spaces of Bojańczyk,
Kopczyński and Toruńczyk applied to find idempotents in
topological semigroups:

Definition (BKT)

X is 2-sequentially compact if for every f : [ω]2 → X there is
x ∈ X and M infinite such that for every open U containing x there
is n such that [M \ n]2 ⊆ f −1(U).
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n-sequential compactness
The notion of convergence implicit in both previous definitions:

Definition
For M ⊆ ω infinite, f : [M]n → X converges to x if for every
neighborhood U of x there is a k ∈ ω such that [M \ k]n ⊆ f −1(U).

And X is n-sequentially compact if every f : [ω]n → X there is
x ∈ X and M ⊆ ω infinite such that f ↾ [M]n converges to x .

Topological version of Ramsey’s Theorem:

Theorem
Compact metrizable spaces are n-sequentially compact for all n.

The properties are progressively stronger:

Proposition
If k ≤ n and X is n-sequentially compact, then X is k sequentially
compact.

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 2 - Higher Dimensional Sequential Compactness



n-sequential compactness
The notion of convergence implicit in both previous definitions:

Definition
For M ⊆ ω infinite, f : [M]n → X converges to x if for every
neighborhood U of x there is a k ∈ ω such that [M \ k]n ⊆ f −1(U).

And X is n-sequentially compact if every f : [ω]n → X there is
x ∈ X and M ⊆ ω infinite such that f ↾ [M]n converges to x .

Topological version of Ramsey’s Theorem:

Theorem
Compact metrizable spaces are n-sequentially compact for all n.

The properties are progressively stronger:

Proposition
If k ≤ n and X is n-sequentially compact, then X is k sequentially
compact.

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 2 - Higher Dimensional Sequential Compactness



n-sequential compactness
The notion of convergence implicit in both previous definitions:

Definition
For M ⊆ ω infinite, f : [M]n → X converges to x if for every
neighborhood U of x there is a k ∈ ω such that [M \ k]n ⊆ f −1(U).
And X is n-sequentially compact if every f : [ω]n → X there is
x ∈ X and M ⊆ ω infinite such that f ↾ [M]n converges to x .

Topological version of Ramsey’s Theorem:

Theorem
Compact metrizable spaces are n-sequentially compact for all n.

The properties are progressively stronger:

Proposition
If k ≤ n and X is n-sequentially compact, then X is k sequentially
compact.

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 2 - Higher Dimensional Sequential Compactness



n-sequential compactness
The notion of convergence implicit in both previous definitions:

Definition
For M ⊆ ω infinite, f : [M]n → X converges to x if for every
neighborhood U of x there is a k ∈ ω such that [M \ k]n ⊆ f −1(U).
And X is n-sequentially compact if every f : [ω]n → X there is
x ∈ X and M ⊆ ω infinite such that f ↾ [M]n converges to x .

Topological version of Ramsey’s Theorem:

Theorem
Compact metrizable spaces are n-sequentially compact for all n.

The properties are progressively stronger:

Proposition
If k ≤ n and X is n-sequentially compact, then X is k sequentially
compact.

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 2 - Higher Dimensional Sequential Compactness



n-sequential compactness
The notion of convergence implicit in both previous definitions:

Definition
For M ⊆ ω infinite, f : [M]n → X converges to x if for every
neighborhood U of x there is a k ∈ ω such that [M \ k]n ⊆ f −1(U).
And X is n-sequentially compact if every f : [ω]n → X there is
x ∈ X and M ⊆ ω infinite such that f ↾ [M]n converges to x .

Topological version of Ramsey’s Theorem:

Theorem
Compact metrizable spaces are n-sequentially compact for all n.

The properties are progressively stronger:

Proposition
If k ≤ n and X is n-sequentially compact, then X is k sequentially
compact.

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 2 - Higher Dimensional Sequential Compactness



n-sequential compactness
The notion of convergence implicit in both previous definitions:

Definition
For M ⊆ ω infinite, f : [M]n → X converges to x if for every
neighborhood U of x there is a k ∈ ω such that [M \ k]n ⊆ f −1(U).
And X is n-sequentially compact if every f : [ω]n → X there is
x ∈ X and M ⊆ ω infinite such that f ↾ [M]n converges to x .

