Categorical Partite Construction Talk for the Winter School in Abstract Analysis

Maximilian Strohmeier

31.01.2025

		- · ·		
N/1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	100	-+-	h maoi	0.0
IVIAXIIIII	. a	31.10	IIII EI	eı

Categorical Partite Construction

æ

2 / 25

• Introduction to the partite construction

< A >

3. 3

- Introduction to the partite construction
- Ramsey results for a broad notion of languages

- Introduction to the partite construction
- Ramsey results for a broad notion of languages
- The talk will be in catgorical language. Please interrupt to have definitions repeated!

- Introduction to the partite construction
- Ramsey results for a broad notion of languages
- The talk will be in catgorical language. Please interrupt to have definitions repeated!
- Secret Mission: The nLab Agenda

Section 1

What are Small Ramsey Degrees?

		<u> </u>	
N/1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	100	S+r0	hmolor
IVIAXIIIII			i i e e i

→

Definition (Ramsey property).

Let K be a category.

Maximilian Strohmeier

Definition (Ramsey property). Let K be a category. (1) K has the Ramsey property if $\forall A, B \in K, r \in \omega$: $\exists C \in K$: $\forall c \in r^{K(A,C)}$. $\begin{array}{c} \exists b \in \mathcal{K}(B,C), k \in r : \\ \forall a \in \mathcal{K}(A,B) : \\ c(b \circ a) = k. \end{array} \end{array} \right\} \exists b \in \mathcal{K}(B,C) : \\ |c(b \circ -)[\mathcal{K}(A,B)]| = 1 \end{array} \left\{ \begin{array}{c} C \to (B)_{r,1}^{A} \\ \end{array} \right\}$ Definition (Ramsey property). Let K be a category. (1) K has the Ramsey property if $\forall A, B \in K, r \in \omega$: $\exists C \in K$: $\forall c \in r^{K(A,C)}$: $\begin{array}{c} \exists b \in K(B,C), k \in r : \\ \forall a \in K(A,B) : \\ c(b \circ a) = k. \end{array} \end{array} \\ \begin{array}{c} \exists b \in K(B,C) : \\ |c(b \circ -)[K(A,B)]| = 1 \end{array} \\ \begin{array}{c} C \to (B)_{r,1}^{A} \end{array}$

(2) $A \in K$ has small Ramsey degree d if d is minimal such that

$$\forall B \in K, r \in \omega : \exists C \in K : C \to (B)_{r,d}^{A}.$$

We say K has finite small Ramey degrees if all $A \in K$ have finite small Ramey degree.

Maximilian Strohmeier

Section 2

Categorical Languages

		<u> </u>	
N/1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	100	S+r0	hmolor
IVIAXIIIII			i i e e i

< 回 > < 三 > < 三 >

Let K be a category.

Let K be a category.

(1) A K-(cross-)language L is a tuple $(K, L_R, L_F, \operatorname{ar}_{L_R}, \operatorname{ar}_{L_F})$ where

Let K be a category.

(1) A K-(cross-)language L is a tuple $(K, L_R, L_F, \operatorname{ar}_{L_R}, \operatorname{ar}_{L_F})$ where

 L_R is a set of relation symbols, with arities assigned by ar_{L_R} : L_R → K and types assigned by type_L : L_R → Cat mapping to categories equipped with a canonical lattice structure (a surjective-on-objects embedding to a complete lattice),

Let K be a category.

(1) A K-(cross-)language L is a tuple $(K, L_R, L_F, \operatorname{ar}_{L_R}, \operatorname{ar}_{L_F})$ where

- L_R is a set of relation symbols, with arities assigned by ar_{L_R} : L_R → K and types assigned by type_L : L_R → Cat mapping to categories equipped with a canonical lattice structure (a surjective-on-objects embedding to a complete lattice),
- L_F is a set of (co-)function symbols, with arities assigned by $\operatorname{ar}_{L_F} : L_F \to K^2$.

Let K be a category.

(1) A K-(cross-)language L is a tuple $(K, L_R, L_F, \operatorname{ar}_{L_R}, \operatorname{ar}_{L_F})$ where

- L_R is a set of relation symbols, with arities assigned by ar_{L_R} : L_R → K and types assigned by type_L : L_R → Cat mapping to categories equipped with a canonical lattice structure (a surjective-on-objects embedding to a complete lattice),
- L_F is a set of (co-)function symbols, with arities assigned by $\operatorname{ar}_{L_F} : L_F \to K^2$.

(2) An L-cross-structure X is an object $X \in K$ along with interpretations

Let K be a category.

(1) A K-(cross-)language L is a tuple $(K, L_R, L_F, \operatorname{ar}_{L_R}, \operatorname{ar}_{L_F})$ where

- L_R is a set of relation symbols, with arities assigned by ar_{L_R} : L_R → K and types assigned by type_L : L_R → Cat mapping to categories equipped with a canonical lattice structure (a surjective-on-objects embedding to a complete lattice),
- L_F is a set of (co-)function symbols, with arities assigned by $\operatorname{ar}_{L_F} : L_F \to K^2$.

(2) An L-cross-structure X is an object $X \in K$ along with interpretations

• for each relation symbol $R \in L_R$ an evaluation

 $R^X \in \mathbf{Cat}\left(K(\operatorname{ar}_{L_R}(R), X), \operatorname{type}_L(R)\right),$

Let K be a category.

(1) A K-(cross-)language L is a tuple $(K, L_R, L_F, \operatorname{ar}_{L_R}, \operatorname{ar}_{L_F})$ where

- L_R is a set of relation symbols, with arities assigned by ar_{L_R} : L_R → K and types assigned by type_L : L_R → Cat mapping to categories equipped with a canonical lattice structure (a surjective-on-objects embedding to a complete lattice),
- L_F is a set of (co-)function symbols, with arities assigned by $\operatorname{ar}_{L_F} : L_F \to K^2$.

(2) An L-cross-structure X is an object $X \in K$ along with interpretations

• for each relation symbol $R \in L_R$ an evaluation

$$R^X \in \operatorname{Cat}\left(K(\operatorname{ar}_{L_R}(R), X), \operatorname{type}_L(R)\right),$$

• for each co-function symbol $F \in L_F$ a co-function

$$F^X \in \mathbf{Set}\left(K(X, \operatorname{ar}_{L_F}(F)(0)), K(X, \operatorname{ar}_{L_F}(F)(1))\right).$$

Let K be a category.

(3) Let $X, Y \in K$ be L-cross-structures. $f \in K(X, Y)$ is a L-homomorphism if

Let K be a category.

Let K be a category.

Let K be a category.

(4) We write L for the category of L-cross-structures and L-homomorphisms, but will treat it as a subcategory of K.

Let K be a category.

(4) We write L for the category of L-cross-structures and L-homomorphisms, but will treat it as a subcategory of K.

(5) Analogously we define L-structures, where we have functions.

