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Rado graph

Rado graph is unique countable graph R such that for any two finite
disjoint A, B C R there is a vertex v € R such that vEw holds for all
w € Aandno w € B.
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Rado graph

Rado graph is unique countable graph R such that for any two finite
disjoint A, B C R there is a vertex v € R such that vEw holds for all
w € Aandno w € B.

\,

Rado graph has number of alternative descriptions

@ Result of tossing a coin for every pair of elements of countable
set;
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Rado graph is unique countable graph R such that for any two finite
disjoint A, B C R there is a vertex v € R such that vEw holds for all
w € Aandno w € B.

\,

Rado graph has number of alternative descriptions

@ Result of tossing a coin for every pair of elements of countable
set;

@ Fraisse limit of all finite graphs with all graph embeddings.
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Rado graph

Rado graph is unique countable graph R such that for any two finite
disjoint A, B C R there is a vertex v € R such that vEw holds for all
w € Aandno w € B.

\,

Rado graph has number of alternative descriptions

@ Result of tossing a coin for every pair of elements of countable
set;

@ Fraisse limit of all finite graphs with all graph embeddings.

@ And others.

A\
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NN¢-property

Rado graphs enjoys some quite rare properties:
o ultrahomogeneity;

@ pigeonhole principle;
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NN¢-property

Rado graphs enjoys some quite rare properties:
o ultrahomogeneity;

@ pigeonhole principle;

We say that graph G satisfies 1-NNN© property, if for every v € G,
both N,, NS are isomorphic with G.

.
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NN¢-property

N, ={geG:gEv}, NS ={ge G:g#vA-gEv}

We say that graph G satisfies 1-N/N° property, if for every v € G,
both N,, NS are isomorphic with G.

Rado graph satisfies 1-NN¢ property.
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NN¢-property

N, ={geG:gEv}, NS ={ge G:g#vA-gEv}

We say that graph G satisfies 1-N/N° property, if for every v € G,
both N,, NS are isomorphic with G.

Rado graph satisfies 1-NN¢ property.

Question, Bonato 2004

Let G be 1-NN€ graph. Is G necessarily isomorphic with the Rado
graph?
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NN¢-property

N, ={geG:gEv}, NS ={ge G:g#vA-gEv}

We say that graph G satisfies 1 -NN€ property, if for every v € G,
both N,, N¢ are isomorphic with G.

Rado graph satisfies 1 -NN¢ property.

Question, Bonato 2004

Let G be 1-NN€ graph. Is G necessarily isomorphic with the Rado
graph?
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NN¢-property

N,={geG:gEv}, NS ={ge G:g#vA—-gEv}

We say that graph G satisfies k -INN€ property, if for every disjoint
A, B C G with card(AU B) < k graph induced by
MNvea Nv Ny ep Ny is isomorphic with G.

Rado graph satisfies k -NN° property.

Question, Bonato 2004

Let G be 1-NN€ graph. Is G necessarily isomorphic with the Rado
graph?
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Gordinowicz’s answer

Theorem (Gordinowicz 2010)
There is 1-NN€ which is not 2- NN€, therefore not isomorphic with
the Rado graph. (construction)

A

A
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Gordinowicz’s answer

Theorem (Gordinowicz 2010)

There is 1-NN€ which is not 2- NN€, therefore not isomorphic with
the Rado graph. (construction)

Theorem (Andrzejczak, Gordinowicz 2013)

Characterization of finite isomorphism of above graph which extends
to total automorphism.
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Fraisse limits (a’la Kubis$)

Given essentially countable directed category with amalgamation /C
there exists a unique Fraisse sequence:

Y
f AN
AT A A
f
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Fraisse limits (a’la Kubis$)

Given essentially countable directed category with amalgamation /C
there exists a unique Fraisse sequence:

Y
f AN
AT A A
fk

In this presentation we may assume that A, C A1 and think of the
graph G = |, An.

