Destruction and +-destruction of ideals

Aleksander Cieślak

Wrocław University of Technology

January 27, 2025

Joint work with Barnabas Farkas and Lyubomyr Zdomskyy

イロト イヨト イヨト

Let \mathcal{J} be an definable ideal on ω , preferably analytic, Borel or F_{σ} .

 \mathcal{J} is **tall** if every infinite $X \subseteq \omega$ contains infinite $Y \in \mathcal{J}$.

 \mathcal{J} is a **P** – **ideal** if for every $\{A_n : n \in \omega\} \subseteq \mathcal{J}$ there is $A \in \mathcal{J}$ such that $A_n \subseteq^* A$ for all $n \in \omega$.

 $\begin{array}{l} \mathrm{add}^*(\mathcal{J}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \neg \exists X \in \mathcal{J} \forall F \in \mathcal{F}F \subseteq^* X \} \\ \mathrm{add}^*(\mathcal{J}) > \omega \text{ iff } \mathcal{J} \text{ is a } P \text{-ideal} \end{array}$

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Theorem

For an ideal $\mathcal J$ on ω we have:

- (Mazur)
$$\mathcal{J}$$
 is F_{σ} iff \mathcal{J}
 $\mathcal{J} = Fin(\phi) := \{A \subseteq \omega : \phi(A) < \infty\},\$

- (Solecki)
$$\mathcal{J}$$
 is analytic P -ideal iff
 $\mathcal{J} = Exh(\phi) := \{A \subseteq \omega : \lim_{n \to \infty} \phi(A \setminus n) = 0\},\$

for some l.s.c.s.m. $\phi : \mathcal{P}(\omega) \rightarrow [0, \infty]$.

SQC

Covering and +-covering

For tall ideal consider the following two invariants:

 $\begin{aligned} &\operatorname{cov}^*(\mathcal{J}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \ \forall X \in [\omega]^{\omega} \ \exists F \in \mathcal{F} \ |X \cap F| = \omega\}, \\ &\operatorname{cov}^*_+(\mathcal{J}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \ \forall X \in \mathcal{J}^+ \ \exists F \in \mathcal{F} \ |X \cap F| = \omega\} \end{aligned}$

イロト イポト イヨト イヨト 三日

Covering and +-covering

For tall ideal consider the following two invariants:

 $\begin{array}{l} \operatorname{cov}^*(\mathcal{J}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \ \forall X \in [\omega]^{\omega} \ \exists F \in \mathcal{F} \ |X \cap F| = \omega\}, \\ \operatorname{cov}^*_+(\mathcal{J}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{J} \ \forall X \in \mathcal{J}^+ \ \exists F \in \mathcal{F} \ |X \cap F| = \omega\} \end{array}$

 $\operatorname{add}^*(\mathcal{J}) \leq \operatorname{cov}^*_+(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{J})$

For example, for the ideal $nwd = \{A \subseteq \mathbb{Q} : A \text{ is nowhere dense}\}$ we have:

 $add^{*}(\mathcal{J}) = \omega,$ $cov_{+}^{*}(\mathcal{J}) = add(\mathcal{M}),$ $cov^{*}(\mathcal{J}) = cov(\mathcal{M}).$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Katetov reduction

If \mathcal{J} and \mathcal{I} are ideals on ω then we write $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I}$ if there is $\pi : \omega \to \omega$ such that $\pi^{-1}[X] \in \mathcal{I}$ for every $X \in \mathcal{J}$.

