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Definition
For any ordinal κ and abelian group A, a family of functions
Φ = ⟨φα : α → A | α < κ⟩ is (1-)coherent if

φβ|α − φα = 0 (mod finite)

for all α < β < κ. Φ is trivial if there exists a ψ : κ → α such
that

ψ|α = φα (mod finite)

for all α < κ.

Recall from yesterday:

Fact
H1(κ; A) ̸= 0 iff there exists a nontrivial coherent family
(an NTC) of height κ and codomain A.
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that

ψ|α = φα (mod finite)
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Fact
H1(κ; A) ̸= 0 iff there exists a nontrivial coherent family
(an NTC) of height κ and codomain A.
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Definition
For any ordinal κ and abelian group A, a family of functions
Φ = ⟨φαβ : α → A | α < β < κ⟩ is 2-coherent if

φβγ |α − φαγ + φαβ = 0 (mod finite)

for all α < β < γ < κ. Φ is trivial if there exists a family
Ψ = ⟨ψα : α → A | α < κ⟩ such that

ψβ|α − ψα = φαβ (mod finite)

for all α < β < κ.

Again from yesterday:

Fact
H2(κ; A) ̸= 0 iff there exists a nontrivial 2-coherent family
(an NT2C) of height κ and codomain A.
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(an NT2C) of height κ and codomain A.
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n > 2

Definition
For any ordinal κ and abelian group A, a family of functions
Φ = ⟨φα⃗ : α0 → A | α⃗ ∈ [κ]n⟩ is n-coherent if

n∑
i=0

(−1)iφα⃗i = 0 (mod finite)

for all α⃗ ∈ [κ]n+1. Φ is trivial if there exists a
Ψ = ⟨ψα⃗ : α0 → A | α⃗ ∈ [κ]n−1⟩ such that

n−1∑
i=0

(−1)iψα⃗i = φα⃗ (mod finite)

for all α⃗ ∈ [κ]n.

Fact
Hn(κ; A) ̸= 0 iff there exists a nontrivial n-coherent family
(an NTnC) of height κ and codomain A.
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above the diagonal

While many of you will have encountered nontrivial coherence,
fewer will have encountered nontrivial 2-coherence, and so on,
prior to this week. Why is this?

One reason is the following variant of Goblot’s Theorem (1970):

Theorem
For all 0 ≤ m < n and abelian groups A and ordinals κ,
if cf(κ) ≤ ωm then Hn(κ; A) = 0.

Exercise
1. Prove the n = 1 instance of the theorem.

Show, in other words, that if κ is of countable cofinality then
every coherent family of height κ is trivial. More generally, the
theorem’s telling us that ωn is the least κ on which a nontrivial
n-coherent family can conceivably appear: above the (ωn,Hn)-
diagonal, it fills our chart with zeros.
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Note next that any proper initial segment of an n-coherent Φ is
trivial (exercise 2)

(thus we may read any Hn(κ; A) ̸= 0 as an
incompactness principle, asserting the existence of height-κ
objects whose small- and large-scale behaviors sharply diverge).
Conversely, an n-coherent Φ is trivial if and only if it properly
extends to a taller n-coherent family (exercise 2’).

Speaking of extensions:

Exercise
3. For any E ⊆ κ and Φ = ⟨φα⃗ : α0 → A | α⃗ ∈ [κ]n⟩, write
Φ ↾ E for ⟨φα⃗ : α0 → A | α⃗ ∈ [E]n⟩. Show that if E is cofinal in
κ then

Φ is nontrivially n-coherent if and only if Φ ↾ E is, and
that any n-coherent ⟨φα⃗ : α0 → A | α⃗ ∈ [E]n⟩ n-coherently
extends to a Φ as above.

Deduce that if Hn(κ; A) ̸= 0 and κ cofinally order-embeds into λ
then Hn(λ; A) ̸= 0 as well.
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further heuristics

We could see nontrivial n-coherence
as a question of whether local solutions can be globalized;
in terms of rigidity of dimension;
in terms of trees;
via slightly different formulations

whose quotients n-coherent/n-trivial turn out to also equal
Hn(ε; A).
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Let’s collect one more general-purpose observation in an

Exercise

4. Let n > 1. Show that if Θ and Ψ both n-trivialize an
n-coherent family Φ then Θ − Ψ is (n− 1)-coherent.

This last observation plays a role in the proof of Goblot’s
vanishing theorem above.

A main mechanism of many nonvanishing results is a closely
related trick for diagonalizing against potential trivializations
while we construct an n-coherent family. To see what I mean,
let’s apply the trick to construct a nontrivial 2-coherent family
of height ω2. For maximal clarity, we’ll do this with the aid of
♢(S2

1), which we will here read as asserting that

there exists an L = ⟨Ψα | α ∈ S2
1⟩

such that for any Ψ = ⟨ψα : α → Z | α < ω2⟩
there’s an α ∈ S2

1 such that Ψ ↾ α = Ψα.
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For simplicity, suppose that we’ve constructed

Φ ↾ ω1 = ⟨φαβ : α → Z | α < β < ω1⟩

and that L hands us a

Ψω1 = ⟨ψα : α → Z | α < ω1⟩

2-trivializing Φ ↾ ω1. Fix a nontrivial coherent family

Θ = ⟨θα : α → Z | α < ω1⟩.

Let’s define a 2-coherent Φ ↾ ω1 + 1 extension of Φ ↾ ω1 in such
a way that no extension of Ψω1 trivializes it: simply let
φαω1 = θα − ψα for each α < ω1. It’s easy to check that
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It’s exercise 5 to complete the proof of the following theorem.