Maximilian Strohmeier

• $K = \mathbf{Set}$,

Maximilian Strohmeier

Categorica	l Partite	Construction	
------------	-----------	--------------	--

イロン イ理 とくほとう ほんし

- *K* = **Set**,
- $\forall F \in L_F : (\operatorname{ar}_{L_F}(F)(0) \in \omega \wedge \operatorname{ar}_{L_F}(F)(1) = 1),$

イロト 不得 トイヨト イヨト

- *K* = **Set**,
- $\forall F \in L_F : (\operatorname{ar}_{L_F}(F)(0) \in \omega \wedge \operatorname{ar}_{L_F}(F)(1) = 1),$
- $\forall R \in L_R : \operatorname{ar}_{L_R}(R) \in \omega$,

く 伺 ト く ヨ ト く ヨ ト

- *K* = **Set**,
- $\forall F \in L_F : (\operatorname{ar}_{L_F}(F)(0) \in \omega \wedge \operatorname{ar}_{L_F}(F)(1) = 1),$
- $\forall R \in L_R : \operatorname{ar}_{L_R}(R) \in \omega$,
- $\forall R \in L_R : \text{type}_L(R) = 2$ for strong structure homomorphisms or $\forall R \in L_R : \text{type}_L(R) = [2]$ for weak ones.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- *K* = **Set**,
- $\forall F \in L_F : (\operatorname{ar}_{L_F}(F)(0) \in \omega \wedge \operatorname{ar}_{L_F}(F)(1) = 1),$
- $\forall R \in L_R : \operatorname{ar}_{L_R}(R) \in \omega$,
- $\forall R \in L_R : \text{type}_L(R) = 2$ for strong structure homomorphisms or $\forall R \in L_R : \text{type}_L(R) = [2]$ for weak ones.

Example (A more complicated language).

• $K = \mathbf{Top}$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *K* = **Set**,
- $\forall F \in L_F : (\operatorname{ar}_{L_F}(F)(0) \in \omega \wedge \operatorname{ar}_{L_F}(F)(1) = 1),$
- $\forall R \in L_R : \operatorname{ar}_{L_R}(R) \in \omega$,
- $\forall R \in L_R : \text{type}_L(R) = 2$ for strong structure homomorphisms or $\forall R \in L_R : \text{type}_L(R) = [2]$ for weak ones.

Example (A more complicated language).

- $K = \mathbf{Top}$,
- a function with arities intervalls to circles,

- *K* = **Set**,
- $\forall F \in L_F : (\operatorname{ar}_{L_F}(F)(0) \in \omega \wedge \operatorname{ar}_{L_F}(F)(1) = 1),$
- $\forall R \in L_R : \operatorname{ar}_{L_R}(R) \in \omega$,
- $\forall R \in L_R : \text{type}_L(R) = 2$ for strong structure homomorphisms or $\forall R \in L_R : \text{type}_L(R) = [2]$ for weak ones.

Example (A more complicated language).

- *K* = **Top**,
- a function with arities intervalls to circles,
- a relation for each Sⁿ with arity Sⁿ deciding and mapping to the homotopy type of contractability.

Let K be a category.

Let K be a category.

(1) Let L be a K-(cross-)language.

Let K be a category.

(1) Let L be a K-(cross-)language.

When, for each X ∈ L, K(ar_{L_R}(R), X) is a set, each relation symbol R ∈ L_R corresponds to a functor

$$\operatorname{ar}_{L_R}(R)/L \to \operatorname{type}_L(R).$$

Let K be a category.

(1) Let L be a K-(cross-)language.

When, for each X ∈ L, K(ar_{L_R}(R), X) is a set, each relation symbol R ∈ L_R corresponds to a functor

$$\operatorname{ar}_{L_R}(R)/L \to \operatorname{type}_L(R).$$

Alternatively every relation symbol R ∈ L_R corresponds to a lax cocone of K(ar_{L_R}(R), −) with object type_L(R).

Let K be a category.

(1) Let L be a K-(cross-)language.

When, for each X ∈ L, K(ar_{L_R}(R), X) is a set, each relation symbol R ∈ L_R corresponds to a functor

$$\operatorname{ar}_{L_R}(R)/L \to \operatorname{type}_L(R).$$

Alternatively every relation symbol R ∈ L_R corresponds to a lax cocone of K(ar_{L_R}(R), −) with object type_L(R).

Let K be a category.

(2) Let L be a K-cross-language.
Remark (Classification of languages I).

Let K be a category.

(2) Let L be a K-cross-language.

When, for each X ∈ L, K(ar_{L_R}(R), X) is a set, each co-function symbol F ∈ L_F corresponds to a functor

$$L/_{\mathrm{ar}_{L_F}(F)(0)} \to L/_{\mathrm{ar}_{L_F}(F)(1)}$$

that commutes with the forgetful functors to L.

Remark (Classification of languages I).

Let K be a category.

(2) Let L be a K-cross-language.

When, for each X ∈ L, K(ar_{L_R}(R), X) is a set, each co-function symbol F ∈ L_F corresponds to a functor

$$L/_{\mathrm{ar}_{L_F}(F)(0)} \to L/_{\mathrm{ar}_{L_F}(F)(1)}$$

that commutes with the forgetful functors to L.

 Alternatively every co-function symbol F ∈ L_F corresponds to a natural transformation between contravariant functors

$$\mathcal{K}(-, \operatorname{ar}_{L_F}(F)(0)), \mathcal{K}(-, \operatorname{ar}_{L_F}(F)(1)) : L \to \mathbf{Set}.$$

Remark (Classification of languages I).

Let K be a category.

(2) Let L be a K-cross-language.

When, for each X ∈ L, K(ar_{L_R}(R), X) is a set, each co-function symbol F ∈ L_F corresponds to a functor

$$L/_{\mathrm{ar}_{L_F}(F)(0)} \to L/_{\mathrm{ar}_{L_F}(F)(1)}$$

that commutes with the forgetful functors to L.

 Alternatively every co-function symbol F ∈ L_F corresponds to a natural transformation between contravariant functors

$$\mathcal{K}(-, \operatorname{ar}_{L_F}(F)(0)), \mathcal{K}(-, \operatorname{ar}_{L_F}(F)(1)) : L \to \mathbf{Set}.$$

$$\begin{array}{c}
\mathcal{K}(-,\operatorname{ar}_{L_{F}}(F)(0))\\
\mathcal{L}^{\operatorname{op}} \qquad \mathcal{F} \qquad \mathcal{F} \qquad \mathcal{Set}\\
\mathcal{K}(-,\operatorname{ar}_{L_{F}}(F)(1))
\end{array}$$

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

The 2-category K_{∞}^{R} of multi-morphisms of type R has

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

The 2-category K_{∞}^{R} of multi-morphisms of type R has

• the same objects as K,

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

The 2-category K_{∞}^{R} of multi-morphisms of type R has

- the same objects as K,
- (1-)morphisms for $X, Y \in K_{\infty}^{R}$: $K_{\infty}^{R}(X, Y) := \mathbf{Cat}(K(X, Y), \operatorname{type}_{L}(R))$