Kubi§ proved some results about uniqueness and homogeneity of such
sequences.
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Fraisse limits (a’la Kubis$)

Given essentially countable directed category with amalgamation /C
there exists a unique Fraisse sequence:

Y
f AN
AT A A
fk

In this presentation we may assume that A, C A1 and think of the
graph G = |, An.

Kubi§ proved some results about uniqueness and homogeneity of such
sequences.
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Why Fraisse limits?

Given Fraisse sequence
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Why Fraisse limits?

Given Fraisse sequence (G,), G = J G,

and A, B C G,
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Why Fraisse limits?

Given Fraisse sequence (G,), G = J G,

EeE X

and A, B C G, we may define H, := G, N[ ),ca Nv N[ yep Ny -
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Why Fraisse limits?

Given Fraisse sequence (G,), G = J G,

and A, B C G, we may define H, := G, N[),ca Nv N
Then hope that (H,) is again a Fraisse sequence.

WEB
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Why Fraisse limits?

Given Fraisse sequence (G,), G = J G,

and A, B C G, we may define H, := G, N[),ca Nv N
Then hope that (H,) is again a Fraisse sequence.
Moreover, it follows from Kubis that whenever /: V — V' is
isomorphism between finite subgraphs of G, and there are A, n such
that

WEB
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Why Fraisse limits?

Given Fraisse sequence (G,), G = J G,

and A, B C G, we may define H, := G, N[),ca Nv N
Then hope that (H,) is again a Fraisse sequence.
Moreover, it follows from Kubi$ that whenever i: V — V' is
isomorphism between finite subgraphs of G, and there are A, n such
that V C A, V' C G, and i may be extended to an arrow from A to
Gp, then j extend to an automorphism of G.

WEB
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Properties of NN°¢

Observation

Discuss 1-NN€ graph G and v, w € G, vEw.

u "4
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Discuss 1-NN€ graph G and v, w € G, vEw.

Ny N,
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Discuss 1-NN€ graph G and v, w € G, vEw.

NyN,
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Observation

Discuss 1-NN€ graph G and v, w € G, vEw.

NyN,
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Discuss 1-NN€ graph G and v, w € G, vEw.
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Properties of NN°¢

Observation

Discuss 1-NN€ graph G and v, w € G, vEw.

N, N¢

u 4
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Properties of NN°¢

Observation
Discuss 1-NN€ graph G and v, w € G, vEw.

N, N¢
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Properties of NN°¢

Observation
Discuss 1-NN€ graph G and v, w € G, vEw.

N, N<
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Properties of NN°¢

Observation

Discuss 1-NN€ graph G and v, w € G, vEw.
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Properties of NN°¢

Observation

Discuss 1-NN€ graph G and v, w € G, vEw.

NUNG

u 4
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Properties of NN°¢

Observation
Discuss 1-NN€ graph G and v, w € G, vEw.

NUNG

u 4

It has analogoues for higher k. eg. 2-NN¢ implies that for every
clique vy, vo, v3 we have N, N, N,, ~ G.
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Properties of NN°¢

Observation
Discuss 1-NN€ graph G and v, w € G, vEw.

NUNG

NG

It has analogoues for higher k. eg. 2-NN¢ implies that for every
clique vy, v2, v3 we have N,, N, N\, ~ G.
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Generalization

k > 2, language E, P- relational symbols, E binary, and P of arity k.
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Generalization

k > 2, language E, P- relational symbols, E binary, and P of arity k.
For {UO, ey uk_l}, {Vo, ey Vk—l} S P(G)

Jarostaw Swaczyna (IM PL) Some countable Rado-like graphs via Fraisse limits



Generalization

k > 2, language E, P- relational symbols, E binary, and P of arity k.

For {UO, ey uk_l}, {Vo, ey Vk—l} S P(G)
k—1

{ug, ..., uk_1}R{vo, ..., vik_1 } iff /\ —u;Evj for some i < k — 1.