If $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I}$ then $- \operatorname{cov}^{*}(\mathcal{I}) \leq \operatorname{cov}^{*}(\mathcal{J}),$ $- \operatorname{cov}^{*}_{+}(\mathcal{I}) \leq \operatorname{cov}^{*}_{+}(\mathcal{J}).$

- 4 同 ト 4 回 ト - - - 回

Destruction and +destruction

Suppose that \mathbb{P} is a notion of forcing and \mathcal{J} is an ideal on ω . We say that:

- \mathbb{P} destroys \mathcal{J} if it adds infinite $x \subseteq \omega$ such that $|x \cap F| < \omega$ for every ground model $F \in \mathcal{F}$,
- ℙ +-destroys 𝔅 if it adds 𝔅-positive 𝑘 ⊆ ω such that|𝑘 ∩ 𝑘| < ω for every ground model 𝑘 ∈ 𝔅

Destruction and +destruction

Suppose that \mathbb{P} is a notion of forcing and \mathcal{J} is an ideal on ω . We say that:

- \mathbb{P} destroys \mathcal{J} if it adds infinite $x \subseteq \omega$ such that $|x \cap F| < \omega$ for every ground model $F \in \mathcal{F}$,
- \mathbb{P} +-destroys \mathcal{J} if it adds \mathcal{J} -positive $x \subseteq \omega$ such that $|x \cap F| < \omega$ for every ground model $F \in \mathcal{F}$

Typical forcing notions for destruction of \mathcal{J} 's:

- Mathias-Prikry with dual filter $\mathbb{M}(\mathcal{J}^*)$,
- Laver-Prikry with dual filter $\mathbb{L}(\mathcal{J}^*)$,
- Laver or Mathias with $\mathcal J$ -positive sets,
- Hrušák fat forcing (for F_{σ} -ideals),

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Farkas, Zdomskyy)

The following are equivalent for tall Borel ideal \mathcal{J} :

- $\mathbb{M}(\mathcal{J}^*)$ +-destroys \mathcal{J} ,
- there is ${\mathbb P}$ which +-destroys ${\mathcal J}$,
- $\operatorname{cov}_{+}^{*}(\mathcal{J})$ is uncountable.

Theorem (Farkas, Zdomskyy)

The following are equivalent for analytic P ideal \mathcal{J} :

- $\mathbb{L}(\mathcal{J}^*)$ +-destroys \mathcal{J} ,
- ${\mathcal J}$ is fragile.

F_{σ} -examples

- fin,
- random graph ideal \mathcal{R} ,
- Solecki ideal \mathcal{S} ,
- summable ideal $\mathcal{I}_{\underline{1}}$,
- eventually different ideal \mathcal{ED}_{fin} .

伺下 イヨト イヨト

Э

Definition (Hernández-Hernández and Hrušák)

Let \mathcal{ED}_{fin} be the ideal on the countable set

$$\Delta = \{(i,j) \in \omega \times \omega : j \le i\}$$

made of these $X \subseteq \Delta$ s.t. for some $N \in \omega$, almost all vertical sections of X are of size $\leq N$.

- $\operatorname{cov}_{+}^{*}(\mathcal{ED}_{fin}) = \operatorname{cov}^{*}(\mathcal{ED}_{fin})$
- $\operatorname{cov}(\mathcal{N}) \leq \operatorname{cov}^*(\mathcal{ED}_{fin}) \leq \operatorname{non}(\mathcal{M})$
- $\operatorname{non}(\mathcal{M}) = \max\{\mathfrak{b}, \operatorname{cov}^*(\mathcal{ED}_{fin})\},\$
- $\mathcal{ED}_{fin} \leq_{\mathcal{K}} \mathcal{J}$ for every tall analytic *P*-ideal

Examples

F_{σ} -examples:

- fin,
- random graph ideal \mathcal{R} ,
- Solecki ideal S,
- summable ideal $\mathcal{I}_{\underline{1}}$,
- eventually different ideal \mathcal{ED}_{fin} .

analytic *P*-ideals:

イロト イポト イヨト イヨト

Э

Examples

F_{σ} -examples:

- fin,
- random graph ideal \mathcal{R} ,
- Solecki ideal S,
- summable ideal $\mathcal{I}_{\underline{1}}$,
- eventually different ideal \mathcal{ED}_{fin} .

analytic *P*-ideals:

– summable ideal
$$\mathcal{I}_{\frac{1}{n}}$$

イロト イポト イヨト イヨト

Э

Examples

F_{σ} -examples:

- fin,
- random graph ideal \mathcal{R} ,
- Solecki ideal \mathcal{S} ,
- summable ideal $\mathcal{I}_{\underline{1}}$,
- eventually different ideal \mathcal{ED}_{fin} .

analytic *P*-ideals:

- summable ideal $\mathcal{I}_{\underline{1}}$,
- trace of measure ideal $tr(\mathcal{N})$,
- density zero ideal \mathcal{Z} .