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

The 2-category K_{∞}^{R} of multi-morphisms of type R has

- the same objects as K,
- (1-)morphisms for $X, Y \in K_{\infty}^{R}$: $K_{\infty}^{R}(X, Y) := \mathbf{Cat}(K(X, Y), \operatorname{type}_{L}(R))$
- which compose for $X, Y, Z \in K_{\infty}^{R}, \varphi \in K_{\infty}^{R}(X, Y)$, $\psi \in K_{\mu}^{R}(Y, Z)$:

$$\psi \circ \varphi : \mathcal{K}(X, Z) \to \operatorname{type}_{L}(R)$$
$$h \mapsto \bigvee_{\substack{f \in \mathcal{K}(X, Y), \\ g \in \mathcal{K}(Y, Z), \\ g \circ f = h}} (\psi(g) \land \varphi(f)).$$

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

The 2-category K_{∞}^{R} of multi-morphisms of type R has

- the same objects as K,
- (1-)morphisms for $X, Y \in K_{\infty}^{R}$: $K_{\infty}^{R}(X, Y) := \mathbf{Cat}(K(X, Y), \operatorname{type}_{L}(R))$
- which compose for $X, Y, Z \in K_{\infty}^{R}, \varphi \in K_{\infty}^{R}(X, Y)$, $\psi \in K_{\mu}^{R}(Y, Z)$:

$$\psi \circ \varphi : \mathcal{K}(X, Z) \to \operatorname{type}_{L}(R)$$

 $h \mapsto \bigvee_{\substack{f \in \mathcal{K}(X, Y), \\ g \in \mathcal{K}(Y, Z), \\ g \circ f = h}} (\psi(g) \land \varphi(f)).$

• and for 2-morphisms we have natural transformations.

Let K be a category, L a K-(cross-)language and $R \in L_R$ a relation symbol.

The 2-category K_{∞}^{R} of multi-morphisms of type R has

- the same objects as K,
- (1-)morphisms for $X, Y \in K_{\infty}^{R}$: $K_{\infty}^{R}(X, Y) := \mathbf{Cat}(K(X, Y), \operatorname{type}_{L}(R))$
- which compose for $X, Y, Z \in K_{\infty}^{R}, \varphi \in K_{\infty}^{R}(X, Y)$, $\psi \in K_{\mu}^{R}(Y, Z)$:

$$\psi \circ \varphi : \mathcal{K}(X, Z) \to \operatorname{type}_{\mathcal{L}}(R)$$

 $h \mapsto \bigvee_{\substack{f \in \mathcal{K}(X, Y), \\ g \in \mathcal{K}(Y, Z), \\ g \circ f = h}} (\psi(g) \land \varphi(f)).$

• and for 2-morphisms we have natural transformations. It comes with an inclusion $K \subseteq K^R_{\mu}$, defined by mapping morphisms f to the functor mapping only f to \top and all parallel morphisms to \bot . Lemma (Classification of languages II).

Let K be a category and L a K-(cross-)language.

Maximilian Strohmeier	Categorical Partite Construction	

э

(日)

Lemma (Classification of languages II).

Let K be a category and L a K-(cross-)language. Every relation symbol $R \in L_R$ corresponds to a lax cone of $L \subseteq K \subseteq K_{\infty}^R$ with object $\operatorname{ar}_{L_R}(R)$.

Lemma (Classification of languages II).

Let K be a category and L a K-(cross-)language. Every relation symbol $R \in L_R$ corresponds to a lax cone of $L \subseteq K \subseteq K_{\infty}^R$ with object $\operatorname{ar}_{L_R}(R)$.

Proof.

$$\forall X, Y \in K, f \in K(X, Y)$$
:

$$\begin{array}{c|c} K\left(\operatorname{ar}_{L_R}(R), X\right) & \xrightarrow{R^{X}} \\ f \circ - & & \swarrow \\ F \circ - & & \swarrow \\ K\left(\operatorname{ar}_{L_R}(R), Y\right) & \xrightarrow{R^{Y}} \end{array} \operatorname{type}_L(R)$$

Categorical Partite Construction

< ロ > < 回 > < 回 > < 回 > < 回 >

$\forall X, Y \in K, f \in K(X, Y)$:

 $\sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} \sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z} \\ k \in \mathbb{Z}}} \sum_{\substack{k \in$

∃ →

・ロン ・日マン ・ ヨン・

Maximilian Strohmeier

Categorical Partite Construction

31.01.2025

10 / 25

Section 3

Language colimits

		<u>-</u> .	
N/D VIDOL	מבוו	Stro	hmeier
IVIA AIIIII	nan .	JUU	

イロト イヨト イヨト

2

Theorem (*L*-cross-structure colimits).

Let K be a category and L a K-cross-language.

Maximilian	Strohmeier	Categ
------------	------------	-------

Categorical Partite Construction

э

Theorem (*L*-cross-structure colimits).

Let K be a category and L a K-cross-language. Cocones in K of diagrams in L are (K-isomorphic to) cocones in L and being a colimit gets preserved.

Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

"Co-functions" For any co-function symbol $F \in L_F$, the associated natural transformation can be extended to the cocone Z by vertically composing it with the opposite natural transformation corresponding to Z.

Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.

"Cocone in L" First we define a cocone in L.

"Co-functions" For any co-function symbol $F \in L_F$, the associated natural transformation can be extended to the cocone Z by vertically composing it with the opposite natural transformation corresponding to Z.

Let Z be a cocone of $G : J \rightarrow L \subseteq K$ in K. "Cocone in L" First we define a cocone in L. "Co-functions"

So the result written out is $\forall X, Y \in J, f \in J(X, Y)$:

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Cocone in *L*" First we define a cocone in *L*.

"Co-functions"

So the result written out is $\forall X, Y \in J, f \in J(X, Y)$:

$$\begin{array}{c}
\mathcal{K}(G(X), \operatorname{ar}_{L_{F}}(F)(1)) \\
\xrightarrow{\quad \quad } & \left(Z \circ F^{\operatorname{op}} \right)_{X} \\
\xrightarrow{\quad \quad } & \left(Z \circ F^{\operatorname{op}} \right)_{Y} \\
\xrightarrow{\quad \quad } & \left(Z \circ F^{\operatorname{op}} \right)_{Y} \\
\mathcal{K}(G(Y), \operatorname{ar}_{L_{F}}(F)(1))
\end{array}$$

Hence for all $X \in J$ the morphisms

$$\big(Z\circ F^{\mathrm{op}}\big)_X\in \textbf{Set}\,\big(K\big(Z,\mathrm{ar}_{L_F}(F)(0)\big),K\big(G(X),\mathrm{ar}_{L_F}(F)(1)\big)\big)$$

extend the natural transformation F to the cocone Z.

Maximilian Strohmeier

- Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.
- "**Preserving being a colimit**" Now we show that the defined cocone preserves being initial in *L*.

Maximilian Strohmeier	Categorical Partite Construction	31.01.2025

3

イロト イヨト イヨト イヨト

- Let Z be a cocone of $G: J \to L \subseteq K$ in K.
- "Preserving being a colimit" Now we show that the defined cocone preserves being initial in L. The resulting cross-structure on the colimit in K is a colimit in L, since every cocone W of G in L is a cocone in K.

Let Z be a cocone of $G: J \rightarrow L \subseteq K$ in K.

