

The cohomology of the ordinals

day 3

Jeffrey Bergfalk
University of Barcelona

Winter School 2026

Hejnice, Czech Republic
February 2026

We concluded yesterday with a weak form of the following:

We concluded yesterday with a weak form of the following:

Theorem

Fix a strongly compact cardinal λ and a regular uncountable κ below it. For every regular $\mu \geq \lambda$ and abelian group A in the forcing extension of V by $\text{Coll}(\kappa, < \lambda)$, we have $H^1(\mu; A) = 0$.

We concluded yesterday with a weak form of the following:

Theorem

Fix a strongly compact cardinal λ and a regular uncountable κ below it. For every regular $\mu \geq \lambda$ and abelian group A in the forcing extension of V by $\text{Coll}(\kappa, < \lambda)$, we have $H^1(\mu; A) = 0$.

Write $\text{CTP}(\mu)$ for the assertion *every coherent μ -Aronszajn tree possesses a cofinal branch.*

We concluded yesterday with a weak form of the following:

Theorem

Fix a strongly compact cardinal λ and a regular uncountable κ below it. For every regular $\mu \geq \lambda$ and abelian group A in the forcing extension of V by $\text{Coll}(\kappa, < \lambda)$, we have $H^1(\mu; A) = 0$.

Write $\text{CTP}(\mu)$ for the assertion *every coherent μ -Aronszajn tree possesses a cofinal branch.*

Corollary

It is consistent relative to the existence of a strongly compact cardinal that, for every nonzero abelian group A ,

$$H^1(\xi; A) \neq 0 \text{ if and only if } \text{cf}(\xi) = \omega_1$$

and, in particular, that $\text{CTP}(\mu)$ holds at every regular $\mu > \omega_1$.

We concluded yesterday with a weak form of the following:

Theorem

Fix a strongly compact cardinal λ and a regular uncountable κ below it. For every regular $\mu \geq \lambda$ and abelian group A in the forcing extension of V by $\text{Coll}(\kappa, < \lambda)$, we have $H^1(\mu; A) = 0$.

Write $\text{CTP}(\mu)$ for the assertion *every coherent μ -Aronszajn tree possesses a cofinal branch.*

Corollary

It is consistent relative to the existence of a strongly compact cardinal that, for every nonzero abelian group A ,

$$H^1(\xi; A) \neq 0 \text{ if and only if } \text{cf}(\xi) = \omega_1$$

and, in particular, that $\text{CTP}(\mu)$ holds at every regular $\mu > \omega_1$.

The conclusions hold in any model of the P-ideal Dichotomy (and, in particular, of PFA) as well.

We concluded yesterday with a weak form of the following:

Theorem

Fix a strongly compact cardinal λ and a regular uncountable κ below it. For every regular $\mu \geq \lambda$ and abelian group A in the forcing extension of V by $\text{Coll}(\kappa, < \lambda)$, we have $H^1(\mu; A) = 0$.

Write $\text{CTP}(\mu)$ for the assertion *every coherent μ -Aronszajn tree possesses a cofinal branch.*

Corollary

It is consistent relative to the existence of a strongly compact cardinal that, for every nonzero abelian group A ,

$$H^1(\xi; A) \neq 0 \text{ if and only if } \text{cf}(\xi) = \omega_1$$

and, in particular, that $\text{CTP}(\mu)$ holds at every regular $\mu > \omega_1$.

The conclusions hold in any model of the P-ideal Dichotomy (and, in particular, of PFA) as well. But in all of these models, $H^2(\omega_2; A) \neq 0$ for any nonzero abelian group A .

vanishing H^n for higher n

vanishing H^n for higher n

For a long time, it wasn't clear how to arrange this anywhere east of the (ω_n, H^n) -diagonal.

vanishing H^n for higher n

For a long time, it wasn't clear how to arrange this anywhere east of the (ω_n, H^n) -diagonal.

In 2019, though, Chris and I saw how to arrange

$$\lim^n \mathbf{A} = 0 \text{ for all } n > 0$$

for a well-studied inverse system \mathbf{A} indexed by ${}^\omega\omega$,

vanishing H^n for higher n

For a long time, it wasn't clear how to arrange this anywhere east of the (ω_n, H^n) -diagonal.

