
Ramsey theoretic notions of convergence
Lecture 3 - Countable Compactness on Barriers

Paul Szeptycki

York University
Toronto, Canada

Paul Szeptycki Ramsey theoretic notions of convergence Lecture 3 - Countable Compactness on Barriers



Various convergence notions
For an ideal I on ω, the Fubini power BI is an ideal on B defined
recursively on the rank of B by

BI = {A ⊆ B : {n : A[n] ̸∈ I} ∈ I}

If F is a filter on ω, the filter BF on B is defined analogously.

Definition
Let p be a free ultrafilter on ω, let B be a barrier, f : B → X .
Then x ∈ X is

the FINB -limit point of f if the set {s ∈ B : f (s) /∈ U} ∈ FINB

for every neighborhood U of x .
the pB -limit of f if f −1(U) ∈ pB for any neighborhood U of x .
a B-accumulation point for f if for every neighborhood U of x
there exists M ∈ [ω]ω such that f [B|M ] ⊆ U.
A B-limit point of f if f −1(U) /∈ FINB for every neighborhood
U of x .
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Variations of countable compactness

For f : B → X and x ∈ X , we have

f converges to x =⇒ x is the FINB -limit of f

=⇒ x is the pB -limit of f

=⇒ x is a B-accumulation point for f (i.e., ∃Mf [B|M ] ⊆ U)

=⇒ x is a B-limit of f (i.e., f −1(U) /∈ FINB)

X is B-sequentially compact =⇒ X is FINB -compact

=⇒ X is B-countably compact

=⇒ X is weakly B-countably compact

=⇒ X is B-limit point compact.
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FINB-compactness

Definition

X is FINB -compact if for every f : B → X there is an infinite M
such that f ↾ (B|M) has a FINB|M -limit point.

I.e.,
{s ∈ B|M : f (s) /∈ U} ∈ FINB|M for every neighborhood U of x .

Theorem
The following are equivalent:

1 X is FINB -compact for (some) every barrier B ,
2 X is sequentially compact.
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B-limit point compactness

Definition
X is B-limit point compact if every f : B → X has a B-limit point.

I.e., f −1(U) /∈ FINB for every neighborhood U of x .

Theorem
The following are equivalent:

1 X is B-limit point compact for (some) every barrier B
2 X is countably compact.

Definitions
Given a barrier B and a space X we say

1 X is B-countably compact if every f : B → X has a Bp limit
for some p.

2 X is weakly B-countably compact if every f : B → X has a
B-accumulation point.
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Basic implications
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Two-dimensional implications
(Banakh et al) X is doubly countably compact if for every array
(xnk) has a double p-limit for some p ∈ ω∗.

Question (Banakh et al) Is the square of every doubly countably
compact space countably compact?
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Some Examples

Example
There are subspaces X ,Y ,Z ⊆ βω such that

1 X is countably compact not 2-countably compact.
2 Y is 2-countably compact not doubly countably compact
3 Z is doubly countably compact and Z × Z is not countably

compact

We have candidates for < α-countably compact not α-countably
compact, but the details even for α = 3 haven’t been checked

There is a < ω-countably compact X ⊆ βω such that X 2 is not
countably compact but we don’t know if there is a B-countably
compact example even for B = the Schreier barrier
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A 2-countably compact Z whose square is not countably
compact

Recall Novák’s construction of countably compact X and Y such
that X × Y is not countably compact:

Example
There are countably compact X ,Y ⊆ βω such that X ∩ Y = ω.
(Hence X × Y is not countably compact).

X and Y are easily constructed from the following observations:
(1) If X is countably compact and D ⊆ X is countable, then there

is a countably compact Y of size ≤ continuum with
D ⊆ Y ⊆ X .

(2) If Z ⊆ ω∗ has size < 22ℵ0 then βω \ Z is countably compact.
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Generalizing Novák’s construction

If X is B-countably compact, D ⊆ X is of size ≤ 2ℵ0 , then there is
a B-countably compact Y such that D ⊆ Y ⊆ X of size
continuum.

Theorem (Carlson, Hindman and Strauss)

If X is a Hausdorff space, n < ω and f : [ω]n → X , then there is M
infinite such that f ([M]n) is discrete.

Corollary

If X ⊆ ω∗ is of size < 22ℵ0 , then βω \X is < ω-countably compact.

Corollary
There are < ω-countably compact spaces X and Y such that
X × Y is not countably compact.
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continuum.

Theorem (Carlson, Hindman and Strauss)

If X is a Hausdorff space, n < ω and f : [ω]n → X , then there is M
infinite such that f ([M]n) is discrete.
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The Hindman-Carlson-Strauss Theorem fails for the Schreier barrier.

Proposition
Let B be the Schreier barrier. Then there exists a countable LOTS
L and a function f : B → L such that f [B|M ] is never discrete for
M infinite.

Proof: Let L = ([ω]<ω,≤) where

u ≤ v if either
1 u ⊑ v , or
2 u(∆(uv)) > v(∆(uv)), where ∆(uv) = min{k : u(k) ̸= v(k)}

I.e., ≤ is the lexicographic order taking the reverse order on ω.

Let f : B → L given by f (s) = s \min(s).
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Topological groups

Comfort’s question
If G and H are countably compact topological groups, is G × H
countably compact?

van Douwen’s question
Is there a countably compact topological group with no convergent
sequences?

(Any example contains a counterexample to Comfort’s question).

Example (Hrusak, van Mill, Ramos-Garcia, Shelah)

There is a ZFC example of a countably compact group without
convergent sequences, hence countably compact groups with
product not countably compact.
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Countably compactness in powers of topological groups

Definition (Generalizing Banakh et al)

For p ∈ ω∗ a point x ∈ X is a torrent p-limit of f : B → X is
defined inductively on the rank of B :

1 If rank(B) = 1 then x is a p-limit.
2 If rank(B) > 1 then x is a p-limit of xn where xn is a torrent

p-limit of f ↾ B[n]

X is torrent B-countably compact if
every f : B → X has a torrent-p limit for some p ∈ ω∗

Theorem (Rodrigues and Tomita)

If a topological group G is torrent n-countably compact, then Gn is
countably compact.
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Lets do the special case n = 2

Theorem
If G is a topological group that is torrent 2-countably compact,
then G 2 is countably compact.

Proof: Fix and define g : [ω]2 → G by

g({n,m}) = f1(n)
−1 · f2(m).

Let z be a double p-limit of g for some p ∈ ω∗

So for each n, there is zn = p - limm g({n,m}) and z = p - limn zn.

Thus zn = p - limm g({n,m}) = p - limm f1(n)
−1 · f2(m)

f1(n) · zn =

z = p - lim zn = p - lim f1(n)
−1 · f1(n) · zn = p - lim f1(n)

−1 · y .
So p - lim f1(n)

−1 = z · y−1 and so
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Variations of Comfort’s and van Douwen’s questions

Examples (Tomita)

The example of [Hrušák, van Mill, Ramos-Garcia and Shelah] can
be modified to produce

1 a topological group G that is B-countably compact (for every
barrier B) which has no nontrivial convergent sequences and
whose square is not countably compact (so is not 2-torrent
countably compact).

2 a topological group H that is torrent B-countably compact
(for every barrier B) with no nontrivial convergent sequences
(and so Hω is countably compact)
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