"**Preserving being a colimit**" Now we show that the defined cocone preserves being initial in *L*. The resulting cross-structure on the colimit in *K* is a colimit in *L*, since every cocone *W* of *G* in *L* is a cocone in *K*. The therefore uniquely existing *K*-morphism from the colimit defines a *K*-morphism from the *L*-structure to the cone such that everything commutes.

通 ト イ ヨ ト イ ヨ ト

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Preserving being a colimit" Now we show that the defined cocone preserves being initial in *L*. The resulting cross-structure on the colimit in *K* is a colimit in *L*, since every cocone *W* of *G* in *L* is a cocone in *K*. The therefore uniquely existing *K*-morphism from the colimit defines a *K*-morphism from the *L*-structure to the cone such that everything commutes. So *W* is in particular a cocone over $J \rightarrow 1 \xrightarrow{Z} L$.

12/25

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Preserving being a colimit" Now we show that the defined cocone preserves being initial in *L*. The resulting cross-structure on the colimit in *K* is a colimit in *L*, since every cocone *W* of *G* in *L* is a cocone in *K*. The therefore uniquely existing *K*-morphism from the colimit defines a *K*-morphism from the *L*-structure to the cone such that everything commutes. So *W* is in particular a cocone over $J \rightarrow 1 \xrightarrow{Z} L$. By the first part of the proof this cocone consisting out of the existing morphism is in *L*.

Let Z be a cocone of $G: J \to L \subseteq K$ in K.

"Preserving being a colimit" Now we show that the defined cocone preserves being initial in *L*. The resulting cross-structure on the colimit in *K* is a colimit in *L*, since every cocone *W* of *G* in *L* is a cocone in *K*. The therefore uniquely existing *K*-morphism from the colimit defines a *K*-morphism from the *L*-structure to the cone such that everything commutes. So *W* is in particular a cocone over $J \rightarrow 1 \xrightarrow{Z} L$. By the first part of the proof this cocone consisting out of the existing morphism is in *L*. The hence existing *L*-morphism is unique since $L \subseteq K$ is faithful.

Section 4

Junges Theorem

		- · ·		
N/1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	100	-+-	h maoi	0.0
IVIAXIIIII	. a	31.10	IIII EI	eı

イロト イヨト イヨト

2

Let K be a category and L a K-cross-language.

(1) A block is a K-morphism with L-cross-structure domain.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms. Let Bl^m be Bl restricted to split-monomorphisms in K.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms. Let Bl^m be Bl restricted to split-monomorphisms in K.
- (4) Let Bl_f be Bl restricted to the Bl-morphisms such that the existing K-morphism between domains is f (or the identity).

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms. Let Bl^m be Bl restricted to split-monomorphisms in K.
- (4) Let Bl_f be Bl restricted to the Bl-morphisms such that the existing K-morphism between domains is f (or the identity).
 We say that domain objects are Bl_f-objects whose codomain is the domain of f and codomain objects are the ones whose codomain is the codomain of f.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms. Let Bl^m be Bl restricted to split-monomorphisms in K.
- (4) Let Bl_f be Bl restricted to the Bl-morphisms such that the existing K-morphism between domains is f (or the identity).
 We say that domain objects are Bl_f-objects whose codomain is the domain of f and codomain objects are the ones whose codomain is the codomain of f.
- (5) Let $G: D \to K$ be a functor.

Let K be a category and L a K-cross-language.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms. Let Bl^m be Bl restricted to split-monomorphisms in K.
- (4) Let Bl_f be Bl restricted to the Bl-morphisms such that the existing K-morphism between domains is f (or the identity).
 We say that domain objects are Bl_f-objects whose codomain is the domain of f and codomain objects are the ones whose codomain is the codomain of f.
- (5) Let $G: D \to K$ be a functor.

A G-block is a block in K whose codomain is G(A) for some A in D.

Let K be a category and L a K-cross-language.

- (1) A block is a K-morphism with L-cross-structure domain.
- (2) A block-homomorphism is a L-homomorphism between the domains such that there exists a K-morphism between the codomains such that the square (diagonally) commutes.
- (3) Let Bl be the category of blocks and block-homomorphisms. Let Bl^m be Bl restricted to split-monomorphisms in K.
- (4) Let Bl_f be Bl restricted to the Bl-morphisms such that the existing K-morphism between domains is f (or the identity).
 We say that domain objects are Bl_f-objects whose codomain is the domain of f and codomain objects are the ones whose codomain is the codomain of f.
- (5) Let $G: D \to K$ be a functor.

A G-block is a block in K whose codomain is G(A) for some A in D. The category Bl_G of G-blocks has the block-homomorphisms that commute with a morphism in the image of G.

Maximilian Strohmeier

Let K be a category and L a K-cross-language.

aximili	an St	ronme	ier

イロト イボト イヨト イヨト

э

Let K be a category and L a K-cross-language.

(1) A combinatorial line is a partial function, we interpret it as the set of all functions that complete it and are constant on the missing values.

Let K be a category and L a K-cross-language.

(1) A combinatorial line is a partial function, we interpret it as the set of all functions that complete it and are constant on the missing values. We call those constant completions the elements of the line and write them with the usual \in .

Let K be a category and L a K-cross-language.

(1) A combinatorial line is a partial function, we interpret it as the set of all functions that complete it and are constant on the missing values. We call those constant completions the elements of the line and write them with the usual \in .

When we have an element of a line $e \in I$ we write $im(e \setminus I)$ for the constant value e is completing I with.

Let K be a category and L a K-cross-language.

 A combinatorial line is a partial function, we interpret it as the set of all functions that complete it and are constant on the missing values. We call those constant completions the elements of the line and write them with the usual ∈.

When we have an element of a line $e \in I$ we write $im(e \setminus I)$ for the constant value e is completing I with.

(2) Let $f \in K(U, V)$ be a K-morphism, $\pi \in K(X, U)$ a split-monic domain object, $\rho \in K(Y, V)$ be a codomain object and $N \in \omega$.

15 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

Let K be a category and L a K-cross-language.

(1) A combinatorial line is a partial function, we interpret it as the set of all functions that complete it and are constant on the missing values. We call those constant completions the elements of the line and write them with the usual \in .

When we have an element of a line $e \in I$ we write $im(e \setminus I)$ for the constant value e is completing I with.

(2) Let f ∈ K(U, V) be a K-morphism, π ∈ K(X, U) a split-monic domain object, ρ ∈ K(Y, V) be a codomain object and N ∈ ω. Let J (within this definition) be the category whose objects are the lines in Bl^m_f(π, ρ)^N and whose non-identity morphisms are the element of a line relation.

< □ > < □ > < □ > < □ > < □ > < □ >

Let K be a category and L a K-cross-language.

(1) A combinatorial line is a partial function, we interpret it as the set of all functions that complete it and are constant on the missing values. We call those constant completions the elements of the line and write them with the usual \in .

When we have an element of a line $e \in I$ we write $im(e \setminus I)$ for the constant value e is completing I with.