In 2019, though, Chris and I saw how to arrange

$$\lim^n \mathbf{A} = 0 \text{ for all } n > 0$$

for a well-studied inverse system \mathbf{A} indexed by ${}^\omega\omega$, and in 2021, a combinatorial principle underlying our argument was isolated by Bannister, Moore, Todorcevic, and myself.

vanishing H^n for higher n

For a long time, it wasn't clear how to arrange this anywhere east of the (ω_n, H^n) -diagonal.

In 2019, though, Chris and I saw how to arrange

$$\lim^n \mathbf{A} = 0 \text{ for all } n > 0$$

for a well-studied inverse system \mathbf{A} indexed by ${}^\omega\omega$, and in 2021, a combinatorial principle underlying our argument was isolated by Bannister, Moore, Todorcevic, and myself. This is the family of *partition hypotheses* $\text{PH}_n(\Lambda)$ ($n \geq 0$) for any directed preorder Λ .

vanishing H^n for higher n

For a long time, it wasn't clear how to arrange this anywhere east of the (ω_n, H^n) -diagonal.

In 2019, though, Chris and I saw how to arrange

$$\lim^n \mathbf{A} = 0 \text{ for all } n > 0$$

for a well-studied inverse system \mathbf{A} indexed by ${}^\omega\omega$, and in 2021, a combinatorial principle underlying our argument was isolated by Bannister, Moore, Todorcevic, and myself. This is the family of *partition hypotheses* $\text{PH}_n(\Lambda)$ ($n \geq 0$) for any directed preorder Λ . Variations on $\text{PH}_n(\Lambda)$ tend to imply the vanishing of \lim^n of inverse systems indexed by Λ .

the principles PH_n

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to).

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.
- $\text{PH}_0(\omega_1)$, though, is a ZFC theorem.

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.
- $\text{PH}_0(\omega_1)$, though, is a ZFC theorem.
- $\text{PH}_1(\omega_2)$ holds if there exists a uniform, countably complete, ω_1 -dense ideal \mathcal{I} on ω_2 .

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.
- $\text{PH}_0(\omega_1)$, though, is a ZFC theorem.
- $\text{PH}_1(\omega_2)$ holds if there exists a uniform, countably complete, ω_1 -dense ideal \mathcal{I} on ω_2 .
- $\text{PH}_2(\omega_3)$ holds if there exists two uniform ideals \mathcal{I}, \mathcal{J} on ω_3 with strong coordinated density and completeness properties.

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.
- $\text{PH}_0(\omega_1)$, though, is a ZFC theorem.
- $\text{PH}_1(\omega_2)$ holds if there exists a uniform, countably complete, ω_1 -dense ideal \mathcal{I} on ω_2 .
- $\text{PH}_2(\omega_3)$ holds if there exists two uniform ideals \mathcal{I}, \mathcal{J} on ω_3 with strong coordinated density and completeness properties.

And so on.

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.
- $\text{PH}_0(\omega_1)$, though, is a ZFC theorem.
- $\text{PH}_1(\omega_2)$ holds if there exists a uniform, countably complete, ω_1 -dense ideal \mathcal{I} on ω_2 .
- $\text{PH}_2(\omega_3)$ holds if there exists two uniform ideals \mathcal{I}, \mathcal{J} on ω_3 with strong coordinated density and completeness properties.

And so on. Those last conditions above weren't even known to be consistent at the time.

the principles PH_n

I wish I had time to properly define these; I don't (they're all of the form "for all colorings c there exists a function F such that $c \circ F^*$ is constant"; I'll draw pictures if I'm pressed to). The main points, in brief, are these:

- $\text{PH}_n(\omega_n)$ is false for every $n \geq 0$.
- $\text{PH}_0(\omega_1)$, though, is a ZFC theorem.
- $\text{PH}_1(\omega_2)$ holds if there exists a uniform, countably complete, ω_1 -dense ideal \mathcal{I} on ω_2 .
- $\text{PH}_2(\omega_3)$ holds if there exists two uniform ideals \mathcal{I}, \mathcal{J} on ω_3 with strong coordinated density and completeness properties.

