Separating Regularity Properties with the Raisonnier Filter

Yurii Khomskii

Winter School, Hejnice, 27 January 2025

Solovay 1970

 $Con(ZFC + Inaccessible) \rightarrow Con(ZF + all sets of reals have the Baire Property and are Lebesgue Measurable).$

Solovay 1970

 $Con(ZFC + Inaccessible) \rightarrow Con(ZF + all sets of reals have the Baire Property and are Lebesgue Measurable).$

Shelah 1984

"Can you take Solovay's Inaccessible Away?"

Solovay 1970

 $Con(ZFC + Inaccessible) \rightarrow Con(ZF + all sets of reals have the Baire Property and are Lebesgue Measurable).$

Shelah 1984

"Can you take Solovay's Inaccessible Away?"

'Yes' for the BP but 'No' for LM. More specifically:

$$\Sigma_3^1(\mathsf{LM}) \Rightarrow \forall a \in \mathbb{R}(\aleph_1^{L[a]} < \aleph_1)$$

From the last statement, it is not hard to deduce that $L \models (\aleph_1^V \text{ is inaccessible})$

This proof was simplified using a purely combinatorial argument.

Definition (Raisonnier 1984)

- ► For $x, y \in 2^{\omega}$, let $h(x, y) := \min\{n \mid x \restriction n \neq y \restriction n\}$. ("breaking point" of x, y)
- ► For $X \subseteq 2^{\omega}$, let $H(X) := \{h(x, y) \mid x, y \in X\} \subseteq \omega$. (set of "all possible break-points" for reals from X)

This proof was simplified using a purely combinatorial argument.

Definition (Raisonnier 1984)

- ► For $x, y \in 2^{\omega}$, let $h(x, y) := \min\{n \mid x \restriction n \neq y \restriction n\}$. ("breaking point" of x, y)
- For X ⊆ 2^ω, let H(X) := {h(x, y) | x, y ∈ X} ⊆ ω. (set of "all possible break-points" for reals from X)

▶ If $a \subseteq \omega$ and $X \subseteq 2^{\omega}$, then we say that X breaks in a if $H(X) \subseteq a$.

This proof was simplified using a purely combinatorial argument.

Definition (Raisonnier 1984)

- ► For $x, y \in 2^{\omega}$, let $h(x, y) := \min\{n \mid x \restriction n \neq y \restriction n\}$. ("breaking point" of x, y)
- ► For $X \subseteq 2^{\omega}$, let $H(X) := \{h(x, y) \mid x, y \in X\} \subseteq \omega$. (set of "all possible break-points" for reals from X)

- ▶ If $a \subseteq \omega$ and $X \subseteq 2^{\omega}$, then we say that X breaks in a if $H(X) \subseteq a$.
- ▶ Let M be a model of set theory. Then \mathcal{F}_M is the collection of all $a \subseteq \omega$ such that the reals of M can be covered by countably many sets which break in a, i.e.,

$$\exists X_0, X_1, \dots \subseteq 2^{\omega} \ (2^{\omega} \cap M \subseteq \bigcup_n X_n \text{ and } H(X_n) \subseteq a)$$

Theorem (Raisonnier 1984)

- ▶ If the reals of M have size \aleph_1 then \mathcal{F}_M is a non-trivial filter on ω .
- If $2^{\omega} \cap M$ is a Σ_n^1 set, then \mathcal{F}_M is Σ_{n+1}^1 .

Theorem (Raisonnier 1984)

- ▶ If the reals of M have size \aleph_1 then \mathcal{F}_M is a non-trivial filter on ω .
- If $2^{\omega} \cap M$ is a Σ_n^1 set, then \mathcal{F}_M is Σ_{n+1}^1 .

Theorem (Raisonnier-Shelah 1984)

Assume that $\aleph_1^{L[a]} = \aleph_1$ and all Σ_2^1 sets are Lebesgue-measurable.

Then the Raisonnier Filter $\mathcal{F}_{L[a]}$ is a rapid filter: This means that the collection of increasing enumerations of sets in $\mathcal{F}_{L[a]}$ forms a dominating family in ω^{ω} .