- (2) Let f ∈ K(U, V) be a K-morphism, π ∈ K(X, U) a split-monic domain object, ρ ∈ K(Y, V) be a codomain object and N ∈ ω. Let J (within this definition) be the category whose objects are the lines in Bl^m_f(π, ρ)^N and whose non-identity morphisms are the element of a line relation.
- (3) The line diagram of J is the functor $G : J \to Bl_f$ defined by $G(e \in I) :\in im(e \setminus I) = \{\sigma \in Bl_{i_0}(\pi, \rho) \mid I(\sigma) = e\}.$

э

Let K be a category that has colimits (over diagrams where the objects are lines in Bl_f), L a K-cross-language with only strong relations and $f \in K(U, V)$ be split-monic.

Let K be a category that has colimits (over diagrams where the objects are lines in Bl_f), L a K-cross-language with only strong relations and $f \in K(U, V)$ be split-monic.

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category Bl_f^m .

く 同 ト く ヨ ト く ヨ ト

Let K be a category that has colimits (over diagrams where the objects are lines in Bl_f), L a K-cross-language with only strong relations and $f \in K(U, V)$ be split-monic.

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category Bl_f^m .

(1) Construct colimit of line diagram composed with the forgetful functor to L and extend it to be a block.

Let K be a category that has colimits (over diagrams where the objects are lines in Bl_f), L a K-cross-language with only strong relations and $f \in K(U, V)$ be split-monic. Then for each line diagram C the extension Bl_f has a colimit even C the

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category Bl_f^m .

- (1) Construct colimit of line diagram composed with the forgetful functor to L and extend it to be a block.
- (2) Show it is still a colimit in Bl_f

通 ト イ ヨ ト イ ヨ ト

Let K be a category that has colimits (over diagrams where the objects are lines in Bl_f), L a K-cross-language with only strong relations and $f \in K(U, V)$ be split-monic.

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category Bl_f^m .

- (1) Construct colimit of line diagram composed with the forgetful functor to L and extend it to be a block.
- (2) Show it is still a colimit in Bl_f
- (3) and verify it is contained in Bl_f^m .

通 ト イ ヨ ト イ ヨ ト

Set K be a category that has colimits (over diagrams where the objects for lines in Bl_f), L a K-cross-language with only strong relations and $\Psi \in K(U, V)$ be split-monic.

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category Bl_f^m .

- (1) Construct colimit of line diagram composed with the forgetful functor to *L* and extend it to be a block.
- (2) Show it is still a colimit in Bl_f
- (3) and verify it is contained in Bl_f^m .

Let K be a category that has colimits (over diagrams where the objects for a lines in B_f), **Cross-Jansuage** use with only strong relations and $\Psi \in K(U, V)$ be split-monic.

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category Bl_f^m .

- (1) Construct colimit of line diagram composed with the forgetful functor to L and extend it to be a block.
- (2) Show it is still a colimit in Bl_f
- (3) and verify it is contained in Bl_f^m .

Let K be a category that has colimits (over diagrams where the objects are lines in B_{f} , **Cross language** with only strong relations and $\Psi \in K(U, V)$ be split-monic.

Then for each line diagram G the category Bl_f has a colimit over G that is also a cocone over G restricted to the category $\mathrm{Bl}_{\mathfrak{c}}^m$.

(1) se Theorem for L-structure colimits (1) se onstruct colimit of line diagram composed with the forgetful functor to *I* and extend it to be a block.

- (2) Show it is still a colimit in Bl_f
- (3) and verify it is contained in Bl_f^m .

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram.
Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $h \in K(V, X)$ be the left-inverse of $f \circ \pi$.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $h \in K(V, X)$ be the left-inverse of $f \circ \pi$. Each morphism $x \in L(X, Z)$ of the colimit is split-monic, since $f \circ \pi = \sigma \circ x$ is.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $h \in K(V, X)$ be the left-inverse of $f \circ \pi$. Each morphism $x \in L(X, Z)$ of the colimit is split-monic, since $f \circ \pi = \sigma \circ x$ is. Similarly, every $y \in L(Y, Z)$ of the colimit is split-monic, since it is an inclusion or there is some $e \in K(X, Y)$ such that $\rho \circ e = f \circ \pi$ and thus $\sigma \circ y \circ e = \rho \circ e = f \circ \pi$.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $h \in K(V, X)$ be the left-inverse of $f \circ \pi$. Each morphism $x \in L(X, Z)$ of the colimit is split-monic, since $f \circ \pi = \sigma \circ x$ is. Similarly, every $y \in L(Y, Z)$ of the colimit is split-monic, since it is an inclusion or there is some $e \in K(X, Y)$ such that $\rho \circ e = f \circ \pi$ and thus $\sigma \circ y \circ e = \rho \circ e = f \circ \pi$. This is indeed a cocone, since $\forall e' \in Bl_f(\pi, \rho)$: $e \circ h \circ \rho \circ e' = e \circ h \circ f \circ \pi = e$.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $h \in K(V, X)$ be the left-inverse of $f \circ \pi$. Each morphism $x \in L(X, Z)$ of the colimit is split-monic, since $f \circ \pi = \sigma \circ x$ is. Similarly, every $y \in L(Y, Z)$ of the colimit is split-monic, since it is an inclusion or there is some $e \in K(X, Y)$ such that $\rho \circ e = f \circ \pi$ and thus $\sigma \circ y \circ e = \rho \circ e = f \circ \pi$. This is indeed a cocone, since $\forall e' \in Bl_f(\pi, \rho) :$ $e \circ h \circ \rho \circ e' = e \circ h \circ f \circ \pi = e$. Then for each y the morphisms $e \circ h \circ \rho$ and morphisms e form a cocone with object Y.

Let $\pi \in K(X, U)$ be a split-monic domain object and $\rho \in K(Y, V)$ a codomain object in Bl_f .

Let $Z \in K$ be the colimit of the forgetful fuctor composed with the line-diagram. Since, by the definition of blocks, V with ρ and $f \circ \pi$ is also a cocone, let $\sigma \in K(Z, V)$ be the uniquely existing morphism. Since, by the Theorem for *L*-structure colimits, Z is the colimit in L, σ is a codomain object. The forgetful functor is an equivalence between line diagrams and their composition with it. Thus σ is the colimit of the line diagram in Bl_f .

Let $h \in K(V, X)$ be the left-inverse of $f \circ \pi$. Each morphism $x \in L(X, Z)$ of the colimit is split-monic, since $f \circ \pi = \sigma \circ x$ is. Similarly, every $y \in L(Y, Z)$ of the colimit is split-monic, since it is an inclusion or there is some $e \in K(X, Y)$ such that $\rho \circ e = f \circ \pi$ and thus $\sigma \circ y \circ e = \rho \circ e = f \circ \pi$. This is indeed a cocone, since $\forall e' \in Bl_f(\pi, \rho)$: $e \circ h \circ \rho \circ e' = e \circ h \circ f \circ \pi = e$. Then for each y the morphisms $e \circ h \circ \rho$ and morphisms e form a cocone with object Y. The uniquely existing morphism from Z to Y is then the left-inverse of y.

