January 29, 2025

WS 2025

GENERALIZED WAŻEWSKI DENDRITES, GENERIC SUBCONTINUA, AND GENERIC CHAINS

Bryant Rosado Silva joint work with Benjamin Vejnar (Charles University)

Introduction

A compact, connected, and metrizable space is a **continuum**. If it is locally connected, it is a **Peano continuum**.

Definition 1.2

A continuum X is **hereditarily equivalent** if every non-degenerate subcontinuum of it is homeomorphic to X. In this case we say X is HEC.

If X is a continuum, Cont(X) is the hyperspace of subcontinua of X. Fin₁(X) is the hyperspace of singletons of X.

If X is a continuum, Cont(X) is the hyperspace of subcontinua of X. Fin₁(X) is the hyperspace of singletons of X.

Note that if X is HEC

$$\mathscr{G} = \{ K \in \operatorname{Cont}(X) \mid K \simeq X \} = \operatorname{Cont}(X) \setminus \operatorname{Fin}_1(X)$$

so \mathscr{G} is a comeager subset of $\operatorname{Cont}(X)$.

If X is a continuum, Cont(X) is the hyperspace of subcontinua of X. Fin₁(X) is the hyperspace of singletons of X.

Note that if X is HEC

$$\mathscr{G} = \{K \in \operatorname{Cont}(X) \mid K \simeq X\} = \operatorname{Cont}(X) \setminus \operatorname{Fin}_1(X)$$

so \mathscr{G} is a comeager subset of $\operatorname{Cont}(X)$.

A continuum X is generically hereditarily equivalent if

$$\{K \in \operatorname{Cont}(X) \mid K \simeq X\}$$

is comeager in Cont(X). In this case we say X is GHEC.

Generalized Ważewski dendrites are GHEC

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

The universal Ważewski dendrite is such that every dendrite can be embedded into it. How can one construct it?

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

The universal Ważewski dendrite is such that every dendrite can be embedded into it. How can one construct it?

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

The universal Ważewski dendrite is such that every dendrite can be embedded into it. How can one construct it?

Given a topological space X and $A \subseteq X$, the **order** of A in X is the least cardinal number α for which every open set $U \supseteq A$ there exists an open set V such that

 $A \subseteq V \subseteq U$ and $|\partial V| \leq \alpha$.

We write that

 $\operatorname{ord}(A, X) = \alpha.$

Definition 2.3

Let $M \subseteq \{3, 4, 5, \ldots\} \cup \{\omega\}$. The dendrite W_M is defined as the dendrite whose set of branching points are of order $m \in M$ and for all $m \in M$

$$\{x \in W_M \mid \operatorname{ord}(x, W_M) = m\}$$

is arcwise dense in W_M .

Let X, Y be dendrites with $X \subseteq Y$. The first point map $r_{Y,X} : Y \to X$ takes $y \in Y$ to the first point in the arc starting from y to any $x \in X$ that is also in X.

Let X, Y be dendrites with $X \subseteq Y$. The first point map $r_{Y,X} : Y \to X$ takes $y \in Y$ to the first point in the arc starting from y to any $x \in X$ that is also in X.

Lemma 2.5

Let X, Y be dendrites with $X \subseteq Y$. A branching point x of X is **maximal** in Y if one of the following are satisfied:

(i)
$$|r_{Y,X}^{-1}(x)| = 1$$

(ii) there is no arc $A \subseteq Y$ from $y \in Y \setminus X$ to x with $A \cap X = \{x\}$.

(iii) every open neighborhood of x in X meets each component of $Y \setminus \{x\}$.

Given a dendrite X, $\mathcal{B}(X)$ is the collection of branching points of X.

Given a dendrite X, $\mathcal{B}(X)$ is the collection of branching points of X.

Definition 2.7

Let Y be a dendrite. If $X \subseteq Y$ is a non-degenerate subdendrite, we say that X is full if for every $b \in \mathcal{B}(Y) \cap X$, it holds that $b \in \mathcal{B}(X)$ and b is maximal in Y. We denote

 $\operatorname{Full}(Y) = \{ K \in \operatorname{Cont}(Y) \mid K \text{ is full in } Y \}.$

Proposition 2.8

If X is a dendrite, then Full(X) is a G_{δ} dense subset of Cont(X).

Theorem 2.9

For every $K \in Full(W_M)$ it holds that $K \simeq W_M$ and

 $\operatorname{End}(K) \cap \mathcal{B}(W_M) = \emptyset.$

Corollary 2.10

 W_M is GHEC.

