Universal Borel graphs under homomorphism

Anett Kocsis Eötvös Loránd University

January 27, 2025

Joint work with Zoltán Vidnyánszky.

Definition (Borel graph)

A Borel graph G on a standard Borel space X is a symmetric Borel subset of X^2 . We will call x and y adjacent/connected/neighbors if $(x, y) \in G$.

Definition (Borel graph)

A Borel graph G on a standard Borel space X is a symmetric Borel subset of X^2 . We will call x and y adjacent/connected/neighbors if $(x, y) \in G$.

The vertex set is denoted by V(G), the edge set by E(G).

Definition (Borel graph)

A Borel graph G on a standard Borel space X is a symmetric Borel subset of X^2 . We will call x and y adjacent/connected/neighbors if $(x, y) \in G$.

The vertex set is denoted by V(G), the edge set by E(G).

Example

The irrational rotation graph: $V(G) = S^1$, and let $\alpha \in [0, \pi)$ be irrational. Denote by T_{α} the rotation of the circle, and let $(x, y) \in E(G) \iff T_{\alpha}(x) = y$ or $T_{\alpha}(y) = x$.

Definitions

Definition (Borel chromatic number)

The Borel chromatic number of a graph G, denoted by $\chi_B(G)$ is the minimal $n \in \{1, 2, ..., \aleph_0\}$, such that G admits a Borel *n*-coloring, that is a Borel map $c : V(G) \rightarrow n$ with $\forall x, y \in V(G) : (x, y) \in E(G) \implies c(x) \neq c(y)$.

Definitions

Definition (Borel chromatic number)

The Borel chromatic number of a graph G, denoted by $\chi_B(G)$ is the minimal $n \in \{1, 2, ..., \aleph_0\}$, such that G admits a Borel *n*-coloring, that is a Borel map $c : V(G) \rightarrow n$ with $\forall x, y \in V(G) : (x, y) \in E(G) \implies c(x) \neq c(y)$.

Definition (Graph homomorphism)

Let G, H be two graphs. We call a function $\varphi : V(G) \to V(H)$ a homomorphism, if $\forall x, y \in V(G) : (x, y) \in E(G) \implies (\varphi(x), \varphi(y)) \in E(H)$.

Definitions

Definition (Borel chromatic number)

The Borel chromatic number of a graph G, denoted by $\chi_B(G)$ is the minimal $n \in \{1, 2, ..., \aleph_0\}$, such that G admits a Borel *n*-coloring, that is a Borel map $c : V(G) \rightarrow n$ with $\forall x, y \in V(G) : (x, y) \in E(G) \implies c(x) \neq c(y)$.

Definition (Graph homomorphism)

Let G, H be two graphs. We call a function $\varphi : V(G) \to V(H)$ a homomorphism, if $\forall x, y \in V(G) : (x, y) \in E(G) \implies (\varphi(x), \varphi(y)) \in E(H)$.

Definition (Hyperfiniteness)

A Borel graph G is hyperfinite, if the connectedness equivalence relation of G is hyperfinite.

(A countable Borel equivalence relation (CBER) E is hyperfinite, there are CBERs $E_0 \subseteq E_1 \subseteq E_2 \subseteq \ldots$ with finite classes such that $E = \bigcup_{n \in \mathbb{N}} E_n$.)

The graph G_0

Definition (Graph G_0)

Let $s_n \in 2^n$ be chosen for every $n \in \mathbb{N}$ such that $\forall s \in 2^{<\mathbb{N}} \exists n \ s \sqsubseteq s_n$. Then define the graph G_0 on $2^{\mathbb{N}}$ as:

 $G_0 = \{(s_n^{\frown} 0^{\frown} x, s_n^{\frown} 1^{\frown} x), (s_n^{\frown} 1^{\frown} x, s_n^{\frown} 0^{\frown} x) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} : n \in \mathbb{N}, x \in 2^{\mathbb{N}}\}.$

The graph G_0

Definition (Graph G_0)