And so on. Those last conditions above weren't even known to be consistent at the time. Eskew–Hayut's 2024 *Dense ideals*, however, supplied them and much more; in consequence:

Theorem (assuming large cardinals)

$\text{Con}(\text{ZFC} + \text{H}^n(\omega_m; \mathcal{A}) = 0 \text{ whenever } n \neq m \text{ and } n > 0)$.

vanishing: summing up

vanishing: summing up

For any regular $\kappa > \aleph_\omega$ and $n > 0$ and nonzero $A \in \mathsf{Ab}$, large cardinals also give us $\text{Con}(\text{ZFC} + \text{H}^n(\kappa; \mathcal{A}) = 0)$, but we have no global result.

vanishing: summing up

For any regular $\kappa > \aleph_\omega$ and $n > 0$ and nonzero $A \in \mathsf{Ab}$, large cardinals also give us $\text{Con}(\text{ZFC} + \text{H}^n(\kappa; \mathcal{A}) = 0)$, but we have no global result. Hence the *tree property problem* analogue in our setting is arguably the following, and is open:

Question

Is it consistent that

$$\text{cf}(\kappa) \neq \omega_n \text{ implies } \text{H}^n(\kappa; \mathcal{A}) = 0$$

for every $A \in \mathsf{Ab}$ and $n > 0$?

vanishing: summing up

For any regular $\kappa > \aleph_\omega$ and $n > 0$ and nonzero $A \in \mathsf{Ab}$, large cardinals also give us $\text{Con}(\text{ZFC} + \text{H}^n(\kappa; \mathcal{A}) = 0)$, but we have no global result. Hence the *tree property problem* analogue in our setting is arguably the following, and is open:

Question

Is it consistent that

$$\text{cf}(\kappa) \neq \omega_n \text{ implies } \text{H}^n(\kappa; \mathcal{A}) = 0$$

for every $A \in \mathsf{Ab}$ and $n > 0$?

One wonders more generally exactly which configurations of these groups' behaviors are possible

vanishing: summing up

For any regular $\kappa > \aleph_\omega$ and $n > 0$ and nonzero $A \in \mathsf{Ab}$, large cardinals also give us $\text{Con}(\text{ZFC} + \text{H}^n(\kappa; \mathcal{A}) = 0)$, but we have no global result. Hence the *tree property problem* analogue in our setting is arguably the following, and is open:

Question

Is it consistent that

$$\text{cf}(\kappa) \neq \omega_n \text{ implies } \text{H}^n(\kappa; \mathcal{A}) = 0$$

for every $A \in \mathsf{Ab}$ and $n > 0$?

One wonders more generally exactly which configurations of these groups' behaviors are possible — and what we may infer of the ambient universe from any given one.

people've been asking

people've been asking

Note that the choice of the coefficient group A hasn't mattered to a single result I've cited so far.

people've been asking

Note that the choice of the coefficient group A hasn't mattered to a single result I've cited so far.

So why have we been carrying this parameter around with us for the past three days?

people've been asking

Note that the choice of the coefficient group A hasn't mattered to a single result I've cited so far.

So why have we been carrying this parameter around with us for the past three days?

This is one sort of question I've been getting lately.

people've been asking

Note that the choice of the coefficient group A hasn't mattered to a single result I've cited so far.

So why have we been carrying this parameter around with us for the past three days?

This is one sort of question I've been getting lately.

Another: *Is an algebraic framing of what's ultimately a story of infinitary combinatorics actually helpful — and if so, how?*

people've been asking

Note that the choice of the coefficient group A hasn't mattered to a single result I've cited so far.

So why have we been carrying this parameter around with us for the past three days?

This is one sort of question I've been getting lately.

Another: *Is an algebraic framing of what's ultimately a story of infinitary combinatorics actually helpful — and if so, how?*

These are genuinely excellent questions.

Mitchell's theorem

Mitchell's theorem

Here's a good moment to recall Mitchell's 1972 theorem.

Mitchell's theorem

Here's a good moment to recall Mitchell's 1972 theorem.

Theorem

For all $n \geq 0$ there exists an abelian group A such that $H^n(\omega_n; A) \neq 0$.

Mitchell's theorem

Here's a good moment to recall Mitchell's 1972 theorem.