Proposition 2.11

The collection of nowhere dense subcontinua of W_M is a G_δ dense subset of $Cont(W_M)$.

Theorem 2.12

If X is a Peano GHEC, then X is an arc or a dendrite such that for every $m \in \{3, 4, \ldots\} \cup \{\omega\}$ the collection of branching points of order m is either dense or empty. Moreover, the collection of branching points is arcwise dense.

A continuum X is strongly GHEC if

$$\{K \in \operatorname{Cont}(X) \mid K \simeq X\}$$

contains a comeager subset \mathscr{H} of $\operatorname{Cont}(X)$ such that whenever $K_1, K_2 \in \mathscr{H}$ there exists a homeomorphism $\psi : X \to X$ such that $\psi(K_1) = K_2$.

Theorem 2.14

 W_{M} is strongly GHEC. Precisely, the collection of subcontinua K of W_{M} satisfying

(i) $K \in \operatorname{Full}(W_M)$.

(ii) K is nowhere dense in W_M .

is G_{δ} dense and for any pair K_1, K_2 in this collection there exists a homeomorphism $\psi : W_M \to W_M$ with $\psi(K_1) = K_2$.

An order arc in Cont(X) is a subcontinuum $\mathcal{A} \subseteq Cont(X)$ homeomorphic to [0,1] such that for every pair of points $A, B \in \mathcal{A}$, either $A \subseteq B$ or $B \subseteq A$. We denote the space of order arcs by

 $OA(X) \subseteq Cont(Cont(X)).$

Definition 3.2

A maximal order arc in Cont(X) is an order arc starting from a set $\{x\}$ for some $x \in X$ and ending in X. We can restrict OA(X) space to the collection of maximal order arcs, denoted by MOA(X), which is a Polish space.

Let X be a continuum, we say that

• GCHEC holds for X if and only if

 $\{C \in \mathsf{MOA}(X) \mid \forall C \in C, C \text{ nondegenerate implies } C \simeq X\}$

is a comeager subset of MOA(X).

• GCGHEC holds for X if and only if

$$\{\mathcal{C} \in \mathsf{MOA}(X) \mid \forall^* C \in \mathcal{C} \ (C \simeq X)\}$$

is a comeager subset of MOA(X).

Theorem 3.4

If Z and Y are Polish spaces and $f : Z \to Y$ in a continuous and comeager way, then a set S with Baire property is comeager in Z if and only if $S \cap f^{-1}(y)$ is comeager in $f^{-1}(y)$ for comeager many y in Y.

Melleray, J., Tsankov, T. Generic representations of abelian groups and extreme amenability. Isr. J. Math. 198, 129–167 (2013). https://doi.org/10.1007/s11856-013-0036-5

Lemma 3.5

If $C \in MOA(W_M)$ and the collection of $K \in C$ with $K \simeq W_M$ is dense in C, then every nondegenerate element of C is homeomorphic to W_M .

Theorem 3.6

GCHEC holds for W_M .

Properties of the comeager maximal order arc in $MOA(W_M)$

A chain $C \in MOA(W_M)$ is willful if for every arc $A \subseteq W_M$ and $K_1, K_2 \in C$ with

(i) $K_1 \subsetneq K_2$, (ii) $\emptyset \neq K_1 \cap A \subsetneq A$, then $K_1 \cap A \subsetneq K_2 \cap A$.

Theorem 4.2

The set of chains $\mathcal{C} \in \mathsf{MOA}(W_M)$ satisfying

(i) The root of C is an endpoint of W_M .

(ii) If $K, L \in C$ with $K \subsetneq L$, then K is nowhere dense in L.

(iii) If
$$K \in \mathcal{C}$$
, then $|\operatorname{End}(K) \cap \mathcal{B}(W_M)| \leq 1$.

(iv) C is willful.

form a comeager set. Moreover, any two chains satisfying these conditions are ambiently equivalent.

Theorem 4.2

The set of chains $\mathcal{C} \in \mathsf{MOA}(W_M)$ satisfying

(i) The root of C is an endpoint of W_M .

(ii) If $K, L \in C$ with $K \subsetneq L$, then K is nowhere dense in L.

(iii) If
$$K\in \mathcal{C}$$
, then $|\operatorname{End}(K)\cap \mathcal{B}(W_M)|\leq 1.$

(iv) C is willful.

form a comeager set. Moreover, any two chains satisfying these conditions are ambiently equivalent.

 $C_1, C_2 \in MOA(X)$ are ambiently equivalent if there exists $h \in Homeo(X)$ for which

 ${h(K) \mid K \in \mathcal{C}_1} = \mathcal{C}_2$