Let $s_n \in 2^n$ be chosen for every $n \in \mathbb{N}$ such that $\forall s \in 2^{<\mathbb{N}} \exists n \ s \sqsubseteq s_n$. Then define the graph G_0 on $2^{\mathbb{N}}$ as:

$$G_0 = \{ (s_n^\frown 0^\frown x, s_n^\frown 1^\frown x), (s_n^\frown 1^\frown x, s_n^\frown 0^\frown x) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} : n \in \mathbb{N}, x \in 2^{\mathbb{N}} \}.$$

Fact

 $\chi_B(G_0) > \aleph_0.$

The graph G_0

Definition (Graph G_0)

Let $s_n \in 2^n$ be chosen for every $n \in \mathbb{N}$ such that $\forall s \in 2^{<\mathbb{N}} \exists n \ s \sqsubseteq s_n$. Then define the graph G_0 on $2^{\mathbb{N}}$ as:

$$G_0 = \{ (s_n^\frown 0^\frown x, s_n^\frown 1^\frown x), (s_n^\frown 1^\frown x, s_n^\frown 0^\frown x) \in 2^\mathbb{N} \times 2^\mathbb{N} : n \in \mathbb{N}, x \in 2^\mathbb{N} \}.$$

Fact

 $\chi_B(G_0) > \aleph_0.$

Theorem (G_0 dichotomy, Kechris-Solecki-Todorčević [1])

Suppose G is a Borel graph on a standard Borel space X. Then exactly one of the following holds:

- there is a Borel homomorphism from G_0 to G,

 $-\chi_B(G)\leq \aleph_0.$

Definition (Shift-graph)

The shift-graph, G_S on $[\mathbb{N}]^{\mathbb{N}}$ is defined as the symmetrization of the graph of the shift-map S, that is, $S(x) = x \setminus \{\min x\}$.

Definition (Shift-graph)

The shift-graph, G_S on $[\mathbb{N}]^{\mathbb{N}}$ is defined as the symmetrization of the graph of the shift-map S, that is, $S(x) = x \setminus \{\min x\}$.

Fact $\chi_B(G_5) = \aleph_0.$

Definition (Shift-graph)

The shift-graph, G_S on $[\mathbb{N}]^{\mathbb{N}}$ is defined as the symmetrization of the graph of the shift-map S, that is, $S(x) = x \setminus \{\min x\}$.

Fact

 $\chi_B(G_S) = \aleph_0.$

Theorem (Kechris-Solecki-Todorčević [1])

Let $C \subseteq [\mathbb{N}]^{\mathbb{N}}$ be Borel. Then $\chi_B(G_S \upharpoonright C) \in \{1, 2, 3, \infty\}$.

• Would be nice to have:

FALSE

Suppose G is a Borel graph on a standard Borel space X. Then exactly one of the following holds:

- there is a Borel homomorphism from G_S to G,

- $\chi_B(G) < \aleph_0$.

Do we have a G_S dichotomy?

• Maybe:

FALSE

- Let $B \subseteq [\mathbb{N}]^{\mathbb{N}}$ be a Borel subset. Then exactly one of the following holds:
- there is a Borel homomorphism from G_S to $G_S \upharpoonright B$,
- $\chi_B(G_S \upharpoonright B) < \aleph_0$.

Do we have a G_S dichotomy?

• Maybe:

FALSE

Let $B \subseteq [\mathbb{N}]^{\mathbb{N}}$ be a Borel subset. Then exactly one of the following holds: - there is a Borel homomorphism from G_S to $G_S \upharpoonright B$, - $\chi_B(G_S \upharpoonright B) < \aleph_0$.

False due to complexity results of Todorčević and Vidnyánszky [3].

Do we have a G_S dichotomy?

• Maybe:

FALSE

- Let $B \subseteq [\mathbb{N}]^{\mathbb{N}}$ be a Borel subset. Then exactly one of the following holds:
- there is a Borel homomorphism from G_S to $G_S \upharpoonright B$,
- $\chi_B(G_S \upharpoonright B) < \aleph_0$.

