Separating Regularity Properties with the Raisonnier Filter

Yurii Khomskii

In 1984, Shelah proved the following statement: if all Σ_3^1 sets of reals are Lebesguemeasurable, then there is an inaccessible cardinal in L. The proof was simplified (and improved) by Raisonnier, using a construction now called the *Raisonnier Filter*. This filter has complexity Σ_3^1 (when defined over L as the ground model), and if the reals of L[a] have size \aleph_1 for some parameter a, and if all Σ_2^1 sets are measurable, then it is a *rapid filter* — which, in turn, implies that it is non-measurable by a result of Mokobodzki.

I will show how the Raisonnier filter can be used to obtain interesting separation results for regularity properties at the levels Δ_3^1 , Σ_3^1 , Δ_4^1 and Σ_4^1 . For example, consistently with ZFC the statement "all Δ_3^1 sets are Ramsey" is not equivalent to "all Σ_3^1 sets are Ramsey", unlike the corresponding statements for Δ_2^1 and Σ_2^1 sets which are provably equivalent by a result of Judah-Shelah.

Most of this talk is based on older work with Vera Fischer and Sy Friedman, and some unpublished work with Joerg Brendle.