Topological version of Ramsey’s Theorem:

Theorem
Compact metrizable spaces are n-sequentially compact for all n.

The properties are progressively stronger:

Proposition
If k ≤ n and X is n-sequentially compact, then X is k sequentially
compact.

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 2 - Higher Dimensional Sequential Compactness



Todorčević suggested to investigate these notions for barriers.

Definition
Given a barrier B on M ∈ [ω]ω, f : B → X converges to x if for
each open U containing x , there is n such that f (B|(M\n)) ⊆ U.

Definition (Todorčević)

And for B a barrier on ω, X is B-sequentially compact if every
f : B → X there is x ∈ X and M ⊆ ω infinite such that f ↾ (B|M)
converges to x .

Nash-Williams Theorem is equivalent to

Theorem
Metrizable compact spaces are B-sequentially compact for all
barriers B .
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Remark
Pigeon hole principle ⇔ Compact metrizable spaces are seq cpct

If X is compact metrizable, f : M → X and ϵ > 0, then
there is M ′ ⊆ M infinite, such that diam(f (M ′)) < ϵ

Remark
Ramsey’s Theorem ⇔ Compact metriz spaces are n-seq cpct

If X is compact metrizable, f : [M]n → X and ϵ > 0, then
there is M ′ ⊆ M infinite, such that diam(f ([M ′]n)) < ϵ

Remark
Nash-William’s ⇔ Cpct metriz spaces are barrier-seq cpct

If X is compact metrizable, f : B|M → X and ϵ > 0, then
there is M ′ ⊆ M infinite, such that diam(f ([B|M′ ])) < ϵ
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Recall that for n < m, X is m-sequentially compact implies that X
is n-sequentially compact.

CONJECTURE
If rank(B) ≤ rank(C ) and if X is C -sequentially compact, then X
is B-sequentially compact.

Alas, not true.

Proposition

If B is a barrier of rank α then for all M ∈ [ω]ω, rank(B|M) ≤ α.

and the inequality may be strict:

Example
There is a barrier of rank ω + 1 with a restriction of rank ω.

B =
⋃

n Bn where
n odd: Bn = {s ⊆ ω : min(s) = n and |s| = n + 1}
n even: Bn = {s ⊆ ω : min(s) = n and |s| = min(s \ {n})}
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Uniform Barriers

Recall for barrier B , B[n] = {s \ {n} : s ∈ B, n = min(s)}

Definition
A barrier B on M ∈ [ω]ω being of uniform rank α is defined
recursively:

(0) [ω]1 is uniform of rank 1, and
(1) If α = β + 1, then for all n ∈ M, B[n] is a uniform barrier (on
M \ (n + 1)) of rank β.
(2) If α is a limit, then there is {αn : n ∈ ω} increasing and cofinal
in α such that for all n ∈ M, B[n] is uniform of rank αn.

REMARKS:
(1) If B is a uniform barrier of rank α then for all infinite M, B|M
is also uniform of rank α.
(2) Every barrier has a restriction on which it is uniform.
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(2) If α is a limit, then there is {αn : n ∈ ω} increasing and cofinal
in α such that for all n ∈ M, B[n] is uniform of rank αn.

REMARKS:
(1) If B is a uniform barrier of rank α then for all infinite M, B|M
is also uniform of rank α.
(2) Every barrier has a restriction on which it is uniform.
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A Preorder on Barriers

Theorem
If C is a uniform barrier of rank α and B is any barrier of rank ≤ α
and if X is C -sequentially compact then X is B-sequentially
compact.

B ⊑ C means that every s ∈ B is an initial segment of some t ∈ C
(and each t ∈ C has an initial segment in B).

Theorem (Todorčević?)

If B and C are any barriers, then there is an infinite M such that
either B|M ⊑ C |M or C |M ⊑ B|M .

Moreover if rank(B) < rank(C ) and C is of uniform rank, then
necessarily B|M ⊑ C |M

Remark: If B and C are any barriers on M and s ∈ B|M there is
t ∈ C |M such that s ⊑ t or t ⊑ s
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Proposition
If X is C -sequentially compact and B ⊑ C then X is also
B-sequentially compact.

