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We concluded yesterday with a weak form of the following:

Theorem
Fix a strongly compact cardinal λ and a regular uncountable κ
below it. For every regular µ ≥ λ and abelian group A in the
forcing extension of V by Coll(κ, <λ), we have H1(µ; A) = 0.

Write CTP(µ) for the assertion every coherent µ-Aronszajn tree
possesses a cofinal branch.

Corollary
It is consistent relative to the existence of a strongly compact
cardinal that, for every nonzero abelian group A,

H1(ξ; A) ̸= 0 if and only if cf(ξ) = ω1

and, in particular, that CTP(µ) holds at every regular µ > ω1.

The conclusions hold in any model of the P-ideal Dichotomy
(and, in particular, of PFA) as well. But in all of these models,
H2(ω2; A) ̸= 0 for any nonzero abelian group A.
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vanishing Hn for higher n

For a long time, it wasn’t clear how to arrange this anywhere
east of the (ωn, Hn)-diagonal.

In 2019, though, Chris and I saw how to arrange

limn A = 0 for all n > 0

for a well-studied inverse system A indexed by ωω, and in 2021,
a combinatorial principle underlying our argument was isolated
by Bannister, Moore, Todorcevic, and myself. This is the family
of partition hypotheses PHn(Λ) (n ≥ 0) for any directed
preorder Λ. Variations on PHn(Λ) tend to imply the vanishing
of limn of inverse systems indexed by Λ.
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the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to).

The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.

PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.

PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.

PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on.

Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time.

Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



the principles PHn

I wish I had time to properly define these; I don’t (they’re all of
the form “for all colorings c there exists a function F such that
c ◦ F ∗ is constant”; I’ll draw pictures if I’m pressed to). The
main points, in brief, are these:

PHn(ωn) is false for every n ≥ 0.
PH0(ω1), though, is a ZFC theorem.
PH1(ω2) holds if there exists a uniform, countably
complete, ω1-dense ideal I on ω2.
PH2(ω3) holds if there exists two uniform ideals I, J on ω3
with strong coordinated density and completeness
properties.

And so on. Those last conditions above weren’t even known to
be consistent at the time. Eskew–Hayut’s 2024 Dense ideals,
however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)
Con(ZFC + Hn(ωm; A) = 0 whenever n ̸= m and n > 0).



vanishing: summing up

For any regular κ > ℵω and n > 0 and nonzero A ∈ Ab, large
cardinals also give us Con(ZFC + Hn(κ; A) = 0), but we have no
global result. Hence the tree property problem analogue in our
setting is arguably the following, and is open:

Question
Is it consistent that

cf(κ) ̸= ωn implies Hn(κ; A) = 0

for every A ∈ Ab and n > 0?

One wonders more generally exactly which configurations of
these groups’ behaviors are possible — and what we may infer
of the ambient universe from any given one.
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people’ve been asking

Note that the choice of the coefficient group A hasn’t mattered
to a single result I’ve cited so far.

So why have we been carrying this parameter around with us for
the past three days?

This is one sort of question I’ve been getting lately.

Another: Is an algebraic framing of what’s ultimately a story of
infinitary combinatorics actually helpful — and if so, how?

These are genuinely excellent questions.
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Mitchell’s theorem

Here’s a good moment to recall Mitchell’s 1972 theorem.

Theorem
For all n ≥ 0 there exists an abelian group A such that
Hn(ωn; A) ̸= 0.

Just to be clear, the B. Mitchell I’m speaking of isn’t Bill, it’s
Barry, the category theorist. His proof is remarkably abstract;
the more modern and elementary one is to recursively build a
height-ωn nontrivial n-coherent family of (A =

⊕
ωn

Z)-valued
functions, which isn’t terribly difficult once one’s seen the trick.
(I mention all this here so that, without quite answering the
second question, I can note in passing that an algebraist got a
handle on some ZFC facts about the ωns several decades before
we set theorists did; it’s reasonable to relatedly wonder whether
we would ever have seriously considered a notion like nontrivial
2-coherence without some algebraic stimulus.)
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Does Hn(ωn;Z) ̸= 0?

In any case, both for applications and for understanding, we’d
much rather be able to build a height-ωn nontrivial n-coherent
family with codomain Z (or Z/2Z: it tends to be the case that
if |A| < ωn then one can “massage” an A-valued NTnC both
into a Z- and a Z/2Z-valued one∗). This is the prospect
encapsulated by the

Question
Is H2(ω2;Z) ̸= 0 a ZFC theorem?

which we’ll be voting on shortly.

∗When A =
⊕

ωn
Z, this kind of “massage” can give us Z for

codomain, but at the price of some expansion of domain:
Hn(ω2

n;Z) ̸= 0 is a ZFC theorem for all n ≥ 0.
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In the time that remains, let me sketch what we’ve learned in
the process of pondering that most insistent question. Within
this process, one repeatedly turns to ω1 for orientation. There,
we think of the the ZFC theorem that

H1(ω1; A) ̸= 0 for every nonzero A ∈ Ab

as reflecting not just the fact that there exist nontrivial
coherent families of height ω1, but that there exist

1 canonical ones, which are
2 indestructible by any ω1-preserving forcing, by dint of a
3 strong mechanism of nontriviality (sometimes termed, more

technically, a Hausdorff condition).
Point (1), at least as stated, is the least precise of the three, but
we tend to mean by it coherent families deriving from walks on
pairs of ordinals; higher analogues would, thus, seem to call for
higher-dimensional walks. These, remarkably, do exist, and
behave much of the way we would hope them to, but so far
haven’t resolved what we might call our “codomain issue”.
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Around 2024, we gained insight into higher analogues of items
(2) and (3) which I, at least, wasn’t at all expecting.

Theorem
If CH holds, then for any A ∈ Ab with |A| ≤ ω1 and nontrivial
2-coherent family Φ of A-valued functions, there exists an
ω2-preserving forcing which trivializes Φ.

So in at least one important sense, the ω1 story is not replicated
at ω2, not even in higher dimensions. Note, though, that the
theorem doesn’t quite resolve our question; for this, these
forcings would need to behave themselves in iterations, and it’s
far from clear that they do. It does, however, impact our hopes
for canonical NT2Cs of small codomain. On the other hand, in
what’s a textbook case of sending mixed signals, there is a sense
in which item (3) does generalize. It’s this that I want to close
with today.
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May our votes all carry the force of theorems.

Many many thanks to the organizers for the invitation

and to the audience for your attention

and for any questions which you may have.
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