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background

In recent years, a major area of interaction between set theory
and more general mathematics has been the infinitary
combinatorics of various (co)homology groups of degree n > 1.

Questions in this area often reduce (or conjecturally reduce) to
questions about

the cohomology groups of the ordinals

themselves.

There’s something about these latter groups that seems to call
for new ways of thinking, and it is this seeming necessity, most
broadly, which is the subject of this series of talks.
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the plan

I’ll propose cohomology as a powerfully unifying language and
tool for the study of both classical and higher-dimensional
coherence phenomena; since the latter was the subject of Chris
Lambie-Hanson’s WS2022 tutorial, veterans of that Winter
School got a bit of a head start on this material. I mention this
to say two things: first, that Chris’s slides are an excellent
resource for those looking for more on today’s theme of
cohomology and coherence, and second, that almost everything
I discuss in these talks is joint work with both Chris and Jing
Zhang. Tomorrow we’ll discuss the sensitivity of these groups’
values to the universe they’re computed in. Friday we’ll
describe a few combinatorial principles (auspices, bicoherent
systems, partition hypotheses) first uncovered in the course of
this research and resolve the

Question
Is H2(ω2;Z) ̸= 0 a ZFC theorem?

with a vote.
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ω1

When I say things like the combinatorics of κ I mean: the
behavior of classes of objects of size at most κ or of objects
naturally encoded by subsets of κ, things like this.

Example
A milestone in our understanding of the combinatorics of ω1
was Justin Moore’s proof that

the Proper Forcing Axiom implies that there exists
a five-element basis

for the class of uncountable linear orders

This is one of a family of results which couple, on the one side,
a list of critical ZFC objects of size ω1 with, on the other side, a
forcing axiom showing that this list is complete — and which
together constitute one of the major successes of the field.
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ω1

The enumeration of these critical objects of size ω1 passes, with
a striking frequency, through

a coherent Aronszajn tree, or, equivalently,
a nontrivial coherent family of functions, or, equivalently,
the first sheaf cohomology group H1(ω1;Z) of ω1.

A first goal for today is to explain these equivalences, in part
because they’re pretty — but more importantly because of how
they help us to think about what of the κ = ω1 template for
understanding the combinatorics of κ may or may not extend to
higher cardinals κ.
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[Tuesday night edit]

(Walks on the ordinals are an integral part of this story, but I’d
planned to skip it, figuring people are tired of hearing me talk
about them.

Dramatic recent events, though, have led me to question this
plan.

We’ll play it by ear: maybe now, maybe later, it may be a good
idea to at least briefly walk on some countable ordinals.

The key point for our purposes in any case is that walks are a
main source of the coherent families of functions of the previous
and following slides.)
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coherence

Definition
For any ordinal κ and abelian group A, a family of functions
Φ = ⟨φα : α → A | α < κ⟩ is coherent if

φβ|α − φα = 0 (mod finite)

for all α < β < κ. Φ is trivial if there exists a ψ : κ → α such
that

ψ|α = φα (mod finite)

for all α < κ.

Todorcevic’s walks techniques are a main way to see the
following for any nonzero abelian group A:

Fact
There exists a nontrivial coherent Φ as above, of height κ = ω1.

Such families efficiently give rise to ω1-Aronszajn trees and to
many of the other critical objects on ω1 alluded to above.
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two views

We’ll take the preceding definition as our main one, but should
note a third parameter in play along with κ and A, namely the
modulus: walks induce nontrivial coherent families modulo
continuous functions, and in several other senses as well.

By a certain ambidexterity of the Von Neumann construction of
the ordinals, we may view any such family as indexed either by

1 elements of the partial order κ, or by
2 open subsets, and in fact a cover, of the topological space κ.

In either view, these families take their place in a larger
network of groups and group-systems, to which we now turn.
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the first view

Definition
An inverse system of abelian groups on κ is a family of abelian
groups Gα (α < κ) linked by a family of transition or bonding
maps

παβ : Gβ → Gα (α ≤ β < κ)

satisfying παγ = παβ ◦ πβγ for all α ≤ β ≤ γ < κ.
We sometimes denote such systems G = (Gα, παβ, κ).