・ 同 ト ・ ヨ ト ・ ヨ ト

tr(*N*) ideal For *A* ⊆ 2^{<ω} let $\pi[A] = \{x \in 2^{\omega} : \exists_n^{\infty} x|_n \in A\}$ be the *G*_δ-closure of *A*. Let then *tr*(*N*) = {*A* ⊆ 2^{<ω} : π[*A*] ∈ *N*}.

イロト イヨト イヨト

 $tr(\mathcal{N})$ ideal For $A \subseteq 2^{<\omega}$ let $\pi[A] = \{x \in 2^{\omega} : \exists_n^{\infty} x |_n \in A\}$ be the G_{δ} -closure of A. Let then $tr(\mathcal{N}) = \{A \subseteq 2^{<\omega} : \pi[A] \in \mathcal{N}\}.$

 $- \mathcal{ED}_{fin} \leq_{\mathcal{K}} \mathcal{I}_{\frac{1}{2}} \leq_{\mathcal{K}} tr(\mathcal{N}),$

 $- \operatorname{cov}(\mathcal{N}) \leq \operatorname{cov}^*(tr(\mathcal{N})) \leq \max\{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\} \text{ (Hrušák, Zapletal)}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

tr(\mathcal{N}) ideal For $A \subseteq 2^{<\omega}$ let $\pi[A] = \{x \in 2^{\omega} : \exists_n^{\infty} x | n \in A\}$ be the G_{δ} -closure of A. Let then $tr(\mathcal{N}) = \{A \subseteq 2^{<\omega} : \pi[A] \in \mathcal{N}\}.$

 $- \mathcal{ED}_{fin} \leq_{\mathcal{K}} \mathcal{I}_{\frac{1}{n}} \leq_{\mathcal{K}} tr(\mathcal{N}),$

- $\operatorname{cov}(\mathcal{N}) \leq \operatorname{cov}^*(tr(\mathcal{N})) \leq \max\{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\} \text{ (Hrušák, Zapletal)}$
- $\mathcal{J} \leq_{\mathcal{K}} tr(\mathcal{N})$ iff random forcing destroys \mathcal{J} (Brendle, Yatabe)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_K \mathcal{Z}$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Э

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_K \mathcal{Z}$.

 $-\cos^*(\mathcal{Z}) \leq \mathfrak{b}$ open,

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_K \mathcal{Z}$.

- $-\cos^*(\mathcal{Z}) \leq \mathfrak{b}$ open,
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{d}$ (Raghavan, Shelah),

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_K \mathcal{Z}$.

- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{b}$ open,
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{d}$ (Raghavan, Shelah),
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{r}$ (C.),

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_K \mathcal{Z}$.

- $-\cos^*(\mathcal{Z}) \leq \mathfrak{b}$ open,
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{d}$ (Raghavan, Shelah),
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{r}$ (C.),
- $\operatorname{cov}^*(\mathcal{Z}) \leq \operatorname{non}(\mathcal{M})$ (folklore),

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_{\mathcal{K}} \mathcal{Z}$.

- $-\cos^*(\mathcal{Z}) \leq \mathfrak{b}$ open,
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{d}$ (Raghavan, Shelah),
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{r}$ (C.),
- $\operatorname{cov}^*(\mathcal{Z}) \leq \operatorname{non}(\mathcal{M})$ (folklore),
- $\ \mathrm{cov}^*(\mathcal{Z}) \le \max\{\mathfrak{b}, \mathrm{non}(\mathcal{N})\} \ (\mathsf{Hernández}\mathsf{-}\mathsf{Hernández}, \ \mathsf{Hrušák}),$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let \mathcal{Z} be the ideal on these $A \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$. We have that $tr(\mathcal{N}) \leq_K \mathcal{Z}$.

- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{b}$ open,
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{d}$ (Raghavan, Shelah),
- $\operatorname{cov}^*(\mathcal{Z}) \leq \mathfrak{r}$ (C.),
- $\operatorname{cov}^*(\mathcal{Z}) \le \operatorname{non}(\mathcal{M})$ (folklore),
- $\ \mathrm{cov}^*(\mathcal{Z}) \leq \max\{\mathfrak{b}, \mathrm{non}(\mathcal{N})\} \ (\mathsf{Hern}\mathsf{á}\mathsf{ndez}\mathsf{-}\mathsf{Hern}\mathsf{á}\mathsf{ndez}, \ \mathsf{Hru}\mathsf{s}\mathsf{á}\mathsf{k}),$

 $- \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\} \leq \operatorname{cov}^*(\mathcal{Z}) \text{ (Hernández-Hernández, Hrušák).}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Summarizing, we have

$$\mathcal{ED}_{fin} \leq_{\mathcal{K}} \mathcal{I}_{\frac{1}{n}} \leq_{\mathcal{K}} tr(\mathcal{N}) \leq_{\mathcal{K}} \mathcal{Z}$$

and thus

$$\operatorname{cov}(\mathcal{Z}) \leq \operatorname{cov}(tr(\mathcal{N})) \leq \operatorname{cov}(\mathcal{I}_{\frac{1}{n}}) \leq \operatorname{cov}(\mathcal{ED}_{fin}) \leq \operatorname{non}(\mathcal{M})$$

 ${\mathcal E}$ is the $\sigma\text{-ideal}$ generated by closed, measure zero subsets of $2^\omega.$

伺下 イヨト イヨト

 ${\mathcal E}$ is the $\sigma\text{-ideal}$ generated by closed, measure zero subsets of $2^\omega.$

It is known that

- $\mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N},$
- $\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N}) \leq \operatorname{cov}(\mathcal{E}) \leq \max\{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\},\$

 $-\min\{\mathfrak{b}, \operatorname{non}(\mathcal{N})\} \le \operatorname{non}(\mathcal{E}) \le \operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N}),$

伺 ト イヨ ト イヨ ト

 ${\cal E}$ is the σ -ideal generated by closed, measure zero subsets of 2^{ω} .

It is known that

$$- \mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N},$$

 $- \operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N}) \le \operatorname{cov}(\mathcal{E}) \le \max\{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\},\$

 $-\min\{\mathfrak{b}, \operatorname{non}(\mathcal{N})\} \le \operatorname{non}(\mathcal{E}) \le \operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N}),$

Theorem(C.-Farkas-Zdomskyy) $\operatorname{cov}_{+}^{*}(\mathcal{I}_{\frac{1}{n}}) \leq \operatorname{non}(\mathcal{E}) \leq \operatorname{non}_{+}^{*}(tr(\mathcal{N})),$ $\operatorname{cov}_{+}^{*}(tr(\mathcal{N})) \leq \operatorname{cov}(\mathcal{E}) \leq \operatorname{non}_{+}^{*}(\mathcal{I}_{\frac{1}{n}}).$

伺 ト イヨ ト イヨ ト

Aleksander Cieślak Destruction and +-destruction of ideals

▲口 > ▲母 > ▲目 > ▲目 > ▲日 > ▲日 >

Recall well-known characterizations of measure and category from Bartoszyński and Miller:

Theorem (Bartoszyński)

add(\mathcal{N}) is equal to: min{ $|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega}$ and $\neg \exists S \in SIm \forall f \in \mathcal{F} f \subseteq^* S$ }

Theorem (Bartoszyński-Miller)

$$\begin{array}{l} \operatorname{non}(\mathcal{M}) \text{ is equal to:} \\ \operatorname{min}\{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega} \ \forall g \in \omega^{\omega} \ \exists f \in \mathcal{F} \ f =^{\infty} g\} \text{ and} \\ \operatorname{min}\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{S} \textit{Im} \ \forall g \in \omega^{\omega} \ \exists S \in \mathcal{F} \ f \in^{\infty} S\} \end{array}$$

Where $S \in S$ if $S : \omega \to [\omega]^{<\omega}$ is s.t. |S(n)| = n.