Section 5

Ramsey Transfer

		<u>~</u> .		
	linn i	Stro	hmei	Ar
IVIAAIIIII	i ai i	JUU		C 1

イロト イヨト イヨト

æ

(1) Let $F : J \to K$ be a functor and $C \in J$.

Maximilian Strohmeier	Categorical Partite Construction	
-----------------------	----------------------------------	--

3

イロト イヨト イヨト イヨト

(1) Let $F : J \to K$ be a functor and $C \in J$. The transfer diagram over C and F is the composition of $J/C \xrightarrow{\text{forget}} J \xrightarrow{F} K$.

31.01.2025

- (1) Let $F : J \to K$ be a functor and $C \in J$. The transfer diagram over C and F is the composition of $J/C \xrightarrow{\text{forget}} J \xrightarrow{F} K$.
- (2) If F is a function $J(A, B) \rightarrow K(X, Y)$ then the transfer diagram of $A, B \in J$ over C and F is the appropriate restriction of the above definition.

18 / 25

<日

<</p>

- (1) Let $F : J \to K$ be a functor and $C \in J$. The transfer diagram over C and F is the composition of $J/C \xrightarrow{\text{forget}} J \xrightarrow{F} K$.
- (2) If F is a function J(A, B) → K(X, Y) then the transfer diagram of A, B ∈ J over C and F is the appropriate restriction of the above definition.

Theorem (Transfer Lemma; [Jun22, Lem. 2]).

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

- 4 同 ト 4 三 ト - 4 三 ト - -

- (1) Let $F : J \to K$ be a functor and $C \in J$. The transfer diagram over C and F is the composition of $J/C \xrightarrow{\text{forget}} J \xrightarrow{F} K$.
- (2) If F is a function J(A, B) → K(X, Y) then the transfer diagram of A, B ∈ J over C and F is the appropriate restriction of the above definition.

Theorem (Transfer Lemma; [Jun22, Lem. 2]).

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

$$egin{aligned} \mathcal{C} &
ightarrow (B)_{r,d}^{\mathcal{A}} & & & \ & \downarrow & & \ & \mathcal{W} &
ightarrow (\mathcal{T}(B))_{r,d}^{\mathcal{T}(\mathcal{A})} & & \ & \end{pmatrix} \end{array}$$

イロト イヨト イヨト ・

18 / 25

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

Proof.

([Jun22, Lem. 2])

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

Proof.

([Jun22, Lem. 2]) For $X \in \{A, B\}$, each morphism in J(X, C) corresponds to an object in the transfer diagram and each of those corresponds to an arrow in the cocone, which is a morphism in K(T(X), W).

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

Proof.

([Jun22, Lem. 2]) For $X \in \{A, B\}$, each morphism in J(X, C) corresponds to an object in the transfer diagram and each of those corresponds to an arrow in the cocone, which is a morphism in K(T(X), W). We define a coloring of J(A, C) by taking the color of the corresponding arrows in the cocone.

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

Proof.

([Jun22, Lem. 2]) For $X \in \{A, B\}$, each morphism in J(X, C) corresponds to an object in the transfer diagram and each of those corresponds to an arrow in the cocone, which is a morphism in K(T(X), W). We define a coloring of J(A, C) by taking the color of the corresponding arrows in the cocone. We get a *d*-chromatic $b \in J(B, C)$.

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

Proof.

([Jun22, Lem. 2]) For $X \in \{A, B\}$, each morphism in J(X, C) corresponds to an object in the transfer diagram and each of those corresponds to an arrow in the cocone, which is a morphism in K(T(X), W). We define a coloring of J(A, C) by taking the color of the corresponding arrows in the cocone. We get a *d*-chromatic $b \in J(B, C)$. Let *b'* be the arrow in the cocone corresponding to *b* and F^{-1} a right-inverse of *F*.

Let T be a transfer diagram of A, $B \in J$ over C and right-invertible F with a cocone $W \in K$.

Proof.

([Jun22, Lem. 2]) For $X \in \{A, B\}$, each morphism in J(X, C) corresponds to an object in the transfer diagram and each of those corresponds to an arrow in the cocone, which is a morphism in K(T(X), W). We define a coloring of J(A, C) by taking the color of the corresponding arrows in the cocone. We get a *d*-chromatic $b \in J(B, C)$. Let *b'* be the arrow in the cocone corresponding to *b* and F^{-1} a right-inverse of *F*. Then, for each $a' \in K(T(A), T(B))$, $b' \circ a'$ has the color of $b \circ F^{-1}(a')$.

Section 6

Hales-Jewett

		<u>-</u> .	
N/D VIDOL	מבוו	Stro	hmeier
IVIA AIIIII	nan .	JUU	

<ロト < 四ト < 三ト < 三ト

3

Let P be a set.

Maximilian Strohmeier

|--|

イロト イヨト イヨト イヨト

3

Let P be a set. The category HJ(P) has objects ω and as morphisms in HJ(P)(k, N) the k-dimensional combinatorial objects of length N.

<日

<</p>

Let P be a set. The category HJ(P) has objects ω and as morphisms in HJ(P)(k, N) the k-dimensional combinatorial objects of length N.

Theorem (Generalized Hales-Jewett).

Let P be a finite set.

通 ト イ ヨ ト イ ヨ ト

Let P be a set. The category HJ(P) has objects ω and as morphisms in HJ(P)(k, N) the k-dimensional combinatorial objects of length N.

Theorem (Generalized Hales-Jewett).

Let P be a finite set. Then $\forall a, b, r \in \omega : \exists c \in \omega : c \to (b)_r^a$ in HJ(P).

く 何 ト く ヨ ト く ヨ ト

Section 7

Partite Construction

		<u>-</u> .		
	מבוו	Stro	hmei	Ar
IVIAAIIIII	nan .	JUU		C 1

→ ∃ →

æ

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

э

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object. Since $\mathcal{K}(\operatorname{domain}(\pi), \operatorname{domain}(\rho))$ is finite, so is $Bl_f^m(\pi, \rho)$ and thus there are only finitely many $Bl_f^m(\pi, \rho)$ lines.

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\text{domain}(\pi), \text{domain}(\rho))$ is finite, so is $\text{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\text{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in Bl_{f}^{m} .

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\text{domain}(\pi), \text{domain}(\rho))$ is finite, so is $\text{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\text{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in Bl_{f}^{m} . Let $P := \text{Bl}_{f}^{m}(\pi, \rho)$, which is finite.

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\text{domain}(\pi), \text{domain}(\rho))$ is finite, so is $\text{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\text{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in Bl_{f}^{m} . Let $P := \text{Bl}_{f}^{m}(\pi, \rho)$, which is finite. By Hales-Jewett $\forall r \in \omega : \exists N \in \omega : N \to (1)_{r}^{0}$ in HJ(P).