Theorem

For all $n \geq 0$ there exists an abelian group A such that $H^n(\omega_n; \mathcal{A}) \neq 0$.

Just to be clear, the B. Mitchell I'm speaking of isn't Bill, it's Barry, the category theorist.

Mitchell's theorem

Here's a good moment to recall Mitchell's 1972 theorem.

Theorem

For all $n \geq 0$ there exists an abelian group A such that $H^n(\omega_n; \mathcal{A}) \neq 0$.

Just to be clear, the B. Mitchell I'm speaking of isn't Bill, it's Barry, the category theorist. His proof is remarkably abstract; the more modern and elementary one is to recursively build a height- ω_n nontrivial n -coherent family of ($A = \bigoplus_{\omega_n} \mathbb{Z}$)-valued functions, which isn't terribly difficult once one's seen the trick.

Mitchell's theorem

Here's a good moment to recall Mitchell's 1972 theorem.

Theorem

For all $n \geq 0$ there exists an abelian group A such that $H^n(\omega_n; A) \neq 0$.

Just to be clear, the B. Mitchell I'm speaking of isn't Bill, it's Barry, the category theorist. His proof is remarkably abstract; the more modern and elementary one is to recursively build a height- ω_n nontrivial n -coherent family of ($A = \bigoplus_{\omega_n} \mathbb{Z}$)-valued functions, which isn't terribly difficult once one's seen the trick. (I mention all this here so that, without quite answering the second question, I can note in passing that an algebraist got a handle on some ZFC facts about the ω_n s several decades before we set theorists did; it's reasonable to relatedly wonder whether we would ever have seriously considered a notion like *nontrivial 2-coherence* without some algebraic stimulus.)

Does $H^n(\omega_n; \mathbb{Z}) \neq 0$?

Does $H^n(\omega_n; \mathbb{Z}) \neq 0$?

In any case, both for applications and for understanding, we'd much rather be able to build a height- ω_n nontrivial n -coherent family with codomain \mathbb{Z}

Does $H^n(\omega_n; \mathbb{Z}) \neq 0$?

In any case, both for applications and for understanding, we'd much rather be able to build a height- ω_n nontrivial n -coherent family with codomain \mathbb{Z} (or $\mathbb{Z}/2\mathbb{Z}$: it tends to be the case that if $|A| < \omega_n$ then one can “massage” an A -valued NTnC both into a \mathbb{Z} - and a $\mathbb{Z}/2\mathbb{Z}$ -valued one*).

Does $H^n(\omega_n; \mathbb{Z}) \neq 0$?

In any case, both for applications and for understanding, we'd much rather be able to build a height- ω_n nontrivial n -coherent family with codomain \mathbb{Z} (or $\mathbb{Z}/2\mathbb{Z}$: it tends to be the case that if $|A| < \omega_n$ then one can “massage” an A -valued NTnC both into a \mathbb{Z} - and a $\mathbb{Z}/2\mathbb{Z}$ -valued one*). This is the prospect encapsulated by the

Question

Is $H^2(\omega_2; \mathbb{Z}) \neq 0$ a ZFC theorem?

which we'll be voting on shortly.

Does $H^n(\omega_n; \mathbb{Z}) \neq 0$?

In any case, both for applications and for understanding, we'd much rather be able to build a height- ω_n nontrivial n -coherent family with codomain \mathbb{Z} (or $\mathbb{Z}/2\mathbb{Z}$: it tends to be the case that if $|A| < \omega_n$ then one can “massage” an A -valued NTnC both into a \mathbb{Z} - and a $\mathbb{Z}/2\mathbb{Z}$ -valued one*). This is the prospect encapsulated by the

Question

Is $H^2(\omega_2; \mathbb{Z}) \neq 0$ a ZFC theorem?

which we'll be voting on shortly.

*When $A = \bigoplus_{\omega_n} \mathbb{Z}$, this kind of “massage” can give us \mathbb{Z} for codomain, but at the price of some expansion of domain: $H^n(\omega_n^2; \mathbb{Z}) \neq 0$ is a ZFC theorem for all $n \geq 0$.

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question.

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question. Within this process, one repeatedly turns to ω_1 for orientation.