Theorem (Raisonnier 1984)

- ▶ If the reals of M have size \aleph_1 then \mathcal{F}_M is a non-trivial filter on ω .
- If $2^{\omega} \cap M$ is a Σ_n^1 set, then \mathcal{F}_M is Σ_{n+1}^1 .

Theorem (Raisonnier-Shelah 1984)

Assume that $\aleph_1^{L[a]} = \aleph_1$ and all Σ_2^1 sets are Lebesgue-measurable.

Then the Raisonnier Filter $\mathcal{F}_{L[a]}$ is a rapid filter: This means that the collection of increasing enumerations of sets in $\mathcal{F}_{L[a]}$ forms a dominating family in ω^{ω} .

Theorem (Mokobodzki 1967)

A rapid filter is not Lebesgue-measurable.

Corollary (Raisonnier-Shelah) $\Sigma_3^1(\mathsf{LM}) \Rightarrow \forall a \in \mathbb{R}(\aleph_1^{L[a]} < \aleph_1)$

Proof

Assume that $\Sigma_3^1(LM)$ is true but $\exists a \in \mathbb{R}(\aleph_1^{L[a]} = \aleph_1)$. Since $2^{\omega} \cap L[a]$ is Σ_2^1 , the Raisonnier Filter $\mathcal{F}_{L[a]}$ is Σ_3^1 . Moreover, both other assumptions are satisfied, so $\mathcal{F}_{L[a]}$ is a rapid filter, so $\neg \Sigma_3^1(LM)$. Contradiction.

New Applications of the Raisonnier Filter

- ► I am interested in a variety of regularity properties for sets of reals in the low projective hierarchy.
- ► A rich structure theory exists on the ∑₂¹- and ∆₂¹-level, reflecting the structure of cardinal invariants.
- Very little known at higher projective levels (not assuming Large Cardinals beyond an Inaccessible).
- Common theme: does the structure theory on the 2nd level lift to higher levels?

Regularity Properties on the 2nd Level

Here \mathbb{L} , \mathbb{M} and \mathbb{S} refer to Laver-, Miller- and Sacks-measurability (also called "Marczewski-Burstin algebras").

Ramsey Property and Laver-Measurability

Definition

A set $A \subseteq [\omega]^{\omega}$ is Ramsey if there exists a set $H \in [\omega]^{\omega}$ such that $[H]^{\omega} \subseteq A$ or $[H]^{\omega} \cap A = \emptyset$.

Definition

A set $A \subseteq \omega^{\omega}$ is Laver-measurable if there exists a Laver-tree T such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

A Laver tree $T \subseteq \omega^{<\omega}$ has a stem σ and all τ extending σ are ω -splitting.

Equivalence between Σ_2^1 and Δ_2^1

Theorem (Judah-Shelah 1989)

 $\mathbf{\Sigma}_2^1(\mathsf{Ramsey}) \Leftrightarrow \mathbf{\Delta}_2^1(\mathsf{Ramsey})$

Theorem (Brendle-Löwe 1999)

 $\Sigma_2^1(\mathsf{Laver}) \Leftrightarrow \Delta_2^1(\mathsf{Laver})$

Theorem (Judah-Shelah 1989)

 $\Sigma_2^1(\mathsf{Ramsey}) \Leftrightarrow \Delta_2^1(\mathsf{Ramsey})$

Theorem (Brendle-Löwe 1999)

 $\Sigma_2^1(\mathsf{Laver}) \Leftrightarrow \Delta_2^1(\mathsf{Laver})$

Is this also true at higher projective levels?

Non-equivalences at higher levels

Theorem (Fischer-Friedman-K. 2014)

 $\mathsf{Con}(\mathsf{ZFC}) \ \rightarrow \ \mathsf{Con}(\boldsymbol{\Sigma}_3^1(\mathsf{Ramsey}) \not\Leftrightarrow \boldsymbol{\Delta}_3^1(\mathsf{Ramsey}))$

Theorem (Brendle-K., unpublished)

 $\mathsf{Con}(\mathsf{ZFC}) \rightarrow \mathsf{Con}(\Sigma^1_3(\mathsf{Laver}) \not\Leftrightarrow \Delta^1_3(\mathsf{Laver}))$

