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Lebesgue Measure and Inaccessibles

Solovay 1970

Con(ZFC+ Inaccessible) ! Con(ZF + all sets of reals have the Baire Property
and are Lebesgue Measurable).

Shelah 1984

“Can you take Solovay’s Inaccessible Away?”

‘Yes’ for the BP but ‘No’ for LM. More specifically:

⌃1
3(LM) ) 8a 2 R(@L[a]

1 < @1)

From the last statement, it is not hard to deduce that L |= (@V
1 is inaccessible)
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The Raisonnier Filter

This proof was simplified using a purely combinatorial argument.

Definition (Raisonnier 1984)

I For x, y 2 2!, let h(x, y) := min{n | x�n 6= y�n}.
(“breaking point” of x, y)

I For X ✓ 2!, let H(X) := {h(x, y) | x, y 2 X} ✓ !.

(set of “all possible break-points” for reals from X)

I If a ✓ ! and X ✓ 2!, then we say that X breaks in a if H(X) ✓ a.

I Let M be a model of set theory. Then FM is the collection of all a ✓ !

such that the reals of M can be covered by countably many sets which
break in a, i.e.,

9X0, X1, · · · ✓ 2! (2! \M ✓
[

n

Xn and H(Xn) ✓ a)

3 / 19



The Raisonnier Filter

This proof was simplified using a purely combinatorial argument.

Definition (Raisonnier 1984)

I For x, y 2 2!, let h(x, y) := min{n | x�n 6= y�n}.
(“breaking point” of x, y)

I For X ✓ 2!, let H(X) := {h(x, y) | x, y 2 X} ✓ !.

(set of “all possible break-points” for reals from X)

I If a ✓ ! and X ✓ 2!, then we say that X breaks in a if H(X) ✓ a.

I Let M be a model of set theory. Then FM is the collection of all a ✓ !

such that the reals of M can be covered by countably many sets which
break in a, i.e.,

9X0, X1, · · · ✓ 2! (2! \M ✓
[

n

Xn and H(Xn) ✓ a)

3 / 19

i



The Raisonnier Filter

This proof was simplified using a purely combinatorial argument.

Definition (Raisonnier 1984)

I For x, y 2 2!, let h(x, y) := min{n | x�n 6= y�n}.
(“breaking point” of x, y)

I For X ✓ 2!, let H(X) := {h(x, y) | x, y 2 X} ✓ !.

(set of “all possible break-points” for reals from X)

I If a ✓ ! and X ✓ 2!, then we say that X breaks in a if H(X) ✓ a.

I Let M be a model of set theory. Then FM is the collection of all a ✓ !

such that the reals of M can be covered by countably many sets which
break in a, i.e.,

9X0, X1, · · · ✓ 2! (2! \M ✓
[

n

Xn and H(Xn) ✓ a)

3 / 19

i



The Raisonnier Filter

Theorem (Raisonnier 1984)

I If the reals of M have size @1 then FM is a non-trivial filter on !.

I If 2! \M is a ⌃1
n set, then FM is ⌃1

n+1.

Theorem (Raisonnier-Shelah 1984)

Assume that @L[a]
1 = @1 and all ⌃1

2 sets are Lebesgue-measurable.

Then the Raisonnier Filter FL[a] is a rapid filter: This means that the collection
of increasing enumerations of sets in FL[a] forms a dominating family in !

!.

Theorem (Mokobodzki 1967)

A rapid filter is not Lebesgue-measurable.
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The Raisonnier Filter

Corollary (Raisonnier-Shelah)

⌃1
3(LM) ) 8a 2 R(@L[a]

1 < @1)

Proof

Assume that ⌃1
3(LM) is true but 9a 2 R(@L[a]

1 = @1). Since 2! \ L[a] is ⌃1
2,

the Raisonnier Filter FL[a] is ⌃
1
3. Moreover, both other assumptions are

satisfied, so FL[a] is a rapid filter, so ¬⌃1
3(LM). Contradiction.
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New Applications of the Raisonnier Filter

I I am interested in a variety of regularity properties for sets of reals in the
low projective hierarchy.

I A rich structure theory exists on the ⌃1
2- and �1

2-level, reflecting the
structure of cardinal invariants.

I Very little known at higher projective levels (not assuming Large
Cardinals beyond an Inaccessible).

I Common theme: does the structure theory on the 2nd level lift to higher
levels?
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Regularity Properties on the 2nd Level

�1
2(LM) +3 · +3 · +3 · +3 ⌃1

2(S)
�1

2(S)

⌃1
2(L)

�1
2(L)

+3

KS

⌃1
2(M)

�1
2(M)

KS

8a (@L[a]
1 < @1) +3 ⌃1

2(LM) +3

KS

⌃1
2(BP)

KS

+3 �1
2(BP)

KS

+3 ·

KS

Here L,M and S refer to Laver-, Miller- and Sacks-measurability (also called

“Marczewski-Burstin algebras”).

7 / 19



Ramsey Property and Laver-Measurability

Definition

A set A ✓ [!]! is Ramsey if there exists a set H 2 [!]! such that [H]! ✓ A or
[H]! \A = ?.

Definition

A set A ✓ !
! is Laver-measurable if there exists a Laver-tree T such that

[T ] ✓ A or [T ] \A = ?.