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question. Within this process, one repeatedly turns to ω_1 for orientation. There, we think of the the ZFC theorem that

$$H^1(\omega_1; \mathcal{A}) \neq 0 \text{ for every nonzero } A \in \text{Ab}$$

as reflecting not just the fact that there exist nontrivial coherent families of height ω_1 , but that there exist

- ① *canonical* ones

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question. Within this process, one repeatedly turns to ω_1 for orientation. There, we think of the the ZFC theorem that

$$H^1(\omega_1; \mathcal{A}) \neq 0 \text{ for every nonzero } A \in \text{Ab}$$

as reflecting not just the fact that there exist nontrivial coherent families of height ω_1 , but that there exist

- ① *canonical* ones, which are
- ② *indestructible by any ω_1 -preserving forcing*

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question. Within this process, one repeatedly turns to ω_1 for orientation. There, we think of the the ZFC theorem that

$$H^1(\omega_1; \mathcal{A}) \neq 0 \text{ for every nonzero } A \in \text{Ab}$$

as reflecting not just the fact that there exist nontrivial coherent families of height ω_1 , but that there exist

- ① *canonical* ones, which are
- ② *indestructible by any ω_1 -preserving forcing*, by dint of a
- ③ *strong mechanism of nontriviality* (sometimes termed, more technically, a *Hausdorff condition*).

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question. Within this process, one repeatedly turns to ω_1 for orientation. There, we think of the the ZFC theorem that

$$H^1(\omega_1; \mathcal{A}) \neq 0 \text{ for every nonzero } A \in \text{Ab}$$

as reflecting not just the fact that there exist nontrivial coherent families of height ω_1 , but that there exist

- ① *canonical* ones, which are
- ② *indestructible by any ω_1 -preserving forcing*, by dint of a
- ③ *strong mechanism of nontriviality* (sometimes termed, more technically, a *Hausdorff condition*).

Point (1), at least as stated, is the least precise of the three, but we tend to mean by it *coherent families deriving from walks on pairs of ordinals*; higher analogues would, thus, seem to call for higher-dimensional walks.

In the time that remains, let me sketch what we've learned in the process of pondering that most insistent question. Within this process, one repeatedly turns to ω_1 for orientation. There, we think of the the ZFC theorem that

$$H^1(\omega_1; \mathcal{A}) \neq 0 \text{ for every nonzero } A \in \text{Ab}$$

as reflecting not just the fact that there exist nontrivial coherent families of height ω_1 , but that there exist

- ① *canonical* ones, which are
- ② *indestructible by any ω_1 -preserving forcing*, by dint of a
- ③ *strong mechanism of nontriviality* (sometimes termed, more technically, a *Hausdorff condition*).

Point (1), at least as stated, is the least precise of the three, but we tend to mean by it *coherent families deriving from walks on pairs of ordinals*; higher analogues would, thus, seem to call for higher-dimensional walks. These, remarkably, do exist, and behave much of the way we would hope them to, but so far haven't resolved what we might call our "codomain issue".

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Theorem

If CH holds, then for any $A \in \mathbf{Ab}$ with $|A| \leq \omega_1$ and nontrivial 2-coherent family Φ of A -valued functions, there exists an ω_2 -preserving forcing which trivializes Φ .

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Theorem

If CH holds, then for any $A \in \mathbf{Ab}$ with $|A| \leq \omega_1$ and nontrivial 2-coherent family Φ of A -valued functions, there exists an ω_2 -preserving forcing which trivializes Φ .

So in at least one important sense, the ω_1 story is *not* replicated at ω_2 , not even in higher dimensions.

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Theorem

If CH holds, then for any $A \in \mathbf{Ab}$ with $|A| \leq \omega_1$ and nontrivial 2-coherent family Φ of A -valued functions, there exists an ω_2 -preserving forcing which trivializes Φ .

So in at least one important sense, the ω_1 story is *not* replicated at ω_2 , not even in higher dimensions. Note, though, that the theorem doesn't quite resolve our question; for this, these forcings would need to behave themselves in iterations, and it's far from clear that they do.

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Theorem

If CH holds, then for any $A \in \mathbf{Ab}$ with $|A| \leq \omega_1$ and nontrivial 2-coherent family Φ of A -valued functions, there exists an ω_2 -preserving forcing which trivializes Φ .

