c_0 -products of function spaces

Krzysztof Zakrzewski

For a Tichonoff topological space X, let $C_p(X)$ denote the space of real continuous functions on X equipped with the pointwise convergence topology. Recall that a topological space X is called pseudocompact if every real continuous function on X is bounded. For a pseudocompact space X, we consider the sup norm $\| \|$ on the space $C_p(X)$. The c_0 -product of spaces $C_p(X)$ is defined as follows

$$\Big(\prod_{n\in\mathbb{N}}C_p(X)\Big)_0=\Big\{(f_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}X_n:\|f_n\|\to0\Big\},\$$

endowed with the product topology. If the space X is a single point, then the c_0 -product above becomes the well known c_0 space of real sequences converging to zero, endowed with the product topology. Gul'ko and Khmyleva proved that c_0 is homeomorphic to its own countable power [GK]. We generalize this theorem and show that, for every pseudocompact space X, the c_0 -product $\left(\prod_{n \in \mathbb{N}} C_p(X)\right)_0$ is homeomorphic to its own countable power.

References

[GK] S. P. Gul'ko and T. E. Khmyleva Compactness is not preserved by the t-equivalence relation, Mathematical Notes of the Academy of Sciences of the USSR, 39, (1986), 484-488.