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n > 2

Definition

For any ordinal x and abelian group A, a family of functions
O = (pz:a9 — A|d e [k]") is n-coherent if

n
Z(—l)icpaﬁ =0 (mod finite)
i=0

for all @ € [k]"T1. ® is trivial if there exists a
U= (g:a0 = A|a € [x]"1) such that

n—1
Z(_l)iwcszi =g (mod finite)
i=0

for all & € [x|™.

Fact

H"(k; A) # 0 iff there exists a nontrivial n-coherent family
(an NTnC) of height k and codomain A.
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above the diagonal

While many of you will have encountered nontrivial coherence,
fewer will have encountered nontrivial 2-coherence, and so on,
prior to this week. Why is this?

One reason is the following variant of Goblot’s Theorem (1970):

Theorem

For all 0 < m < n and abelian groups A and ordinals k,
if cf(k) < wy, then H™(k; A) = 0.

Exercise
1. Prove the n = 1 instance of the theorem.

Show, in other words, that if x is of countable cofinality then
every coherent family of height & is trivial. More generally, the
theorem’s telling us that w,, is the least £ on which a nontrivial
n-coherent family can conceivably appear: above the (w,, H")-
diagonal, it fills our chart with zeros.
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Note next that any proper initial segment of an n-coherent & is
trivial (exercise 2) (thus we may read any H"(k;.A) # 0 as an
incompactness principle, asserting the existence of height-x
objects whose small- and large-scale behaviors sharply diverge).
Conversely, an n-coherent ® is trivial if and only if it properly
extends to a taller n-coherent family (ezercise 27).

Speaking of extensions:
Exercise
3. For any E C k and ® = (pg : ap = A | @ € [k]"), write
O | E for (pg:ap— A|d e [E]"). Show that if E is cofinal in
K then
o ® is nontrivially n-coherent if and only if ® | E is, and
e that any n-coherent (pg : ag — A | & € [E]|™) n-coherently
extends to a ® as above.

Deduce that if H"(k;.A) # 0 and k cofinally order-embeds into A
then H™(\; A) # 0 as well.

v
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further heuristics

We could see nontrivial n-coherence
@ as a question of whether local solutions can be globalized;
@ in terms of rigidity of dimension;
@ in terms of trees;

e via slightly different formulations

Definition 7.8. A function is 0-trivial if its support is finite.
For any n > 0 a family of functions {s7} : [y]* = A |y < €} is n-coherent if
S?‘h]“ -5y
is (n — 1)-trivial for all v < 6 < e.
Such a family is n-trivial if there exists a t™ : [e]™ — A such that
'l = 55

is (n — 1)-trivial for all y < e.

whose quotients n-coherent/n-trivial turn out to also equal

H"(g; A).
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Let’s collect one more general-purpose observation in an

Exercise
4. Let n > 1. Show that if © and U both n-trivialize an
n-coherent family ® then © — U is (n — 1)-coherent.

This last observation plays a role in the proof of Goblot’s
vanishing theorem above.

A main mechanism of many nonvanishing results is a closely
related trick for diagonalizing against potential trivializations
while we construct an n-coherent family. To see what I mean,
let’s apply the trick to construct a nontrivial 2-coherent family
of height we. For maximal clarity, we’ll do this with the aid of
$(S%2), which we will here read as asserting that

there exists an L = (U | a € S?)
such that for any U = (g : @ = Z | @ < wa)
there’s an o € S? such that ¥ | a = U,
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For simplicity, suppose that we’ve constructed
Plw = (pap:a—=Z|a<f<w)
and that £ hands us a
U = (hy = Z | a < wi)
2-trivializing ® | wy. Fix a nontrivial coherent family
O=Oy:a—=Z|a<w).

Let’s define a 2-coherent @ [ w; 4+ 1 extension of ® [ w; in such
a way that no extension of U*! trivializes it: simply let

Yaw, = 0o — 1Y, for each o < wy. It’s easy to check that

® | wy + 1 is 2-coherent. Next, suppose for contradiction that
Pl extends to a trivialization of ® [ wq + 1, so that there exists
a Yy, With ¥y, — ¥ =" Yaw, for all a < w;. But then

Y, =" Pow; + Vo = 0, for all o < wy : contradiction.
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It’s ezxercise 5 to complete the proof of the following theorem.

Theorem
If &(S?) holds, then H2(wo; Z) # 0. If $(S?) and $(S3) hold,
then H3(ws;Z) # 0 — and so on.

Q: What new issue arises when we attempt this construction
on, say, ws, using (S3)?
A: We could get stuck below ws.

Thus:
Q: Can there exist nontrivial 2-coherent families of height ws?
A: Definitely.
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forcing nontrivial coherence

Theorem

Let A be a nonzero abelian group. Suppose either that n =1
and k = w or that n > 1 and H" ! (k; A) # 0 for some r. Then
for any regular \ > K there exists a A-strategically closed forcing
notion P(n, A\, A) which adds a witness to H"(X; A) # 0.

The conditions of P(n, A, A) are A-valued n-coherent families of
successor height below A, and the ordering is reverse-inclusion;
the aforementioned witness is simply |JG for a P(n, A, A)-
generic filter G. Since P(n, A, A) is A-strategically closed, it
adds no sequences of length less than X\ of elements of V; in
particular, it preserves all cardinals and cofinalities less than or
equal to A. Only two points require much thought here: the
first is the strategy which secures strategic closure, and the
second is the argument that |J G is nontrivial; the latter
recycles the trick we used with < above.
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nontrivial coherence everywhere

If one would prefer not to force, one can still get NTnCs on
A > wy, from <$s provided one has ways of ensuring that one’s
construction applying them doesn’t terminate too early.

Theorem

Let A be a nonzero abelian group and let k < X\ be infinite
reqular cardinals. Suppose either that

e n =1 and O(X\) holds, or that
o n <1 and H* Y(x; A) # 0 and both {(S) and O(\, S) hold

for some stationary S C S7.

Then H"(k;.A) = 0.

Corollary

In a model of “V = L and there exist no weakly compact
cardinals” H"(k; A) # 0 in every instance not precluded by
Goblot’s theorem.
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moreover, allergic to large cardinals for much the same reason
that Aronszajn trees are (at least for small coefficient groups A;
they’re still alergic for larger A, but this seems to require more
sophisticated argument). A natural strategy for annulling these
principles on smaller cardinals, then, is via large cardinal
collapses, but there are interesting limitations to this approach.

Theorem

If Kk is a weakly compact cardinal then H'(wo; A) = 0 but
H2(wq; A) # 0 for every nonzero abelian group A in the forcing
extension by Coll(wy, < k).

See you tomorrow!