Let K be a locally finite category with finite colimits, L a K-cross-language and $f \in K(U, V)$ be split monic. Then split-monic domain objects in Bl_f^m have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\text{domain}(\pi), \text{domain}(\rho))$ is finite, so is $\text{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\text{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in Bl_{f}^{m} . Let $P := \text{Bl}_{f}^{m}(\pi, \rho)$, which is finite. By Hales-Jewett $\forall r \in \omega : \exists N \in \omega : N \to (1)_{r}^{0}$ in HJ(P). Consider the transfer diagram of $0, 1 \in HJ(P)$ over N and the equivalence $\text{HJ}(P)(0, 1) = \text{Bl}_{f}^{m}(\pi, \rho)$.
([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\operatorname{domain}(\pi), \operatorname{domain}(\rho))$ is finite, so is $\operatorname{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\operatorname{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in $\operatorname{Bl}_{f}^{m}$. Let $P := \operatorname{Bl}_{f}^{m}(\pi, \rho)$, which is finite. By Hales-Jewett $\forall r \in \omega : \exists N \in \omega : N \to (1)_{r}^{0}$ in $\operatorname{HJ}(P)$.

Consider the transfer diagram of $0, 1 \in HJ(P)$ over N and the equivalence $HJ(P)(0,1) = Bl_f^m(\pi,\rho)$. The non-identity arrows of the transfer diagram are from a function to a proper line and indexed with the constant value that completes the function accordingly.

く 伺 ト く ヨ ト く ヨ ト

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\text{domain}(\pi), \text{domain}(\rho))$ is finite, so is $\text{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\text{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in Bl_{f}^{m} .

Let $P := \operatorname{Bl}_{f}^{m}(\pi, \rho)$, which is finite. By Hales-Jewett

 $\forall r \in \omega : \exists N \in \omega : N \to (1)^0_r \text{ in } HJ(P).$

Consider the transfer diagram of $0, 1 \in HJ(P)$ over N and the equivalence $HJ(P)(0,1) = Bl_f^m(\pi,\rho)$. The non-identity arrows of the transfer diagram are from a function to a proper line and indexed with the constant value that completes the function accordingly. Thus the transfer diagram is equivalent to the line diagram with the same objects.

([Jun22, Lem. 2]) Let $\pi \in Bl_f$ be a split-monic domain object and $\rho \in Bl_f$ be a codomain object.

Since $K(\text{domain}(\pi), \text{domain}(\rho))$ is finite, so is $\text{Bl}_{f}^{m}(\pi, \rho)$ and thus there are only finitely many $\text{Bl}_{f}^{m}(\pi, \rho)$ lines. By Junges Theorem the line diagram of π and ρ has a cocone in Bl_{f}^{m} .

Let $P := \operatorname{Bl}_{f}^{m}(\pi, \rho)$, which is finite. By Hales-Jewett

$$\forall r \in \omega : \exists N \in \omega : N \to (1)^0_r \text{ in } \mathrm{HJ}(P).$$

Consider the transfer diagram of $0, 1 \in HJ(P)$ over N and the equivalence $HJ(P)(0,1) = Bl_f^m(\pi,\rho)$. The non-identity arrows of the transfer diagram are from a function to a proper line and indexed with the constant value that completes the function accordingly. Thus the transfer diagram is equivalent to the line diagram with the same objects.

By the Transfer Lemma, $\forall r \in \omega : \exists \sigma \in \mathrm{Bl}_f^m : \sigma \to (\rho)_r^\pi$.

イロト 不得 トイヨト イヨト

Let $G : D \to K$ be a functor between locally finite categories with split-monic image. Suppose K has finite colimits and D has a bound $b \in \omega + 1$ on its small Ramsey degrees. Let L be a K-cross-language.

伺 ト イ ヨ ト イ ヨ ト

Let $G : D \to K$ be a functor between locally finite categories with split-monic image. Suppose K has finite colimits and D has a bound $b \in \omega + 1$ on its small Ramsey degrees. Let L be a K-cross-language. Then the small Ramsey degrees of split-monic objects in Bl_G^m are bounded by b.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Let $G : D \to K$ be a functor between locally finite categories with split-monic image. Suppose K has finite colimits and D has a bound $b \in \omega + 1$ on its small Ramsey degrees. Let L be a K-cross-language. Then the small Ramsey degrees of split-monic objects in Bl_G^m are bounded by b.

Proof.

Let $\pi \in K(X, G(U))$, $\rho \in K(Y, G(V))$ be *G*-blocks where π is split-monic.

Let $G : D \to K$ be a functor between locally finite categories with split-monic image. Suppose K has finite colimits and D has a bound $b \in \omega + 1$ on its small Ramsey degrees. Let L be a K-cross-language. Then the small Ramsey degrees of split-monic objects in Bl_G^m are bounded by b.

Proof.

Let $\pi \in K(X, G(U))$, $\rho \in K(Y, G(V))$ be G-blocks where π is split-monic. By the bound on the small Ramsey degrees of D,

$$orall r \in \omega : \exists W \in D, d \in b : W
ightarrow (V)_{r,d}^U$$

Let $G : D \to K$ be a functor between locally finite categories with split-monic image. Suppose K has finite colimits and D has a bound $b \in \omega + 1$ on its small Ramsey degrees. Let L be a K-cross-language. Then the small Ramsey degrees of split-monic objects in Bl_G^m are bounded by b.

Proof.

Let $\pi \in K(X, G(U))$, $\rho \in K(Y, G(V))$ be G-blocks where π is split-monic. By the bound on the small Ramsey degrees of D,

$$orall r \in \omega : \exists W \in D, d \in b : W
ightarrow (V)_{r,d}^U$$

Let $\pi \in K(X, G(U))$, $\rho \in K(Y, G(V))$ be G-blocks where π is split-monic. By the bound on the small Ramsey degrees of D,

$$\forall r \in \omega : \exists W \in D, d \in b : W \rightarrow (V)_{r,d}^U$$

"G-block ρ_0 "

By the Theorem for *L*-structure colimits the coproduct $Y_0 := \bigsqcup_{D(V,W)} Y$ is a *L*-cross-structure.

Let $\pi \in K(X, G(U))$, $\rho \in K(Y, G(V))$ be *G*-blocks where π is split-monic. By the bound on the small Ramsey degrees of *D*,

$$\forall r \in \omega : \exists W \in D, d \in b : W \to (V)_{r,d}^U$$

"G-block ρ_0 "

By the Theorem for *L*-structure colimits the coproduct $Y_0 := \bigsqcup_{D(V,W)} Y$ is a *L*-cross-structure. Note that for each $f \in D(V, W)$, incl_f is splitmonic. G(W) with *K*-morphisms $G(f) \circ \rho$ for $f \in D(V, W)$ forms a cocone, and thus there exists a unique commuting $\rho_0 \in K(Y_0, G(W))$.

Let $\pi \in K(X, G(U))$, $\rho \in K(Y, G(V))$ be *G*-blocks where π is split-monic. By the bound on the small Ramsey degrees of *D*,

$$\forall r \in \omega : \exists W \in D, d \in b : W \to (V)_{r,d}^U$$

"G-block ρ_0 "

By the Theorem for *L*-structure colimits the coproduct $Y_0 := \bigsqcup_{D(V,W)} Y$ is a *L*-cross-structure. Note that for each $f \in D(V, W)$, incl_f is splitmonic. G(W) with *K*-morphisms $G(f) \circ \rho$ for $f \in D(V, W)$ forms a cocone, and thus there exists a unique commuting $\rho_0 \in K(Y_0, G(W))$.