More concisely, such a G is a contravariant functor from κ to
Ab; still more concisely, it is an Ab-valued presheaf on κ. Write
Pr(κ,Ab) for the category of such systems (the morphisms
therein are natural transformations), and write ∆ for the
natural embedding Ab → Pr(κ,Ab) taking any abelian group G

to the associated constant system with Gα = G and παβ = id
for all α ≤ β < κ.
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to the associated constant system with Gα = G and παβ = id
for all α ≤ β < κ.



inverse limits

Write lim : Pr(κ,Ab) → Ab for the reverse operation, or more
precisely right adjoint functor, to ∆:

HomPr(κ,Ab)(∆(G),H) = HomAb(G, lim H)

— an operation we may understand equally well in terms of the
chalkboard picture(s) (a definition in terms of a universal
property), or the more concrete description

lim G = {(gα) ∈
∏
α∈κ

Gα | παβ(gβ) = gα for all α ≤ β < κ}.

Exercise
1. Verify the equivalence of these three definitions.
2. Construe a coherent family of functions of height κ as an
element of an inverse limit indexed by κ.
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the presheaf category

Bear with me: the following abstractions shed light on objects
that we care about, and on their relations to further (and
sometimes otherwise unsuspected) kindred objects.

Theorem
For any (small) category C, Pr(C,Ab) is an abelian category.

In particular (and this is all we really want from the theorem),
Pr(κ,Ab) is equipped for the basics of homological algebra: we
can speak therein of kernels and images — (these are defined
“pointwise”) — and thus of exact sequences, short or long.

Example
Fix an abelian group A and let Gα =

⊕
α A and Hα =

∏
α A

and (H/G)α = Hα/Gα for all α < κ. Via the natural projection
maps παβ, these assemble into inverse systems G, H, and H/G
which assemble in turn into a short exact sequence in Pr(κ,Ab):

0 → G → H → H/G → 0
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how lim got its exactness back

Applying the functor lim to the preceding sequence gives a
short sequence of abelian groups:

0 → lim G → lim H → lim H/G → 0

Is it exact?

Exercise
3. Recall from Exercise 2 that A-valued coherent families of
height κ represent elements of lim H/G. Conclude that the
above sequence is exact if and only if every such family is trivial.

We’ve seen, in particular, that if κ = ω1 and A = Z then the
above sequence is not exact (the lim functor is only left exact).
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Applying the functor lim to the preceding sequence gives a
short sequence of abelian groups:

0 → lim G → lim H → lim H/G →

Is it exact?

Exercise
3. Recall from Exercise 2 that A-valued coherent families of
height κ represent elements of lim H/G. Conclude that the
above sequence is exact if and only if every such family is trivial.

We’ve seen, in particular, that if κ = ω1 and A = Z then the
above sequence is not exact (the lim functor is only left exact).
It does, however, fit into a longer sequence which is exact, if we
replace its rightmost 0 with a

lim1 G → lim1 H → lim1 H/G → lim2 G → · · ·



how lim got its exactness back

This family of functors limn : Pr(κ,Ab) → Ab (n ≥ 0, with
lim0 = lim) in fact takes any short exact sequence to a long
exact one, just as above, and this property nearly suffices to
define them (they are the universal δ-functor with initial value
lim). Fortunately, just like for lim, they admit a more concrete
definition as well.
Definition
For any G ∈ Pr(κ,Ab), let K(G) denote the cochain complex

· · · 0 → K0(G) → K1(G) → K2(G) → · · ·

with Kn(G) =
∏

α⃗∈[κ]n Gα0 and dn : Kn(G) → Kn+1(G)
defined for n ≥ 0 by

dn(x)(α⃗) =
∑
i≤n

(−1)nx(α⃗i).

Define limn G then to equal Hn(K(G)).
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derived limits

As before, there’s a third definition which it’s a more advanced
Exercise 4 to reconcile with the previous two definitions: limn

(n ≥ 0) are the derived functors of the inverse limit functor lim.
To get a handle on our second definition, let’s compute the first
derived limit of H, above, whose terms are

∏
αA for α < κ.

Example
lim1 H equals

ker(d1 : K1(H) → K2(H))
im(d0 : K0(H) → K1(H)) ,

which equals

{x ∈ K1(H) | ∀(α, β, γ) ∈ [κ]3 x(β, γ) − x(α, γ) + x(α, β) = 0}
{x ∈ K1(H) | ∃y ∈ K0(H) ∀(α, β) ∈ [κ]2 x(α, β) = y(β) − y(α)} .

Let’s try to write this better.
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not a hard problem

What the last quotient on the previous slide may be seen as
asking is: Given a family Φ = ⟨φαβ : α → A | α < κ⟩ satisfying

φβγ − φαγ + φαβ = 0

for all α < β < γ < κ, is there a Ψ = ⟨ψα : α → A | α < κ⟩
satisfying

φαβ = ψβ − ψα

for all α < β < κ?
lim1 H = 0 if and only if the answer is always yes.