Jj=0

Finite structure (G, E, P) is called a k-perturbed graph if

(A) E is a graph relation;

(B) P is symmetric;
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Generalization

k > 2, language E, P- relational symbols, E binary, and P of arity k.
For {UO, ey uk_l}, {Vo, ey Vk—l} S P(G)

k—1
{ug, ..., uk_1}R{vo, ..., vik_1 } iff /\ —u;Evj for some i < k — 1.
j=0

Finite structure (G, E, P) is called a k-perturbed graph if
(A) E is a graph relation;
(B) P is symmetric;

(C) Different pertubed k-sets are disjoint cliques;
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Generalization

k > 2, language E, P- relational symbols, E binary, and P of arity k.

For {UO, ey uk_l}, {Vo, ey Vk—l} S P(G)
k—1

{ug, ..., uk_1}R{vo, ..., vik_1 } iff /\ —u;Evj for some i < k — 1.

Jj=0

Finite structure (G, E, P) is called a k-perturbed graph if

(A) E is a graph relation;

(B) P is symmetric;

(C) Different pertubed k-sets are disjoint cliques;

(D) transitive relation < generated by R is a partial ordering.
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Generalization

3

i J

k-perturbed ( Gy, E1, P1), (G2, Ez, P2),
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Generalization

k-perturbed (Gl, Eq, Pl), (GQ, E,, PQ), f: Gt — Gyis
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Generalization

k-perturbed (Gi, E1, P1), (Ga, E2, P2), f: Gi — Gy is k-embedding,
provided that
(a) uEjv = f(u)Exf(v),i.e. f is a graph embedding;

(b) Pl(uo, cey uk_l) — Pg(f(UO), cey f(uk_l)),
i.e. f maps perturbed k-sets in Gy onto perturbed k-sets in Gp;
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Generalization

k-perturbed (Gi, E1, P1), (Ga, E2, P2), f: Gi — Gy is k-embedding,
provided that
(a) uEyzv = f(u)Exf(v),i.e. f is a graph embedding;
(b) Pl(uo, cey uk_l) — Pg(f(UO), cey f(uk_l)),
i.e. f maps perturbed k-sets in Gy onto perturbed k-sets in Gp;
(c) If 1 € P \ {{f(\7)} VS Pl}, then 7 C Gy \ f[Gl],
i.e. f preserves non-pertubed elements.
(d) Given {ug,...,uk—1} € P(G1) and w € Gy \ f[G1], we have
wExf (u;), for at least one /i < k,
i.e. non-neighborhoods of perturbed k-sets in Gj is preserved by
f - they cannot be enlarged;
By &9 we denote the category of k-perturbed finite graphs with
k-embeddings.
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Putting the pieces together

Check that 7%, has amalgamation
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Putting the pieces together

Check that 7%, has amalgamation
Explain how to get NN¢.
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Putting the pieces together

Check that 7%, has amalgamation
Explain how to get NN¢.

Family of types

G e PY.,uc P(G),

initial segment of U is

U (N

veP(G), vev

<l
N
<l

Jarostaw Swaczyna (IM PL) Some countable Rado-like graphs via Fraisse limits



Putting the pieces together

Check that 7%, has amalgamation
Explain how to get NN¢.

Family of types

G e PY.,uc P(G),

initial segment of U is

U MNwe
veEP(G), vsu VvEV

H C G closure of H is the union of all initial segments of those
elements of P(G) which intersects H.
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Putting the pieces together

Check that 7%, has amalgamation
Explain how to get NN¢.

Family of types

G e PY.,uc P(G),

initial segment of U is

U (N

VEP(G), VT VEV

H C G closure of H is the union of all initial segments of those
elements of P(G) which intersects H.

By type we mean any graph G € #Y equal to the closure of
some k-tuple
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Putting the pieces together

Check that 7%, has amalgamation
Explain how to get NN¢.

Family of types

G e PY.,uc P(G),

initial segment of U is

U (N

VEP(G), VT VEV

H C G closure of H is the union of all initial segments of those
elements of P(G) which intersects H.