So in at least one important sense, the ω_1 story is *not* replicated at ω_2 , not even in higher dimensions. Note, though, that the theorem doesn't quite resolve our question; for this, these forcings would need to behave themselves in iterations, and it's far from clear that they do. It does, however, impact our hopes for *canonical NT2Cs of small codomain*.

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Theorem

If CH holds, then for any $A \in \mathbf{Ab}$ with $|A| \leq \omega_1$ and nontrivial 2-coherent family Φ of A -valued functions, there exists an ω_2 -preserving forcing which trivializes Φ .

So in at least one important sense, the ω_1 story is *not* replicated at ω_2 , not even in higher dimensions. Note, though, that the theorem doesn't quite resolve our question; for this, these forcings would need to behave themselves in iterations, and it's far from clear that they do. It does, however, impact our hopes for *canonical NT2Cs of small codomain*. On the other hand, in what's a textbook case of *sending mixed signals*, there is a sense in which item (3) *does* generalize.

Around 2024, we gained insight into higher analogues of items (2) and (3) which I, at least, wasn't at all expecting.

Theorem

If CH holds, then for any $A \in \mathbf{Ab}$ with $|A| \leq \omega_1$ and nontrivial 2-coherent family Φ of A -valued functions, there exists an ω_2 -preserving forcing which trivializes Φ .

So in at least one important sense, the ω_1 story is *not* replicated at ω_2 , not even in higher dimensions. Note, though, that the theorem doesn't quite resolve our question; for this, these forcings would need to behave themselves in iterations, and it's far from clear that they do. It does, however, impact our hopes for *canonical NT2Cs of small codomain*. On the other hand, in what's a textbook case of *sending mixed signals*, there is a sense in which item (3) *does* generalize. It's this that I want to close with today.

0-coherence

0-coherence

Frequently useful is the following convention: a function f from an ordinal ε to $\{0, 1\}$ is

- *0-coherent* if $f|_\delta$ is finitely supported for all $\delta < \varepsilon$, and
- *0-trivial* if f itself is finitely supported.

The notion is best applied flexibly; nontrivial 0-coherent functions are naturally identified with ordertype- ω ladders, for example, on ordinals $\varepsilon \in \text{Cof}(\omega)$.

0-coherence

Frequently useful is the following convention: a function f from an ordinal ε to $\{0, 1\}$ is

- *0-coherent* if $f|_\delta$ is finitely supported for all $\delta < \varepsilon$, and
- *0-trivial* if f itself is finitely supported.

The notion is best applied flexibly; nontrivial 0-coherent functions are naturally identified with ordertype- ω ladders, for example, on ordinals $\varepsilon \in \text{Cof}(\omega)$.

Similarly, a coherent family of finite-to-one functions $f_\varepsilon : \varepsilon \rightarrow \omega$ may be construed, by way of the reflections of the characteristic functions of their graphs (i.e., via the collections of pairs $(f_\varepsilon(\xi), \xi)$ ($\xi < \varepsilon$)), as a family of functions $\varphi_\varepsilon : \omega \times \varepsilon \rightarrow \mathbb{Z}/2$ exhibiting

- (0.1) *horizontal 0-coherence*, meaning that the functions $\varphi_\varepsilon|_{n \times \varepsilon}$ are finitely supported for any $n < \omega$,
- (0.2) *vertically persistent horizontal non-0-triviality*, meaning that for all $\delta < \omega_1$ there exists an $\varepsilon < \omega_1$ such that $\varphi_\varepsilon|_{\omega \times [\delta, \varepsilon)}$ is infinitely supported, and
- (0.3) *horizontally 0-trivial vertical differences*, meaning that the functions $\varphi_\varepsilon - \varphi_\delta$ are finitely supported for all $\delta < \varepsilon < \eta$.