・ 同 ト ・ ヨ ト ・ ヨ ト

Relation systems

A triple \mathcal{R} = $(\mathcal{X},\sqsubseteq,\mathcal{Y})$ is a relation system if

- \mathcal{X}, \mathcal{Y} are non-empty sets,
- \sqsubseteq is relation between ${\mathcal X}$ and ${\mathcal Y}$

Define then:

- The (un)bounding number $\mathfrak{b}(\mathcal{R}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{X} \neg \exists y \in \mathcal{Y} \forall x \in \mathcal{F} \ x \leq y\}$
- The dominating number $\mathfrak{d}(\mathcal{R}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{Y} \ \forall x \in \mathcal{X} \exists y \in \mathcal{F} \ x \leq y\}$

In this way: add(\mathcal{N}) = $\mathfrak{b}(\omega^{\omega}, \subseteq^*, Slm)$ non(\mathcal{M}) = $\mathfrak{d}(\omega^{\omega}, =^{\infty}, \omega^{\omega}) = \mathfrak{d}(\omega^{\omega}, \epsilon^{\infty}, Slm)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

What happens if we take bounded versions of the above?

We get: $\mathfrak{b}(\Pi F, \subseteq^*, Slm(F, b))$ $\mathfrak{d}(\Pi F, =^{\infty}, \Pi F)$ $\mathfrak{d}(\Pi F, \in^{\infty}, Slm(F, b))$

Where

- $\Pi F := \Pi_n F(n)$ for rather fast $F \in \omega^{\omega}$
- $-S \in Slm(F, b)$ if $|S(n)| \le b(n)$ and $\sum_{n} \frac{b(n)}{F(n)} < \infty$

何 とう マン・ マン・

We have that: $add(\mathcal{N}) \leq \mathfrak{b}(\Pi F, \subseteq^*, Slm(F, b)) \leq \mathfrak{d}(\Pi F, =^{\infty}, \Pi F) \leq non(\mathcal{M}),$ $cov(\mathcal{N}) \leq \mathfrak{d}(\Pi F, \epsilon^{\infty}, Slm(F, b)) \leq \mathfrak{d}(\Pi F, =^{\infty}, \Pi F) \leq non(\mathcal{M})$

・ロト ・ 四ト ・ ヨト ・ ヨト

SQC

We have that: add(\mathcal{N}) $\leq \mathfrak{b}(\Pi F, \subseteq^*, Slm(F, b)) \leq \mathfrak{d}(\Pi F, =^{\infty}, \Pi F) \leq \operatorname{non}(\mathcal{M}),$ $\operatorname{cov}(\mathcal{N}) \leq \mathfrak{d}(\Pi F, \epsilon^{\infty}, Slm(F, b)) \leq \mathfrak{d}(\Pi F, =^{\infty}, \Pi F) \leq \operatorname{non}(\mathcal{M})$

Actually

- $\mathfrak{d}(\Pi F, =^{\infty}, \Pi F) \leq \operatorname{cov}^{*}(\mathcal{ED}_{fin}),$
- $\mathfrak{d}(\Pi F, \epsilon^{\infty}, \mathcal{S}Im(F, b)) \leq \operatorname{cov}^{*}(\mathcal{I}_{\frac{1}{2}}),$
- $\mathfrak{b}(\Pi F, \subseteq^*, Slm(F, b)) \leq \operatorname{cov}^*(\mathcal{I}_{\frac{1}{2}})$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Thank you

・ロン ・雪 と ・ ヨ と

E