Hence, if B is of uniform rank α, and if X is B-sequentially compact
then X is C -sequentially compact for any barrier of rank < α.

However, it seems analysis of ⊑ is not enough to prove that

Difficult case
If B and C are uniform barriers and rk(B) = rk(C ) then X is
C -sequentially compact if and only if X is B-sequentially compact.

For example, consider variations of the Schreier barrier:

Bf = {s ∈ [ω]<ω : |s| = f (min(s))} (f ∈ ωω strictly increasing).

and note that if f ≤ g then Bf ⊑ Bg
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Another Preorder on Barriers

Definition
Given two barriers B and C on [ω]ω, we write B ⪯ C if there is a
finite-to-one, non-decreasing function f : ω → ω such that
for all M ∈ [ω]ω there is N ∈ [M]ω such that f ↾ N is one-to-one
and

∀c ∈ (C |N) ∃b ∈ B(b ⊑ f [c])

Note that if B ⊑ C then B ⪯ C is witnessed by the identity
function.

Theorem
If C is uniform of rank α and B is of rank β ≤ α then B ⪯ C .

Theorem
If B ⪯ C and X is C -seq compact, then X is B-seq compact.
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α-Sequential Compactness

Definition
X is α-sequentially compact if it is B-sequentially compact for some
barrier of uniform rank α. Equivalently, for all barriers of rank ≤ α.
And X is ω1-sequentially compact if it is α-sequentially compact for
all α < ω1.
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Some examples

Example

Let A be a maximal almost disjoint family, (or a completely
separable almost disjoint family on ω). Then the one-point
compactification of Ψ(A) is sequentially compact but not
2-sequentially compact.

Example (b = c)

For every α < ω1 there is a < α-sequentially compact that is not
α-sequentially compact.

Definitions
For B a barrier on ω the following are ideals on B

1 FINB = {A ⊆ B : {n : A[n] ̸∈ FINB[n]} is finite}
2 Gc(B) = {A ⊆ B such that B|M ̸⊆ A for any M}
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Definition
Given ideals I and J on some countable M, we say that I is Katětov
below J if there is f : M → M with f −1(A) ∈ J for all A ∈ I .

Theorem

If B and C are barriers on ω and rank(B) < rank(C ) then FINC is
not Katětov below G (B).

For n < m < ω this says:

Proposition

For any n < m and and f : [ω]n → [ω]m there is an infinite M such
that f ([M]n) ∈ FINm.
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Some theorems

Theorem
Sequentially compact spaces of character < b are ω1-sequentially
compact.

Definition
X is bisequential at a point x ∈ X if every ultrafilter converging to
x contains a countably generated filter also converging to x .

Theorem (Todorčević)

Compact bisequential spaces are ω1-sequentially compact.

Corollary
Rosenthal compacta are ω1-sequentially compact.
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Knaust convergence property

The natural generalization of Knaust’s notion of a Ramsey point:

Definition (Knaust-Todorčević-Corral)

Given a space X and a point x ∈ X , x is a B-Ramsey point in X if
for all f : B → X such that B \ f −1(U) ∈ FINB for every
neighborhood U of x , there is M infinite such that f ↾ (B|M)
converges to x .

We say X is B-Ramsey if every point is a B-Ramsey point.

Theorem
Sequentially compact B-Ramsey spaces are B-sequentially compact.

Theorem
Points of character < b and countably bisequential points are
B-Ramsey points.
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The Cardinal invariant par

Theorem (van Douwen)

The minimum κ such that 2κ is not sequentially compact is the
splitting number s.

Definition
For a barrier B , let parB be the minimum κ such that for all
F ∈ [2B ]<κ, there is M infinite such that for all f ∈ F there is an n
such that f is constant on B|(M\n).

Exercises
s = par1 ≤ par2 ≤ ... ≤ parB ≤ parC ...
(whenever B ⊑ C are of infinite rank)
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But in fact:

Theorem
For every barrier B of rank ≥ 2, parB = min{b, s}

And the generalization to barriers of van Douwen’s result on the
splitting number:

Theorem
parB is the minimal cardinal κ such that 2κ is not B-sequentially
compact

So if b < s we have another example of a sequentially compact not
2-sequentially compact space.
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