Fake nulls and meagers in the Baire space

Łukasz Mazurkiewicz

Marcin Michalski Robert Rałowski Szymon Żeberski

Wrocław University of Science and Technology lukasz.mazurkiewicz@pwr.edu.pl

Winter School in Abstract Analysis 2025 29.01.2025

Measure

Measure in the Cantor space

Definition

A set $F \subseteq \mathbf{2}^{\omega}$ is null if

$$(\forall \varepsilon>0) \left(\exists (\sigma_n)_{n\in\omega}\right) \left(\sum_{n\in\omega} \frac{1}{2^{|\sigma_n|}} < \varepsilon \wedge F \subseteq \bigcup_{n\in\omega} [\sigma_n]\right).$$

Lemma

Let $F \subseteq 2^{\omega}$ be a null set. Then there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq 2^n$, $\sum \frac{|S_n|}{2^n} < \infty$, satisfying a condition

$$F \subseteq \{x \in 2^{\omega} : (\exists^{\infty} n)(x \upharpoonright n \in S_n)\}.$$

Fake measure in the Baire space

Definition

A set $F \subseteq \omega^{\omega}$ is fake-null $(F \in f\mathcal{N})$ if

$$(\forall \varepsilon > 0) (\exists (\sigma_n)_{n \in \omega}) \left(\sum_{n \in \omega} \frac{1}{2^{|\sigma_n|}} < \varepsilon \wedge F \subseteq \bigcup_{n \in \omega} [\sigma_n] \right).$$

Lemma

Let $F \subseteq \omega^{\omega}$ be a fake-null set. Then there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq \omega^n$, $\sum \frac{|S_n|}{2^n} < \infty$, satisfying a condition

$$F \subseteq \{x \in \omega^{\omega} : (\exists^{\infty} n)(x \upharpoonright n \in S_n)\}.$$

Small and closed null sets

Definition

 $F \in \mathcal{E}$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq 2^{I_n}$, $\sum \frac{|J_n|}{2|I_n|} < \infty$

$$F\subseteq \{x\in 2^\omega:\, (\forall^\infty n)(x\!\upharpoonright\! I_n\in J_n)\}\,.$$

Definition

 $F \in \mathcal{S}$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq 2^{I_n}$, $\sum \frac{|J_n|}{2|I_n|} < \infty$

$$F \subseteq \{x \in 2^{\omega} : (\exists^{\infty} n)(x \upharpoonright I_n \in J_n)\}.$$

Fake small and closed null sets

Definition

 $F \in f\mathcal{E}$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \frac{|J_n|}{2|J_n|} < \infty$

$$F\subseteq \{x\in \omega^\omega:\, (\forall^\infty n)(x\!\upharpoonright\! I_n\in J_n)\}\,.$$

Definition

 $F \in fS$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \frac{|J_n|}{2|I_n|} < \infty$

$$F \subseteq \{x \in \omega^{\omega} : (\exists^{\infty} n)(x \upharpoonright I_n \in J_n)\}.$$

Observations

- $f\mathcal{N}$ is a translation-invariant σ -ideal
- $f\mathcal{E} \subsetneq f\mathcal{S}$
- $f\mathcal{N}\perp\mathcal{M}$
- every fake null is a union of two fake smalls

Parametrization

For now let $h \in \omega^{\omega}$, $\limsup_{n} h(n) = \infty$.

Definition

 $F \in f\mathcal{N}(h)$ if there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq \omega^n$, $\sum \frac{|S_n|}{h(n)} < \infty$, satisfying a condition

$$F\subseteq \{x\in\omega^\omega:\,(\exists^\infty n)(x\upharpoonright n\in\mathcal{S}_n)\}\,.$$

Parametrization

For now let $h \in \omega^{\omega}$, $\limsup_{n} h(n) = \infty$.