auspices

auspices

DEFINITION 15.1. For any positive integer n and ordinals κ and η and abelian group A , an *n-auspicious family*

$$\Phi = \langle \varphi_{\vec{\alpha}}^{\varepsilon} : \alpha_0 \times \varepsilon \rightarrow A \mid (\vec{\alpha}, \varepsilon) \in [\kappa]^n \times \eta \rangle$$

is one exhibiting

(n.1) *horizontal n-coherence*, meaning that the families

$$\Phi^{\varepsilon} := \langle \varphi_{\vec{\alpha}}^{\varepsilon} : \alpha_0 \times \varepsilon \rightarrow A \mid \vec{\alpha} \in [\kappa]^n \rangle$$

are *n*-coherent for all $\varepsilon < \eta$,

(n.2) *vertically persistent horizontal non-n-triviality*, meaning that for all $\delta < \eta$ there exists an $\varepsilon < \eta$ for which

$$\Phi^{\varepsilon} \upharpoonright [\delta, \varepsilon) := \left\langle \varphi_{\vec{\alpha}}^{\varepsilon} \Big|_{\alpha_0 \times [\delta, \varepsilon)} \mid \vec{\alpha} \in [\kappa]^n \right\rangle$$

is non-*n*-trivial, and

(n.3) *horizontally n-trivial vertical differences*, meaning that the families

$$\Phi^{\varepsilon} - \Phi^{\delta} := \langle \varphi_{\vec{\alpha}}^{\varepsilon} - \varphi_{\vec{\alpha}}^{\delta} : \alpha_0 \times \delta \rightarrow \mathbb{Z} \mid \vec{\alpha} \in [\kappa]^n \rangle$$

are *n*-trivial for all $\delta < \varepsilon < \eta$.

auspices

DEFINITION 15.1. For any positive integer n and ordinals κ and η and abelian group A , an n -auspicious family

$$\Phi = \langle \varphi_{\vec{\alpha}}^{\varepsilon} : \alpha_0 \times \varepsilon \rightarrow A \mid (\vec{\alpha}, \varepsilon) \in [\kappa]^n \times \eta \rangle$$

is one exhibiting

(n.1) *horizontal n -coherence*, meaning that the families

$$\Phi^{\varepsilon} := \langle \varphi_{\vec{\alpha}}^{\varepsilon} : \alpha_0 \times \varepsilon \rightarrow A \mid \vec{\alpha} \in [\kappa]^n \rangle$$

are n -coherent for all $\varepsilon < \eta$,

(n.2) *vertically persistent horizontal non- n -triviality*, meaning that for all $\delta < \eta$ there exists an $\varepsilon < \eta$ for which

$$\Phi^{\varepsilon} \upharpoonright [\delta, \varepsilon) := \left\langle \varphi_{\vec{\alpha}}^{\varepsilon} \Big|_{\alpha_0 \times [\delta, \varepsilon)} \mid \vec{\alpha} \in [\kappa]^n \right\rangle$$

is non- n -trivial, and

(n.3) *horizontally n -trivial vertical differences*, meaning that the families

$$\Phi^{\varepsilon} - \Phi^{\delta} := \langle \varphi_{\vec{\alpha}}^{\varepsilon} - \varphi_{\vec{\alpha}}^{\delta} : \alpha_0 \times \delta \rightarrow \mathbb{Z} \mid \vec{\alpha} \in [\kappa]^n \rangle$$

are n -trivial for all $\delta < \varepsilon < \eta$.

We say that such a Φ is of *width* κ and *height* η , and if κ is a cardinal and $\eta = \kappa^+$ then we call such a family a (κ, n) -auspice, for short.

auspice facts

auspice facts

THEOREM 15.3. *For every $n > 0$ and nontrivial abelian group A there exists an A -valued (ω_n, n) -auspice Φ .*

auspice facts

THEOREM 15.3. *For every $n > 0$ and nontrivial abelian group A there exists an A -valued (ω_n, n) -auspice Φ .*

THEOREM 15.5. *For every $n > 0$ and nontrivial abelian group A , $H^q(\omega_{n+1}; A) \neq 0$ for some $0 < q \leq n+1$.*

auspice facts

THEOREM 15.3. *For every $n > 0$ and nontrivial abelian group A there exists an A -valued (ω_n, n) -auspice Φ .*

THEOREM 15.5. *For every $n > 0$ and nontrivial abelian group A , $H^q(\omega_{n+1}; \mathcal{A}) \neq 0$ for some $0 < q \leq n+1$.*

