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Rado graph

Definition
Rado graph is unique countable graphR such that for any two finite
disjoint A,B ⊂ R there is a vertex v ∈ R such that vEw holds for all
w ∈ A and no w ∈ B .

Equivalently
Rado graph has number of alternative descriptions

Result of tossing a coin for every pair of elements of countable
set;
Fraisse limit of all finite graphs with all graph embeddings.
And others.
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NNc-property

Rado graphs enjoys some quite rare properties:
ultrahomogeneity;
pigeonhole principle;

Definition
We say that graph G satisfies 1-NNc property, if for every v ∈ G ,
both Nv ,N

c
v are isomorphic with G .

Fact
Rado graph satisfies 1-NNc property.

Question, Bonato 2004
Let G be 1-NNc graph. Is G necessarily isomorphic with the Rado
graph?
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NNc-property

Nv = {g ∈ G : gEv}, Nc
v = {g ∈ G : g ̸= v ∧ ¬gEv}

Definition
We say that graph G satisfies k -NNc property, if for every disjoint
A,B ⊂ G with card(A ∪ B) ≤ k graph induced by⋂

v∈ANv ∩
⋂

w∈B Nc
w is isomorphic with G .

Fact
Rado graph satisfies k -NNc property.

Question, Bonato 2004
Let G be 1-NNc graph. Is G necessarily isomorphic with the Rado
graph?
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Gordinowicz’s answer

Theorem (Gordinowicz 2010)
There is 1-NNc which is not 2-NNc , therefore not isomorphic with
the Rado graph. (construction)

Theorem (Andrzejczak, Gordinowicz 2013)
Characterization of finite isomorphism of above graph which extends
to total automorphism.
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Fraisse limits (a’la Kubiś)

Given essentially countable directed category with amalgamation K
there exists a unique Fraisse sequence:

A1 An Ak

Y

· · · · · · · · ·

f g

f kn

In this presentation we may assume that An ⊂ An+1 and think of the
graph G =

⋃
n An.

Kubiś proved some results about uniqueness and homogeneity of such
sequences.
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Why Fraisse limits?

Given Fraisse sequence (Gn), G =
⋃
Gn

and A,B ⊂ G , we may define Hn := Gn ∩
⋂

v∈ANv ∩
⋂

w∈B Nc
w .

Then hope that (Hn) is again a Fraisse sequence.
Moreover, it follows from Kubiś that whenever i : V → V ′ is
isomorphism between finite subgraphs of G , and there are A, n such
that V ⊂ A,V ′ ⊂ Gn, and i may be extended to an arrow from A to
Gn, then i extend to an automorphism of G .
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Properties of NNc

Observation
Discuss 1-NNc graph G and v ,w ∈ G , vEw .

u v

It has analogoues for higher k . eg. 2-NNc implies that for every
clique v1, v2, v3 we have Nv1Nv2Nv3 ∼ G .
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Generalization

k ≥ 2, language E ,P- relational symbols, E binary, and P of arity k .
For {u0, . . . , uk−1}, {v0, . . . , vk−1} ∈ P(G )

{u0, . . . , uk−1}R{v0, . . . , vk−1} iff
k−1∧
j=0

¬uiEvj for some i ≤ k − 1.

Finite structure (G ,E ,P) is called a k-perturbed graph if
(A) E is a graph relation;
(B) P is symmetric;
(C) Different pertubed k-sets are disjoint cliques;
(D) transitive relation ≺ generated by R is a partial ordering.
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Generalization

k-perturbed (G1,E1,P1), (G2,E2,P2), f : G1 → G2 is k-embedding,
provided that
(a) uE1v =⇒ f (u)E2f (v), i.e. f is a graph embedding;
(b) P1(u0, . . . , uk−1) =⇒ P2(f (u0), . . . , f (uk−1)),

i.e. f maps perturbed k-sets in G1 onto perturbed k-sets in G2;
(c) If ū ∈ P2 \ {{f (v̄)} : v̄ ∈ P1}, then ū ⊆ G2 \ f [G1],

i.e. f preserves non-pertubed elements.
(d) Given {u0, . . . , uk−1} ∈ P(G1) and w ∈ G2 \ f [G1], we have

wE2f (ui ), for at least one i < k ,
i.e. non-neighborhoods of perturbed k-sets in G1 is preserved by
f - they cannot be enlarged;

By PG k we denote the category of k-perturbed finite graphs with
k-embeddings.
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Putting the pieces together

Check that PG k has amalgamation
Explain how to get NNc .
Family of types
G ∈ PG k , u ∈ P(G ),
initial segment of u is ⋃

v∈P(G), v≼u

⋂
v∈v

Nc
v .

H ⊂ G closure of H is the union of all initial segments of those
elements of P(G ) which intersects H .
By type we mean any graph G ∈ PG k equal to the closure of
some k-tuple
Relativize construction to any downward-closed family of
k-types T
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Check that PG k has amalgamation
Explain how to get NNc .
Family of types
G ∈ PG k , u ∈ P(G ),
initial segment of u is ⋃

v∈P(G), v≼u

⋂
v∈v

Nc
v .

H ⊂ G closure of H is the union of all initial segments of those
elements of P(G ) which intersects H .
By type we mean any graph G ∈ PG k equal to the closure of
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Non-universal NNc graphs

Evolution from the single point
G finite graph of cardinality n.
G ′ = G ∪ {ĝ} is immediate descendant of G , if ĝ /∈ G , and there
exists an injective sequence g ∈ Gn, i ∈ 2n, such that if we define:

Al =
⋂l

j=0 N
ij
gj , where N0

v stands for non-neigbourhood of v ;
k = min{j < n − 1 : gj+1 /∈ Aj} ∪ {n − 1};

then ĝEgj iff ij = 1 and j ≤ k .
Arrow: graph embedding f : G → H , if there exists G0,G1, . . .Gn

such that G0 = f [G ], Gn = H and Gi+1 is immediate descendant of Gi

Generalization with allowed family of added points.
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Extending partial automorphism

Fix G - one of graphs produced on previous slides, finite A,B ⊂ G
and graph isomorphism i : A → B i may not extend to the
automorphism of the whole G . Example!
i may be extended to the automorphism of G iff i extends to the
closure of A and B (essentially for free!)
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Summary

For every k , we got 2 · 2 · ω · c many pairwise non-isomorphic k-NNc

graphs which are not k + 1-NNc .
Moreover, full characterization of extendable finite automorphism
seems to just work.
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Open problems

Question
Is there a rigit k-NNc graph for some k?

Question
Suppose that G is k-NNc and any disjoint A,B ⊂ G with
card(A ∪ B) ≤ k + 1 set

⋂
v∈ANv ∩

⋂
w∈B Nc

w is infinite, and this
property is hereditary. Is G necessarily (k + 1)-NNc?
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Thank you for your attention! Děkuji za pozornost!
Grazie per l’attenzione! Köszönöm a figyelmet!
Dziękuję za uwagę!
Gracias por su atención!
Σαζ ευχαιστ ω γιατην πρσχ η σα!
Gratias pro vobis animus attentus!
Danke für IhreAufmerksamkeit!
Bedankt voor uw aandacht! Kiitos huomiostasi!
ご清ありがとうございました！
Ďakujem za vašu pozornost́!
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