Theorem
If ♢(S2

1) holds, then H2(ω2;Z) ̸= 0. If ♢(S2
1) and ♢(S3

2) hold,
then H3(ω3;Z) ̸= 0 — and so on.

Q: What new issue arises when we attempt this construction
on, say, ω3, using ♢(S3

1)?
A: We could get stuck below ω3.

Thus:
Q: Can there exist nontrivial 2-coherent families of height ω3?
A: Definitely.
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forcing nontrivial coherence

Theorem
Let A be a nonzero abelian group. Suppose either that n = 1
and κ = ω or that n > 1 and Hn−1(κ; A) ̸= 0 for some κ. Then
for any regular λ > κ there exists a λ-strategically closed forcing
notion P(n, λ,A) which adds a witness to Hn(λ; A) ̸= 0.

The conditions of P(n, λ,A) are A-valued n-coherent families of
successor height below λ, and the ordering is reverse-inclusion;
the aforementioned witness is simply

⋃
G for a P(n, λ,A)-

generic filter G. Since P(n, λ,A) is λ-strategically closed, it
adds no sequences of length less than λ of elements of V ; in
particular, it preserves all cardinals and cofinalities less than or
equal to λ. Only two points require much thought here: the
first is the strategy which secures strategic closure, and the
second is the argument that

⋃
G is nontrivial; the latter

recycles the trick we used with ♢ above.
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nontrivial coherence everywhere

If one would prefer not to force, one can still get NTnCs on
λ > ωn from ♢s provided one has ways of ensuring that one’s
construction applying them doesn’t terminate too early.

Theorem
Let A be a nonzero abelian group and let κ < λ be infinite
regular cardinals. Suppose either that

n = 1 and □(λ) holds, or that
n < 1 and Hn−1(κ; A) ̸= 0 and both ♢(S) and □(λ, S) hold
for some stationary S ⊆ Sλ

κ .
Then Hn(κ; A) = 0.

Corollary
In a model of “V = L and there exist no weakly compact
cardinals” Hn(κ; A) ̸= 0 in every instance not precluded by
Goblot’s theorem.
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The corollary further certifies nonvanishing Hn (n > 0) as a
graded family of incompactness principles.

These principles are,
moreover, allergic to large cardinals for much the same reason
that Aronszajn trees are (at least for small coefficient groups A;
they’re still alergic for larger A, but this seems to require more
sophisticated argument). A natural strategy for annulling these
principles on smaller cardinals, then, is via large cardinal
collapses, but there are interesting limitations to this approach.

Theorem
If κ is a weakly compact cardinal then H1(ω2; A) = 0 but
H2(ω2; A) ̸= 0 for every nonzero abelian group A in the forcing
extension by Coll(ω1, < κ).

See you tomorrow!



The corollary further certifies nonvanishing Hn (n > 0) as a
graded family of incompactness principles. These principles are,
moreover, allergic to large cardinals for much the same reason
that Aronszajn trees are (at least for small coefficient groups A;
they’re still alergic for larger A, but this seems to require more
sophisticated argument).

A natural strategy for annulling these
principles on smaller cardinals, then, is via large cardinal
collapses, but there are interesting limitations to this approach.

Theorem
If κ is a weakly compact cardinal then H1(ω2; A) = 0 but
H2(ω2; A) ̸= 0 for every nonzero abelian group A in the forcing
extension by Coll(ω1, < κ).

See you tomorrow!



The corollary further certifies nonvanishing Hn (n > 0) as a
graded family of incompactness principles. These principles are,
moreover, allergic to large cardinals for much the same reason
that Aronszajn trees are (at least for small coefficient groups A;
they’re still alergic for larger A, but this seems to require more
sophisticated argument). A natural strategy for annulling these
principles on smaller cardinals, then, is via large cardinal
collapses, but there are interesting limitations to this approach.

Theorem
If κ is a weakly compact cardinal then H1(ω2; A) = 0 but
H2(ω2; A) ̸= 0 for every nonzero abelian group A in the forcing
extension by Coll(ω1, < κ).

See you tomorrow!



The corollary further certifies nonvanishing Hn (n > 0) as a
graded family of incompactness principles. These principles are,
moreover, allergic to large cardinals for much the same reason
that Aronszajn trees are (at least for small coefficient groups A;
they’re still alergic for larger A, but this seems to require more
sophisticated argument). A natural strategy for annulling these
principles on smaller cardinals, then, is via large cardinal
collapses, but there are interesting limitations to this approach.

Theorem
If κ is a weakly compact cardinal then H1(ω2; A) = 0 but
H2(ω2; A) ̸= 0 for every nonzero abelian group A in the forcing
extension by Coll(ω1, < κ).

See you tomorrow!



The corollary further certifies nonvanishing Hn (n > 0) as a
graded family of incompactness principles. These principles are,
moreover, allergic to large cardinals for much the same reason
that Aronszajn trees are (at least for small coefficient groups A;
they’re still alergic for larger A, but this seems to require more
sophisticated argument). A natural strategy for annulling these
principles on smaller cardinals, then, is via large cardinal
collapses, but there are interesting limitations to this approach.

Theorem
If κ is a weakly compact cardinal then H1(ω2; A) = 0 but
H2(ω2; A) ̸= 0 for every nonzero abelian group A in the forcing
extension by Coll(ω1, < κ).

See you tomorrow!