COROLLARY 15.6. *For any $n > 0$ and nontrivial abelian group A , the cohomology group $H^n(\omega_k; \mathcal{A})$ is nonzero in the Eskew-Hayut model mentioned above if and only if $k = n$; therein, in particular, $H^n(\omega_n; \mathbb{Z}) \neq 0$ for every $n \geq 0$.*

how an $(\omega_2, 2)$ -auspice works

how an $(\omega_2, 2)$ -auspice works

EXAMPLE 15.7. *An A -valued $(\kappa, 1)$ -auspice Φ is a family of families*

$$\Phi^\gamma = \langle \varphi_\alpha^\gamma : \alpha \times \gamma \rightarrow A \mid \alpha < \kappa \rangle \quad (\gamma < \kappa^+)$$

which:

- (1.1) are 1-coherent;
- (1.2) are persistently non-1-trivial: for all $\gamma < \kappa^+$ there exists a $\delta < \kappa^+$ so that $\Phi^\delta \upharpoonright [\gamma, \delta]$ is non-1-trivial;
- (1.3) differ 1-trivially, in the sense that any $(\Phi^\delta - \Phi^\gamma) \upharpoonright \kappa \times \gamma$ admits a trivialization $\psi^{\gamma\delta} : \kappa \times \gamma \rightarrow A$.

how an $(\omega_2, 2)$ -auspice works

EXAMPLE 15.7. An A -valued $(\kappa, 1)$ -auspice Φ is a family of families

$$\Phi^\gamma = \langle \varphi_\alpha^\gamma : \alpha \times \gamma \rightarrow A \mid \alpha < \kappa \rangle \quad (\gamma < \kappa^+)$$

which:

- (1.1) are 1-coherent;
- (1.2) are persistently non-1-trivial: for all $\gamma < \kappa^+$ there exists a $\delta < \kappa^+$ so that $\Phi^\delta \upharpoonright [\gamma, \delta)$ is non-1-trivial;
- (1.3) differ 1-trivially, in the sense that any $(\Phi^\delta - \Phi^\gamma) \upharpoonright \kappa \times \gamma$ admits a trivialization $\psi^{\gamma\delta} : \kappa \times \gamma \rightarrow A$.

Fix such a $(\kappa, 1)$ -auspice Φ and observe that the family

$$\Psi = \langle \psi^{\gamma\delta} : \kappa \times \gamma \rightarrow A \mid \gamma < \delta < \kappa^+ \rangle$$

of 1-trivializations of $\Phi^\delta - \Phi^\gamma$ is 2-coherent in the sense that any $\psi^{\delta\varepsilon} - \psi^{\gamma\varepsilon} + \psi^{\gamma\delta}$ is finitely supported. This follows immediately from our definitions: condition (1.2) ensures that κ is of uncountable cofinality, and for any $\alpha < \kappa$,

$$(32) \quad (\psi^{\delta\varepsilon} - \psi^{\gamma\varepsilon} + \psi^{\gamma\delta}) \upharpoonright_{\alpha \times \gamma} =^* ((\varphi_\alpha^\varepsilon - \varphi_\alpha^\delta) - (\varphi_\alpha^\varepsilon - \varphi_\alpha^\gamma) + (\varphi_\alpha^\delta - \varphi_\alpha^\gamma)) \upharpoonright_{\alpha \times \gamma} =^* 0.$$

Thus $H^2(\kappa^+; \mathcal{A}) = 0$ implies, by Lemma 6.2, that Ψ admits a 2-trivialization

$$\Theta = \langle \theta^\gamma : \kappa \times \gamma \rightarrow A \mid \gamma < \kappa^+ \rangle.$$

But then

$$\Phi - \Theta := \langle \varphi_\alpha^\gamma - \theta^\gamma : \alpha \times \gamma \rightarrow A \mid (\alpha, \gamma) \in \kappa \times \kappa^+ \rangle$$

is a bicoherent system, and this implies that $H^1(\kappa^+; \mathcal{A}) \neq 0$.

the moment of truth

the moment of truth

It's time to vote:

the moment of truth

It's time to vote:

Question

Is $H^2(\omega_2; \mathbb{Z}) \neq 0$ a ZFC theorem?

May our votes all carry the force of theorems.

May our votes all carry the force of theorems.

Many many thanks to the organizers for the invitation

and to the audience for your attention

and for any questions which you may have.