Definition

 $F \in f\mathcal{N}(h)$ if there is a sequence $(S_n)_{n \in \omega}$, $S_n \subseteq \omega^n$, $\sum \frac{|S_n|}{h(n)} < \infty$, satisfying a condition

$$F\subseteq \{x\in\omega^\omega:\, (\exists^\infty n)(x\!\upharpoonright\! n\in\mathcal S_n)\}\,.$$

Definition

$$f\mathcal{N}(\mathsf{Fin}) = \bigcup_{h} f\mathcal{N}(h)$$

Parametrization

Definition

 $F \in f\mathcal{E}$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \omega^{I_n}$, $\sum \frac{|J_n|}{|h(|J_n|)} < \infty$

$$F\subseteq \{x\in\omega^\omega:\, (\forall^\infty n)(x\!\upharpoonright\! I_n\in J_n)\}\,.$$

Definition

 $F \in f\mathcal{S}$ if there are a partition of ω into intervals $(I_n)_{n \in \omega}$ and a sequence $(J_n)_{n \in \omega}$, $J_n \subseteq \omega^{I_n}$, $\sum \frac{|J_n|}{|n(|I_n|)} < \infty$

$$F \subseteq \{x \in \omega^{\omega} : (\exists^{\infty} n)(x \upharpoonright I_n \in J_n)\}.$$

Observations

- $f\mathcal{N}(h)$ is a translation-invariant σ -ideal
- $h \le g \implies f\mathcal{N}(h) \subseteq f\mathcal{N}(g)$
- $k < l \implies f\mathcal{N}(k^n) \subsetneq f\mathcal{N}(l^n)$
- $f\mathcal{E}(h) \subsetneq f\mathcal{S}(h)$
- $f\mathcal{N}(h) \perp \mathcal{M}$
- $fS(h) \not\subseteq fN(Fin)$
- $f\mathcal{N}(Fin)$ is not ccc
- $f\mathcal{E}(\mathsf{Fin}) = \mathcal{K}_{\sigma}$

Category

Fake meager

Definition

 $F \in \mathcal{M}_{-}$ if there are $x_F \in \omega^{\omega}$ and a partition of ω into intervals $(I_n)_{n \in \omega}$ such that

$$F \subseteq \{x \in \omega^{\omega} : (\forall^{\infty} n)(x \upharpoonright I_n \neq x_F \upharpoonright I_n)\}.$$

Observations

- \mathcal{M}_{-} is a translation invariant σ -ideal
- $\mathcal{M}_{-} \subsetneq \mathcal{M}$
- $f\mathcal{N}(\text{Fin}) \not\perp \mathcal{M}_i$

Another meager-like ideals

Definition

For $f: \omega^{<\omega} \to \omega$ let

$$D_f = \{x \in \omega^\omega : (\forall^\infty n)(x(n) \neq f(x \upharpoonright n))\}.$$

Denote $\mathcal{D}_{\omega} = \{ A \subseteq \omega^{\omega} : A \subseteq D_f \text{ for some f} \}.$

Definition

For $y \in \omega^{\omega}$ let

$$K_{\mathbf{y}} = \{ \mathbf{x} \in \omega^{\omega} : (\forall^{\infty} \mathbf{n}) (\mathbf{y}(\mathbf{n}) \neq \mathbf{x}(\mathbf{n})) \}.$$

Denote by \mathcal{I}_{ioe} the σ -ideal generated by K_{ν} .

Cardinal invariants

Theorem

Theorem (Khomskii, Laguzzi)

$$cov(\mathcal{I}_{ioe}) = cov(\mathcal{D}_{\omega}) = cov(\mathcal{M})$$
 and $non(\mathcal{I}_{ioe}) = non(\mathcal{D}_{\omega}) = non(\mathcal{M})$.

Corollary

$$cov(\mathcal{M}_{-}) = cov(\mathcal{M})$$
 and $non(\mathcal{M}_{-}) = non(\mathcal{M})$.

References

Ł. M., Marcin Michalski, Robert Rałowski, Szymon Żeberski (2024) On algebraic sums, trees and ideals in the Baire space TBP in: Archive for Mathematical Logic https://arxiv.org/abs/2409.17748

Thank You for attention