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Definitions

Definition (Borel graph)
A Borel graph G on a standard Borel space X is a symmetric Borel subset of X2. We will
call x and y adjacent/connected/neighbors if (x,y) € G.
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Definitions

Definition (Borel graph)

A Borel graph G on a standard Borel space X is a symmetric Borel subset of X2. We will
call x and y adjacent/connected/neighbors if (x,y) € G.

The vertex set is denoted by V/(G), the edge set by E(G).

Example

The irrational rotation graph: V(G) = S!, and let o € [0, 7) be irrational. Denote by T,
the rotation of the circle, and let (x,y) € E(G) <= Tu(x) =y or To(y) = x.
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Definitions

Definition (Borel chromatic number)

The Borel chromatic number of a graph G, denoted by xg(G) is the minimal
ne{1,2,..,N}, such that G admits a Borel n-coloring, that is a Borel map
c: V(G) = nwith Vx,y € V(G): (x,y) € E(G) = c¢(x) # c(y).
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The Borel chromatic number of a graph G, denoted by xg(G) is the minimal
ne{1,2,..,N}, such that G admits a Borel n-coloring, that is a Borel map
c: V(G) = nwith Vx,y € V(G): (x,y) € E(G) = c¢(x) # c(y).

Definition (Graph homomorphism)

Let G, H be two graphs. We call a function ¢ : V(G) — V(H) a homomorphism, if
Vx,y € V(G) 1 (x,y) € E(G) = (¢(x), ¢(v)) € E(H).

Definition (Hyperfiniteness)

A Borel graph G is hyperfinite, if the connectedness equivalence relation of G is
hyperfinite.
(A countable Borel equivalence relation (CBER) E is hyperfinite, there are CBERs

Eo C E; C E; C ... with finite classes such that E = |, En.)
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The graph G,

Definition (Graph Go)

Let s, € 2" be chosen for every n € N such that Vs € 2<N 3n s T s,. Then define the
graph Gg on 2N as:

Go={(s70"x,5.717x),(s,17x,5.07x) € 2V x 2V : n e N, x € 21},
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The graph G,

Definition (Graph Go)

Let s, € 2" be chosen for every n € N such that Vs € 2<N 3n s T s,. Then define the
graph Gg on 2N as:

Go={(s70"x,5.717x),(s,17x,5.07x) € 2V x 2V : n e N, x € 21},

Fact
XB(GO) > No.

Theorem ( Gy dichotomy, Kechris-Solecki-Todor&evi¢ [1])

Suppose G is a Borel graph on a standard Borel space X. Then exactly one of the
following holds:
- there is a Borel homomorphism from Gy to G,

- x8(G) < No.
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The shift-graph

Definition (Shift-graph)

The shift-graph, Gs on [N]Y is defined as the symmetrization of the graph of the
shift-map S, that is, S(x) = x \ {minx}.
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The shift-graph

Definition (Shift-graph)

The shift-graph, Gs on [N]Y is defined as the symmetrization of the graph of the
shift-map S, that is, S(x) = x \ {minx}.

Fact
xB(Gs) = Ro.

Theorem (Kechris-Solecki-Todorcevi¢ [1])
Let C C [N]N be Borel. Then xg(Gs | C) € {1,2,3,00}.
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Do we have a Gs dichotomy?

® Would be nice to have:

FALSE
Suppose G is a Borel graph on a standard Borel space X. Then exactly one of the

following holds:
- there is a Borel homomorphism from Gs to G,

= XB(G) < No.
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® Maybe:

FALSE
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Do we have a Gs dichotomy?

® Maybe:

FALSE

Let B C [N]Y be a Borel subset. Then exactly one of the following holds:
- there is a Borel homomorphism from Gs to Gs | B,
= XB(GS i B) < Ng.

False due to complexity results of Todor&evi¢ and Vidnyanszky [3].

Conjecture

Let B C [N]Y be a Borel subset. Then exactly one of the following holds:
- there is a Borel homomorphism from Gs to Gs | B,
= X?(Gs i B) < Np.
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New theorems

Theorem (K-Vidnyanszky [2], 2025+)

Let f : X — X be an acyclic Borel function on the standard Borel space X. Then there is
a Borel homomorphism from the assosiated graph, G to the shift graph Gs.
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New theorems

Theorem (K-Vidnyanszky [2], 2025+)

Let f : X — X be an acyclic Borel function on the standard Borel space X. Then there is
a Borel homomorphism from the assosiated graph, G to the shift graph Gs.

Theorem (K-Vidnyanszky [2], 2025-+)

Let G be an acyclic, hyperfinite Borel graph on a standard Borel space. Then there is a
Borel homomorphism from G to Gp.

8/14



Proof sketch |I.

Theorem (K-Vidnyanszky [2], 2025+)

Let f : X — X be an acyclic Borel function on the standard Borel space X. Then there is
a Borel homomorphism from the assosiated graph, Gr to the shift graph Gs.

® Reducing to the case when f is the shift map on 2V,
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Proof sketch |I.

Theorem (K-Vidnyanszky [2], 2025+)

Let f : X — X be an acyclic Borel function on the standard Borel space X. Then there is
a Borel homomorphism from the assosiated graph, Gr to the shift graph Gs.

® Reducing to the case when f is the shift map on 2V,

e proving the statement for the shift map on 2N, with toast.
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Proof sketch |I.

Reduction part.

® let ¢c: X — N be an N-coloring,
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Proof sketch |I.

Reduction part.

® let ¢c: X — N be an N-coloring,
® components with strictly monotone increasing forward orbit ©

® on the rest let us define a function a: X — {0,1} as:

200 = {1 if ¢(x) < c(F(x))
0 if c(x) > c(f(x)).
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Finishing proof I.

Definition (Toast)

Given a Borel graph G, we say that a Borel collection T of finite subsets of V(G) is an
r-toast if it satisfies

1. Uker E(K) = E(G)
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Finishing proof I.

Definition (Toast)

Given a Borel graph G, we say that a Borel collection T of finite subsets of V(G) is an
r-toast if it satisfies

1. Uger E(K) = E(G)
2. for every pair K, L € T either N,(K) N N,(L) =0 or N.(K) C L or N,(L) C K,
where N,(X) is the r-neighbourhood of X using the graph distance.
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Proof sketch II.

Theorem (K-Vidnyanszky [2], 2025+)

Let G be an acyclic, hyperfinite Borel graph on a standard Borel space. Then there is a
Borel homomorphism from G to Gp.

® Embed homomorphically every Borel graph into an inverse limit,

® then prove the theorem for inverse limits.
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Thank you for your attention!
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