Non-equivalences at higher levels

Theorem (Fischer-Friedman-K. 2014)

 $\mathsf{Con}(\mathsf{ZFC}) \ \rightarrow \ \mathsf{Con}(\boldsymbol{\Sigma}_3^1(\mathsf{Ramsey}) \not\Leftrightarrow \boldsymbol{\Delta}_3^1(\mathsf{Ramsey}))$

Theorem (Brendle-K., unpublished)

 $\mathsf{Con}(\mathsf{ZFC}) \rightarrow \mathsf{Con}(\Sigma^1_3(\mathsf{Laver}) \not\Leftrightarrow \Delta^1_3(\mathsf{Laver}))$

Theorem (Fischer-Friedman-K. 2014)

 $\mathsf{Con}(\mathsf{ZFC} + \mathsf{Inaccessible}) \rightarrow \mathsf{Con}(\Sigma_4^1(\mathsf{Ramsey}) \not\Leftrightarrow \Delta_4^1(\mathsf{Ramsey}))$

Theorem (Brendle-K., unpublished)

 $\mathsf{Con}(\mathsf{ZFC} + \mathsf{Inaccessible}) \rightarrow \mathsf{Con}(\Sigma_4^1(\mathsf{Laver}) \not\Leftrightarrow \Delta_4^1(\mathsf{Laver}))$

Construction methods with Suslin⁺ proper iterations

The technical side is based on our work about obtaining regularity for Δ_3^1 and Δ_4^1 sets of reals by iterating Suslin⁺ Proper Forcing.

Sample of the techniques (Fischer-Friedman-K.)

(1) Suppose \mathbb{AP} is a "quasi-amoeba" for \mathbb{P} , and both are Suslin⁺ proper. Then $V^{(\mathbb{P}*\mathbb{AP})_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{P}\text{-measurability}).$

(2) Suppose
$$V \models \forall a \ (\aleph_1^{L[a]} < \aleph_1)$$
 and \mathbb{P} is Suslin⁺ proper. Then $V^{\mathbb{P}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{P}).$

(3) Suppose $V \models \forall a \ (\aleph_1^{L[a]} < \aleph_1)$ and \mathbb{AP} is a "quasi-amoeba" for \mathbb{P} , and both are Suslin⁺ proper. Then $V^{(\mathbb{P}*\mathbb{AP})_{\omega_1}} \models \mathbf{\Delta}_4^1(\mathbb{P}\text{-measurability})$.

In fact, these techniques are very robust and allow combining various forcings in the iteration.

Rapid Filters and Ramsey Property

Definition

For any $x \subseteq \omega$, define

$$\widetilde{x} = [x(0), x(1)) \cup [x(2), x(3)) \cup \dots$$

For a filter
$$\mathcal{F}$$
 on ω , let $\overset{\approx}{\mathcal{F}} = \{x \subseteq \omega \mid \overset{\approx}{x} \in F\}.$

Theorem (Mathias 1974)

If \mathcal{F} is a rapid filter then $\overset{\approx}{\mathcal{F}}$ is not Ramsey (Mathias called it 'rare filter').

Corollary

If there is a Σ_n^1 rapid filter then $\neg \Sigma_n^1$ (Ramsey).

Corollary

If there is a Σ_n^1 rapid filter then $\neg \Sigma_n^1$ (Laver).

Proof for level 3

Theorem (Fischer-Friedman-K. 2014)

 $\mathsf{Con}(\mathsf{ZFC}) \ \rightarrow \ \mathsf{Con}(\boldsymbol{\Sigma}_3^1(\mathsf{Ramsey}) \not\Leftrightarrow \boldsymbol{\Delta}_3^1(\mathsf{Ramsey}))$

Theorem (Brendle-K., unpublished)

 $\mathsf{Con}(\mathsf{ZFC}) \rightarrow \mathsf{Con}(\Sigma^1_3(\mathsf{Laver}) \not\Leftrightarrow \Delta^1_3(\mathsf{Laver}))$

Proof

(1) Start in L and iterate Mathias forcing with Amoeba-for-measure forcing.

