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Introduction



Preliminaries

Definition 1.1

A compact, connected, and metrizable space is a continuum. If it is
locally connected, it is a Peano continuum.

Definition 1.2

A continuum X is hereditarily equivalent if every non-degenerate sub-
continuum of it is homeomorphic to X . In this case we say X is HEC.



The hyperspace of a HEC

Definition 1.3

If X is a continuum, Cont(X ) is the hyperspace of subcontinua of X .
Fin1(X ) is the hyperspace of singletons of X .

Note that if X is HEC

G = {K ∈ Cont(X ) | K ≃ X} = Cont(X ) \ Fin1(X )

so G is a comeager subset of Cont(X ).
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The hyperspace of a HEC

Definition 1.4

If X is a continuum, Cont(X ) is the hyperspace of subcontinua of X .
Fin1(X ) is the hyperspace of singletons of X .

Note that if X is HEC

G = {K ∈ Cont(X ) | K ≃ X} = Cont(X ) \ Fin1(X )

so G is a comeager subset of Cont(X ).



Generically Hereditarily Equivalent Continuum

Definition 1.5

A continuum X is generically hereditarily equivalent if

{K ∈ Cont(X ) | K ≃ X}

is comeager in Cont(X ). In this case we say X is GHEC.



Generalized Ważewski dendrites are GHEC



Universal Ważewski dendrite

Definition 2.1

A dendrite is a Peano continuum without homeomorphic copies of the
circle.

The universal Ważewski dendrite is such that every dendrite can be em-
bedded into it. How can one construct it?



Universal Ważewski dendrite

Definition 2.2

A dendrite is a Peano continuum without homeomorphic copies of the
circle.

The universal Ważewski dendrite is such that every dendrite can be em-
bedded into it. How can one construct it?
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Universal Ważewski dendrite

Definition 2.1
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Order

Definition 2.2

Given a topological space X and A ⊆ X , the order of A in X is the least
cardinal number α for which every open set U ⊇ A there exists an open
set V such that

A ⊆ V ⊆ U and |∂V | ≤ α.

We write that
ord(A,X ) = α.

Definition 2.3

Let M ⊆ {3, 4, 5, . . .}∪{ω}. The dendrite WM is defined as the dendrite
whose set of branching points are of order m ∈ M and for all m ∈ M

{x ∈ WM | ord(x ,WM) = m}

is arcwise dense in WM .



Maximal branching points

Definition 2.4

Let X ,Y be dendrites with X ⊆ Y . The first point map rY ,X : Y → X
takes y ∈ Y to the first point in the arc starting from y to any x ∈ X
that is also in X .
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Maximal branching points

Lemma 2.5

Let X ,Y be dendrites with X ⊆ Y . A branching point x of X is maximal
in Y if one of the following are satisfied:

(i) |r−1
Y ,X (x)| = 1

(ii) there is no arc A ⊆ Y from y ∈ Y \ X to x with A ∩ X = {x}.
(iii) every open neighborhood of x in X meets each component of Y \{x}.



Full subdendrite

Definition 2.6

Given a dendrite X , B(X ) is the collection of branching points of X .

Definition 2.7

Let Y be a dendrite. If X ⊆ Y is a non-degenerate subdendrite, we say
that X is full if for every b ∈ B(Y )∩X , it holds that b ∈ B(X ) and b is
maximal in Y . We denote

Full(Y ) = {K ∈ Cont(Y ) | K is full in Y } .
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Generalized Ważewski dendrites are GHEC

Proposition 2.8

If X is a dendrite, then Full(X ) is a Gδ dense subset of Cont(X ).

Theorem 2.9

For every K ∈ Full(WM) it holds that K ≃ WM and

End(K ) ∩ B(WM) = ∅.

Corollary 2.10

WM is GHEC.



Additional restriction

Proposition 2.11

The collection of nowhere dense subcontinua of WM is a Gδ dense subset
of Cont(WM).