Exercise
5. Show that the answer is always yes.

One reason you’ll succeed in building such a Ψ whenever you
try to is because we’ve placed no constraints on it; requiring
that all ψα and φαβ be finitely supported, for example, makes
for a more interesting question — namely, the one
corresponding to lim1 G.
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2-coherence

Similarly, we may frame lim1 H/G as a question about families
Φ = ⟨φαβ : α → A | α < κ⟩ satisfying

φβγ − φαγ + φαβ = 0 (mod finite)

for all α < β < γ < κ. We say that such a Φ is 2-coherent.
Such a Φ is 2-trivial if there’s a Ψ = ⟨ψα : α → A | α < κ⟩ such
that

φαβ = ψβ − ψα (mod finite)
for all α < β < κ. Much as above, then:

lim1 H/G = 0 iff every 2-coherent Φ as above is 2-trivial.

Where this may or may not hold is again an interesting
question, and a main preoccupation of these talks.
Before continuing, note the obvious

Exercise
6. Similarly characterize limn H/G = 0 for n > 1.
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2-coherence

Returning to our long exact sequence

0 → lim G → lim H → lim H/G → lim1 G → lim1 H → lim1 H/G
→ lim2 G → lim2 H → lim2 H/G → lim3 G → lim3 H → · · ·

which in fact cooks down to

0 → lim G → lim H → lim H/G → lim1 G → 0 → lim1 H/G
→ lim2 G → 0 → lim2 H/G → lim3 G → 0 → · · ·

we’ve more or less sketched the proof of the following theorem.

Theorem
For any n ≥ 1, there exists a height-κ nontrivial n-coherent
family of A-valued functions if and only if limn G ̸= 0.
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reflections

Q: Is this a hard theorem?
A: Not really.

Q: What good is it?
A: It situates classical (1-)coherence within a wider family of
combinatorial phenomena parametrized by

domain: κ,
codomain: A,
dimension: n, and
modulus: (the terms/supports defining G).

Q: Are there any downsides to this framing?
A: Yes: (1) the community of mathematicians to whom higher
derived limits mean anything is small, and (2) the framework
we’ve so far introduced is a bit awkward when we wish to
interrelate coherence phenomena across various domains.
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reflections

Q: Are there remedies to these downsides? Are there other
available framings of these phenomena?
A: Same question, but whatever: yes. The ones most effectively
addressing both (1) and (2) above approach κ as a topoological
space, as in the second view noted earlier in this talk. Write U
for the cover of κ by open proper initial segments (so that
(U ,⊆) ∼= (κ,≤)). Write FA for the presheaf on (τ(κ),⊆) given
by U 7→

⊕
U A and A for the (pre)sheaf U 7→ Cont(U,A). Then:

Theorem
limn G ∼= Hn(U ; FA) ∼= Hn(U ; A) ∼= Ȟn(κ; A) ∼= Hn(κ; A) for all
A ∈ Ab, n > 0, and ordinals κ of uncountable cofinality.

The middle three terms are computed via the Čech complex,
while the righmost term’s sheaf cohomology. One value of the
latter is a rich machinery for handling maps between spaces and
the relations they induce between presheaves and their
cohomology groups.
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a last exercise

Exercise
7. For now, accept Hn(κ; A) ̸= 0 as a shorthand for “there exist
height-κ nontrivial n-coherent families of A-valued functions”
— i.e., as a notation which is both handy and harbors
substantial further resources which any of us is free to leverage
or at least read up on when the time feels right.

In the next two talks I’ll describe two main ways to think
and/or care about these groups.

1 Tomorrow we’ll see that for many n, κ, and A, the
equation Hn(κ; A) = 0 is independent of the ZFC axioms.
In this case, we may regard these groups’ values less as
invariants of a fixed topological space than as invariants of
the universe itself.

2 The fact, on the other hand, that Hn(ωn; −) : Ab → Ab is
nonzero for every n ≥ 1 encodes higher-dimensional ZFC
combinatorics on ωn generalizing some of the most
fundamental combinatorics of ω1. How do those work?
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or at least read up on when the time feels right.

In the next two talks I’ll describe two main ways to think
and/or care about these groups.

1 Tomorrow we’ll see that for many n, κ, and A, the
equation Hn(κ; A) = 0 is independent of the ZFC axioms.
In this case, we may regard these groups’ values less as
invariants of a fixed topological space than as invariants of
the universe itself.

2 The fact, on the other hand, that Hn(ωn; −) : Ab → Ab is
nonzero for every n ≥ 1 encodes higher-dimensional ZFC
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