"G-block ρ_0 "

By the Theorem for *L*-structure colimits the coproduct $Y_0 := \bigsqcup_{D(V,W)} Y$ is a *L*-cross-structure. Note that for each $f \in D(V, W)$, incl_f is splitmonic. G(W) with *K*-morphisms $G(f) \circ \rho$ for $f \in D(V, W)$ forms a cocone, and thus there exists a unique commuting $\rho_0 \in K(Y_0, G(W))$. $\exists ! \rho_0 \in K(Y_0, G(W)) : \\ \forall f \in D(V, W) : \rho_0 \circ \operatorname{incl}_f = \\ G(f) \circ \rho.$

$$\begin{array}{ccc} Y & \stackrel{\operatorname{incl}_{f}}{\longrightarrow} & Y_{0} := \bigsqcup_{D(V,W)} Y \\ & \downarrow^{\rho} & & {}_{\bigcirc} \downarrow^{\exists !}_{\rho_{0}} \\ G(V) & \xrightarrow{G(f)} & G(W) \end{array}$$

(日)

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}.$

3

"G-block ρ_0 "

By the Theorem for *L*-structure colimits the coproduct $Y_0 := \bigsqcup_{D(V,W)} Y$ is a *L*-cross-structure. Note that for each $f \in D(V, W)$, incl_f is splitmonic. G(W) with *K*-morphisms $G(f) \circ \rho$ for $f \in D(V, W)$ forms a cocone, and thus there exists a unique commuting $\rho_0 \in K(Y_0, G(W))$.

 $\begin{array}{ll} \exists !\rho_0 & \in & K(Y_0,G(W)) \\ \forall f \in D(V,W) : \rho_0 \circ \mathrm{incl}_f = \\ G(f) \circ \rho. \end{array}$

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}$. For $k \in n$ iteratively define from ρ_0 , using the Partite Lemma for $\operatorname{Bl}^m_{G(f_k)}$,

$$\rho_{k+1} \to (\rho_k)_{r,1}^{\pi}.$$

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}$. For $k \in n$ iteratively define from ρ_0 , using the Partite Lemma for $\operatorname{Bl}^m_{G(f_k)}$,

$$\rho_{k+1} \to (\rho_k)_{r,1}^{\pi}.$$

"small Ramsey degree" Fix a *r*-coloring of $Bl_G^m(\pi, \rho_n)$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}$. For $k \in n$ iteratively define from ρ_0 , using the Partite Lemma for $\operatorname{Bl}^m_{G(f_k)}$,

$$\rho_{k+1} \to (\rho_k)_{r,1}^{\pi}.$$

"small Ramsey degree" Fix a *r*-coloring of $\operatorname{Bl}_{G}^{m}(\pi, \rho_{n})$. Define descendingly iterating for each $k \in n$, $g_{k} \in \operatorname{Bl}_{G(f_{k})}^{m}(\rho_{k}, \rho_{k+1})$ to be monochromatic for the restriction of the coloring to morphisms in $\operatorname{Bl}_{G(f_{k})}^{m}(\pi, \rho_{n})$ that factor over $\bigcap_{l \in n \setminus (k+1)} g_{l}$.

23 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}$. For $k \in n$ iteratively define from ρ_0 , using the Partite Lemma for $\operatorname{Bl}^m_{G(f_k)}$,

$$\rho_{k+1} \to (\rho_k)_{r,1}^{\pi}.$$

"small Ramsey degree" Fix a *r*-coloring of $\operatorname{Bl}_{G}^{m}(\pi, \rho_{n})$. Define descendingly iterating for each $k \in n$, $g_{k} \in \operatorname{Bl}_{G(f_{k})}^{m}(\rho_{k}, \rho_{k+1})$ to be monochromatic for the restriction of the coloring to morphisms in $\operatorname{Bl}_{G(f_{k})}^{m}(\pi, \rho_{n})$ that factor over $\bigcap_{l \in n \setminus (k+1)} g_{l}$. Define a coloring of D(U, W) where the color of $f_{k} \in D(U, W)$ is the one corresponding to g_{k} for $\operatorname{Bl}_{G(f_{k})}^{m}$.

< □ > < □ > < □ > < □ > < □ > < □ >

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}$. For $k \in n$ iteratively define from ρ_0 , using the Partite Lemma for $\operatorname{Bl}^m_{G(f_k)}$,

$$\rho_{k+1} \to (\rho_k)_{r,1}^{\pi}.$$

"small Ramsey degree" Fix a *r*-coloring of $\operatorname{Bl}_{G}^{m}(\pi, \rho_{n})$. Define descendingly iterating for each $k \in n$, $g_{k} \in \operatorname{Bl}_{G(f_{k})}^{m}(\rho_{k}, \rho_{k+1})$ to be monochromatic for the restriction of the coloring to morphisms in $\operatorname{Bl}_{G(f_{k})}^{m}(\pi, \rho_{n})$ that factor over $\bigcirc_{l \in n \setminus (k+1)} g_{l}$. Define a coloring of D(U, W) where the color of $f_{k} \in D(U, W)$ is the one corresponding to g_{k} for $\operatorname{Bl}_{G(f_{k})}^{m}$. Then since $W \to (W)^{U}$ there is a *d* chromatic $f \in D(V, W)$

Then, since $W \to (V)_{r,d}^U$, there is a *d*-chromatic $f \in D(V, W)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

"G-block ρ_n " Enumerate $D(U, W) =: \{f_k \mid k \in n\}$. For $k \in n$ iteratively define from ρ_0 , using the Partite Lemma for $\operatorname{Bl}^m_{G(f_k)}$,

$$\rho_{k+1} \to (\rho_k)_{r,1}^{\pi}.$$

"small Ramsey degree" Fix a *r*-coloring of $\operatorname{Bl}_{G}^{m}(\pi, \rho_{n})$. Define descendingly iterating for each $k \in n$, $g_{k} \in \operatorname{Bl}_{G(f_{k})}^{m}(\rho_{k}, \rho_{k+1})$ to be monochromatic for the restriction of the coloring to morphisms in $\operatorname{Bl}_{G(f_{k})}^{m}(\pi, \rho_{n})$ that factor over $\bigcirc_{l \in n \setminus (k+1)} g_{l}$. Define a coloring of D(U, W) where the color of $f_{k} \in D(U, W)$ is the one corresponding to g_{k} for $\operatorname{Bl}_{G(f_{k})}^{m}$. Then, since $W \to (V)_{r,d}^{U}$, there is a *d*-chromatic $f \in D(V, W)$. Thus, since $\operatorname{incl}_{f} \in \operatorname{Bl}_{G(f)}^{m}(G(V), G(W))$, $\bigcirc_{k \in n} g_{k} \circ \operatorname{incl}_{f}$ witnesses that $\rho_{n} \to (\rho)_{r,d}^{\pi}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank you for your attention!

Sebastian Junge.

Categorical view of the partite lemma in structural ramsey theory. *Applied Categorical Structures*, 31:1–13, 2022.

	<u> </u>	
linn	Stro	hmeier
i a i	JUU	