FAKE VS REAL NULL SETS

ŁUKASZ MAZURKIEWICZ

This is an ongoing project with M. Michalski, R. Rałowski and Sz. Żeberski.

The idea comes from the following characterization, which can be found in [1, Lemma 2.5.1]:

Lemma 1. Suppose that $F \subseteq 2^{\omega}$ has measure zero. Then there exists a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq 2^n$, such that $\sum_{n \in \omega} \frac{S_n}{2^n} < \infty$ and

$$F \subseteq \{x \in 2^{\omega} : (\exists^{\infty} n \in \omega) (x \restriction n \in S_n)\}.$$

In [2] we rewrite the above characterization directly in a context of the Baire space to obtain a natural example of an ideal resembling measure. However, the condition that limits the size of S_n s does not seem natural in the Baire space. Therefore, we would like to parametrize it with a function $h \in \omega^{\omega}$, introducing "fake-null" sets.

Definition 2. Let $h \in \omega^{\omega}$, $\limsup_{n \in \omega} h(n) = \infty$. We say that $F \in f\mathcal{N}(h)$ if there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq \omega^n$, $\sum \frac{|S_n|}{h(n)} < \infty$, satisfying a condition

$$F \subseteq \{x \in \omega^{\omega} : (\exists^{\infty} n) (x \restriction n \in S_n)\}.$$

Moreover, we will define fake-small and fake- \mathcal{E} sets. We will explore properties of those objects (e.g. being and ideal) and check whether known facts from their "real" versions hold (e.g. is every fake-null set a sum of two fake-smalls?).

References

- T. Bartoszyński and H. Judah. Set theory: On the structure of the real line. A K Peters. Ltd., 1995.
- [2] Łukasz Mazurkiewicz, Marcin Michalski, Robert Rałowski, and Szymon Zeberski. "On algebraic sums, trees and ideals in the Baire space". In: arXiv:2409.17748 (2024).

Email address: lukasz.mazurkiewicz@pwr.edu.pl

LUKASZ MAZURKIEWICZ, FACULTY OF PURE AND APPLIED MATHEMATICS, WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY, 50-370 WROCŁAW, POLAND