A Laver tree T ✓ !
<! has a stem � and all ⌧ extending � are !-splitting.
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Equivalence between ⌃1
2 and �1

2

Theorem (Judah-Shelah 1989)

⌃1
2(Ramsey) , �1

2(Ramsey)

Theorem (Brendle-Löwe 1999)

⌃1
2(Laver) , �1

2(Laver)

Is this also true at higher projective levels?
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Non-equivalences at higher levels

Theorem (Fischer-Friedman-K. 2014)

Con(ZFC) ! Con(⌃1
3(Ramsey) 6, �1

3(Ramsey))

Theorem (Brendle-K., unpublished)

Con(ZFC) ! Con(⌃1
3(Laver) 6, �1

3(Laver))

Theorem (Fischer-Friedman-K. 2014)

Con(ZFC+ Inaccessible) ! Con(⌃1
4(Ramsey) 6, �1

4(Ramsey))

Theorem (Brendle-K., unpublished)

Con(ZFC+ Inaccessible) ! Con(⌃1
4(Laver) 6, �1

4(Laver))
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Construction methods with Suslin+ proper iterations

The technical side is based on our work about obtaining regularity for �1
3 and

�1
4 sets of reals by iterating Suslin+ Proper Forcing.

Sample of the techniques (Fischer-Friedman-K.)

(1) Suppose AP is a “quasi-amoeba” for P, and both are Suslin+ proper.
Then V

(P⇤AP)!1 |= �1
3(P-measurability).

(2) Suppose V |= 8a (@L[a]
1 < @1) and P is Suslin+ proper. Then

V
P!1 |= �1

3(P).

(3) Suppose V |= 8a (@L[a]
1 < @1) and AP is a “quasi-amoeba” for P, and

both are Suslin+ proper. Then V
(P⇤AP)!1 |= �1

4(P-measurability).

In fact, these techniques are very robust and allow combining various forcings
in the iteration.

11 / 19



Rapid Filters and Ramsey Property

Definition

For any x ✓ !, define

e
x = [x(0), x(1)) [ [x(2), x(3)) [ . . .

For a filter F on !, let
e
F = {x ✓ ! | ex 2 F}.

Theorem (Mathias 1974)

If F is a rapid filter then
e
F is not Ramsey (Mathias called it ‘rare filter’).

Corollary

If there is a ⌃1
n rapid filter then ¬⌃1

n(Ramsey).

12 / 19

I g



Rapid Filters and Laver Property

Theorem (Brendle, unpublished)

If F is a rapid filter then
e
F is not Laver-measurable.

Corollary

If there is a ⌃1
n rapid filter then ¬⌃1

n(Laver).
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Proof for level 3

Theorem (Fischer-Friedman-K. 2014)

Con(ZFC) ! Con(⌃1
3(Ramsey) 6, �1

3(Ramsey))

Theorem (Brendle-K., unpublished)

Con(ZFC) ! Con(⌃1
3(Laver) 6, �1

3(Laver))

Proof

(1) Start in L and iterate Mathias forcing with Amoeba-for-measure forcing.

Then we get �1
3(Ramsey) and ⌃1

2(LM), so the Raisonnier Filter FL is a
⌃1

3 rapid filter. So ¬⌃1
3(Ramsey).

(2) Replace Mathias by Laver.

(In fact both can be done in one model).
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Proof for level 4

Theorem (René David 1983)

Consistently with ZFC+Inaccessible, there exists a model LD satisfying
8a(@L[a]

1 < @1) and there is a ⌃1
3-good wellorder of the reals.

Observation

Suppose M is a model such that |2! \M | = @1 and for all a 2 2!, there is a
measure-one set of random reals over M [a]. Then the Raisonnier Filter FM is
rapid.
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More things...

Theorem (K-Fischer-Friedman; Brendle)

For all standard regularity properties P (except Sacks and Miller),

I Consistently with ZFC, ⌃1
2(P) + ¬⌃1

3(P).

I Consistently with ZFC + Inaccessible, ⌃1
3(P) + ¬⌃1

4(P).

Question

However we don’t know how to make models (without large cardinals) for

⌃1
4(P) + ¬⌃1

5(P)
and in general

⌃1
n(P) + ¬⌃1

n+1(P).
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More questions

Questions

I Is a rapid filter a counterexample to Sacks- and Miller-measurability?

I Is �1
3 and ⌃1

3 equivalent for Sacks- and Miller-regularity? What about
�1

4 and ⌃1
4?

I Can Raisonnier’s method be adapted (in any way) to replace the
assumption ⌃1

2(LM) by another property?

I Can we get “all sets of reals are Ramsey” without assuming an
inaccessible?

I Can we get “all sets of reals are Laver-measurable” without assuming an
inaccessible?
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Thank you!
y.d.khomskii@uva.nl

A. R. D. Mathias.

A remark on rare filters.

In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday), Vol. III,
pages 1095–1097. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.

Jean Raisonnier.

A mathematical proof of S. Shelah’s theorem on the measure problem and related results.

Israel J. Math., 48(1):48–56, 1984.

Saharon Shelah.

Can you take Solovay’s inaccessible away?

Israel J. Math., 48(1):1–47, 1984.

Robert M. Solovay.

A model of set-theory in which every set of reals is Lebesgue measurable.

Ann. of Math. (2), 92:1–56, 1970.

[4] [3] [2] [1]

19 / 19