By type we mean any graph G € &% equal to the closure of
some k-tuple

Relativize construction to any downward-closed family of
k-types 7
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Non-universal NN¢ graphs

Evolution from the single point
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Non-universal NN¢ graphs

Evolution from the single point
G finite graph of cardinality n.
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Non-universal NN¢ graphs

Evolution from the single point
G finite graph of cardinality n.
G’ = GU{g} is immediate descendant of G, if
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Non-universal NN¢ graphs

Evolution from the single point

G finite graph of cardinality n.

G’ = GU{g} is immediate descendant of G, if § ¢ G, and there

exists an injective sequence g € G", i € 2", such that if we define:
@ A= ﬂjl-:o Ngj, where N0 stands for non-neigbourhood of v;
o k=min{j <n—1:gj11 ¢ AtU{n—1};

then gEg; iff i; = 1 and j < k.
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Non-universal NN¢ graphs

Evolution from the single point
G finite graph of cardinality n.
G’ = GU{g} is immediate descendant of G, if § ¢ G, and there
exists an injective sequence g € G”, i € 2", such that if we define:

0 A = ﬂjl-:o Ngj, where NS stands for non-neigbourhood of v;

o k=min{j <n—1:gj11 ¢ AtU{n—1};
then gEg; iff i; = 1 and j < k.
Arrow: graph embedding f: G — H, if there exists Gy, Gi, . .. G,
such that Gg = f[G], G, = H and G;1 is immediate descendant of G;
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Non-universal NN¢ graphs

Evolution from the single point
G finite graph of cardinality n.
G’ = GU{g} is immediate descendant of G, if § ¢ G, and there
exists an injective sequence g € G”, i € 2", such that if we define:

0 A = ﬂjl-:o Ngj, where NS stands for non-neigbourhood of v;
o k=min{j <n—1:gj11 ¢ AtU{n—1};

then gEg; iff i; = 1 and j < k.

Arrow: graph embedding f: G — H, if there exists Gy, Gi, . .. G,

such that Gg = f[G], G, = H and G;1 is immediate descendant of G;
Generalization with allowed family of added points.
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Extending partial automorphism

Fix G- one of graphs produced on previous slides, finite A, B C G
and graph isomorphism i: A — B
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Extending partial automorphism

Fix G- one of graphs produced on previous slides, finite A, B C G
and graph isomorphism /: A — B i may not extend to the
automorphism of the whole G. Example!
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Extending partial automorphism

Fix G- one of graphs produced on previous slides, finite A, B C G
and graph isomorphism /: A — B i may not extend to the
automorphism of the whole G. Example!

i may be extended to the automorphism of G iff / extends to the
closure of A and B
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Extending partial automorphism

Fix G- one of graphs produced on previous slides, finite A, B C G
and graph isomorphism /: A — B i may not extend to the
automorphism of the whole G. Example!

i may be extended to the automorphism of G iff / extends to the
closure of A and B (essentially for free!)
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For every k, we got 2 - 2 - w - ¢ many pairwise non-isomorphic k-NN¢
graphs which are not k + 1-NN°€.
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For every k, we got 2 - 2 - w - ¢ many pairwise non-isomorphic k-NN¢
graphs which are not k + 1-NN°€.

Moreover, full characterization of extendable finite automorphism
seems to just work.
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Open problems

Is there a rigit k-NN° graph for some k?
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Open problems

Is there a rigit k-NN° graph for some k?

Suppose that G is k-NN€ and any disjoint A, B C G with
card(AU B) < k+ 1set(),ca My N[, cg N, is infinite, and this
property is hereditary. Is G necessarily (k + 1)-NN<?
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Thank you for your attention! Dékuji za pozornost!
Grazie per I’attenzione! K6szénom a figyelmet!
Dzigkuje za uwage!

Gracias por su atencion!

>al evxaloT W YLaTny Tpox N ool

Gratias pro vobis animus attentus!

Danke fiir IThre Aufmerksamkeit!

Bedankt voor uw aandacht! Kiitos huomiostasi!
CHEHOMNES T TV FEL !

Dakujem za va$u pozornost!
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