The almost complete characterization

Theorem 2.12

If X is a Peano GHEC, then X is an arc or a dendrite such that for every
m ∈ {3, 4, . . .} ∪ {ω} the collection of branching points of order m is
either dense or empty. Moreover, the collection of branching points is
arcwise dense.



Strongly GHEC

Definition 2.13

A continuum X is strongly GHEC if

{K ∈ Cont(X ) | K ≃ X}

contains a comeager subset H of Cont(X ) such that whenever K1,K2 ∈
H there exists a homeomorphism ψ : X → X such that ψ(K1) = K2.



Strongly GHEC

Theorem 2.14

WM is strongly GHEC. Precisely, the collection of subcontinua K of WM

satisfying

(i) K ∈ Full(WM).

(ii) K is nowhere dense in WM .

is Gδ dense and for any pair K1,K2 in this collection there exists a home-
omorphism ψ : WM → WM with ψ(K1) = K2.



Generic chains



Hyperspace of maximal order arcs

Definition 3.1

An order arc in Cont(X ) is a subcontinuum A ⊆ Cont(X ) homeomor-
phic to [0, 1] such that for every pair of points A,B ∈ A, either A ⊆ B
or B ⊆ A. We denote the space of order arcs by

OA(X ) ⊆ Cont(Cont(X )).

Definition 3.2

A maximal order arc in Cont(X ) is an order arc starting from a set {x}
for some x ∈ X and ending in X . We can restrict OA(X ) space to the
collection of maximal order arcs, denoted by MOA(X ), which is a Polish
space.



Natural extensions to the hyperspace of maximal orders arcs

Definition 3.3

Let X be a continuum, we say that

• GCHEC holds for X if and only if

{C ∈ MOA(X ) | ∀C ∈ C,C nondegenerate implies C ≃ X}

is a comeager subset of MOA(X ).

• GCGHEC holds for X if and only if

{C ∈ MOA(X ) | ∀∗C ∈ C (C ≃ X )}

is a comeager subset of MOA(X ).



Disintegration Theorem

Theorem 3.4

If Z and Y are Polish spaces and f : Z → Y in a continuous and
comeager way, then a set S with Baire property is comeager in Z if and
only if S ∩ f −1(y) is comeager in f −1(y) for comeager many y in Y .

Melleray, J., Tsankov, T. Generic representations of abelian groups and
extreme amenability. Isr. J. Math. 198, 129–167 (2013).
https://doi.org/10.1007/s11856-013-0036-5

https://doi.org/10.1007/s11856-013-0036-5


GCHEC holds for WM

Lemma 3.5

If C ∈ MOA(WM) and the collection of K ∈ C with K ≃ WM is dense in
C, then every nondegenerate element of C is homeomorphic to WM .

Theorem 3.6

GCHEC holds for WM .



Properties of the comeager maximal
order arc in MOA(WM)



Willful chain

Definition 4.1

A chain C ∈ MOA(WM) is willful if for every arc A ⊆ WM and K1,K2 ∈ C
with

(i) K1 ⊊ K2,

(ii) ∅ ≠ K1 ∩ A ⊊ A,

then K1 ∩ A ⊊ K2 ∩ A.



Generic chain of MOA(WM)

Theorem 4.2

The set of chains C ∈ MOA(WM) satisfying

(i) The root of C is an endpoint of WM .

(ii) If K , L ∈ C with K ⊊ L, then K is nowhere dense in L.

(iii) If K ∈ C, then |End(K ) ∩ B(WM)| ≤ 1.

(iv) C is willful.

form a comeager set. Moreover, any two chains satisfying these condi-
tions are ambiently equivalent.

C1, C2 ∈ MOA(X ) are ambiently equivalent if there exists h ∈ Homeo(X)
for which

{h(K ) | K ∈ C1} = C2
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The idea
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Děkuju!
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