Then we get $\Delta_3^1(\text{Ramsey})$ and $\Sigma_2^1(\text{LM})$, so the Raisonnier Filter \mathcal{F}_L is a Σ_3^1 rapid filter. So $\neg \Sigma_3^1(\text{Ramsey})$.

(2) Replace Mathias by Laver.

(In fact both can be done in one model).

Theorem (René David 1983)

Consistently with ZFC+Inaccessible, there exists a model L^D satisfying $\forall a(\aleph_1^{L[a]} < \aleph_1)$ and there is a Σ_3^1 -good wellorder of the reals.

Theorem (René David 1983)

Consistently with ZFC+Inaccessible, there exists a model L^D satisfying $\forall a(\aleph_1^{L[a]} < \aleph_1)$ and there is a Σ_3^1 -good wellorder of the reals.

Observation

Suppose M is a model such that $|2^{\omega} \cap M| = \aleph_1$ and for all $a \in 2^{\omega}$, there is a measure-one set of random reals over M[a]. Then the Raisonnier Filter \mathcal{F}_M is rapid.

Proof for level 4

Theorem (Fischer-Friedman-K. 2014)

 $\mathsf{Con}(\mathsf{ZFC} + \mathsf{Inaccessible}) \ \rightarrow \ \mathsf{Con}(\boldsymbol{\Sigma}_4^1(\mathsf{Ramsey}) \not\Leftrightarrow \boldsymbol{\Delta}_4^1(\mathsf{Ramsey}))$

Theorem (Brendle-K., unpublished)

 $\mathsf{Con}(\mathsf{ZFC} + \mathsf{Inaccessible}) \ \rightarrow \ \mathsf{Con}(\boldsymbol{\Sigma}_4^1(\mathsf{Laver}) \not\Leftrightarrow \boldsymbol{\Delta}_4^1(\mathsf{Laver}))$

Proof

- (1) Start in L and iterate and iterate Mathias forcing with Amoeba-for-measure. Then we get $\Delta_4^1(\text{Ramsey})$, and moreover the assumption above holds with respect to L^D . So the Raisonnier Filter $\mathcal{F}_{(L^D)}$ is a Σ_4^1 rapid filter. So $\neg \Sigma_4^1(\text{Ramsey})$.
- (2) Replace Mathias by Laver.

(In fact both can be done in one model).

More things...

Theorem (K-Fischer-Friedman; Brendle)

For all standard regularity properties \mathbb{P} (except Sacks and Miller),

- Consistently with ZFC, $\Sigma_2^1(\mathbb{P}) + \neg \Sigma_3^1(\mathbb{P})$.
- Consistently with ZFC + Inaccessible, $\Sigma_3^1(\mathbb{P}) + \neg \Sigma_4^1(\mathbb{P})$.

Question

However we don't know how to make models (without large cardinals) for

$$\mathbf{\Sigma}_4^1(\mathbb{P}) + \neg \mathbf{\Sigma}_5^1(\mathbb{P})$$

and in general

$$\Sigma_n^1(\mathbb{P}) + \neg \Sigma_{n+1}^1(\mathbb{P}).$$

Questions

- ► Is a rapid filter a counterexample to Sacks- and Miller-measurability?
- Is ∆¹₃ and ∑¹₃ equivalent for Sacks- and Miller-regularity? What about ∆¹₄ and ∑¹₄?
- Can Raisonnier's method be adapted (in any way) to replace the assumption $\Sigma_2^1(LM)$ by another property?
- Can we get "all sets of reals are Ramsey" without assuming an inaccessible?
- Can we get "all sets of reals are Laver-measurable" without assuming an inaccessible?

Thank you!

y.d.khomskii@uva.nl

A. R. D. Mathias.

A remark on rare filters.

In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday), Vol. III, pages 1095–1097. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.

Jean Raisonnier.

A mathematical proof of S. Shelah's theorem on the measure problem and related results. *Israel J. Math.*, 48(1):48–56, 1984.

Saharon Shelah.

Can you take Solovay's inaccessible away? *Israel J. Math.*, 48(1):1–47, 1984.

Robert M. Solovay.

A model of set-theory in which every set of reals is Lebesgue measurable. *Ann. of Math. (2)*, 92:1–56, 1970.