False due to complexity results of Todorčević and Vidnyánszky [3].

Conjecture

- Let $B \subseteq [\mathbb{N}]^{\mathbb{N}}$ be a Borel subset. Then exactly one of the following holds:
- there is a Borel homomorphism from G_S to $G_S \upharpoonright B$,
- $\chi_?(G_S \upharpoonright B) < \aleph_0$.

Let $f : X \to X$ be an acyclic Borel function on the standard Borel space X. Then there is a Borel homomorphism from the assosiated graph, G_f to the shift graph G_S .

Let $f : X \to X$ be an acyclic Borel function on the standard Borel space X. Then there is a Borel homomorphism from the assosiated graph, G_f to the shift graph G_S .

Theorem (K-Vidnyánszky [2], 2025+)

Let G be an acyclic, hyperfinite Borel graph on a standard Borel space. Then there is a Borel homomorphism from G to G_0 .

Let $f : X \to X$ be an acyclic Borel function on the standard Borel space X. Then there is a Borel homomorphism from the assosiated graph, G_f to the shift graph G_S .

Proof.

• Reducing to the case when f is the shift map on $2^{\mathbb{N}}$,

Let $f : X \to X$ be an acyclic Borel function on the standard Borel space X. Then there is a Borel homomorphism from the assosiated graph, G_f to the shift graph G_S .

Proof.

- Reducing to the case when f is the shift map on $2^{\mathbb{N}}$,
- proving the statement for the shift map on $2^{\mathbb{N}}$, with toast.

• let $c: X \to \mathbb{N}$ be an \mathbb{N} -coloring,

- let $c: X \to \mathbb{N}$ be an \mathbb{N} -coloring,
- components with strictly monotone increasing forward orbit

- let $c: X \to \mathbb{N}$ be an \mathbb{N} -coloring,
- \bullet components with strictly monotone increasing forward orbit $\textcircled{\sc 0}$

- let $c: X \to \mathbb{N}$ be an \mathbb{N} -coloring,
- \bullet components with strictly monotone increasing forward orbit $\textcircled{\sc 0}$
- on the rest let us define a function $a: X \to \{0, 1\}$ as:

$$a(x) = \begin{cases} 1 \text{ if } c(x) < c(f(x)) \\ 0 \text{ if } c(x) > c(f(x)). \end{cases}$$

Definition (Toast)

Given a Borel graph G, we say that a Borel collection \mathcal{T} of finite subsets of V(G) is an *r*-toast if it satisfies

1.
$$\bigcup_{K\in\mathcal{T}} E(K) = E(G)$$

Definition (Toast)

Given a Borel graph G, we say that a Borel collection \mathcal{T} of finite subsets of V(G) is an *r*-toast if it satisfies

1. $\bigcup_{K\in\mathcal{T}} E(K) = E(G)$

2. for every pair $K, L \in \mathcal{T}$ either $N_r(K) \cap N_r(L) = \emptyset$ or $N_r(K) \subseteq L$ or $N_r(L) \subseteq K$,

where $N_r(X)$ is the *r*-neighbourhood of X using the graph distance.

Let G be an acyclic, hyperfinite Borel graph on a standard Borel space. Then there is a Borel homomorphism from G to G_0 .

Proof.

- Embed homomorphically every Borel graph into an inverse limit,
- then prove the theorem for inverse limits.

KECHRIS, A. S., SOLECKI, S., AND TODORČEVIĆ, S. Borel chromatic numbers. Advances in Mathematics 141, 1 (1999), 1–44.

KOCSIS, A., AND VIDNYÁNSZKY, Z. Universal borel graphs under homomorphism. in preparation (2025+).

TODORČEVIĆ, S., AND VIDNYÁNSZKY, Z. A complexity problem for Borel graphs. Inventiones Mathematicae 226, 1 (2021), 225–249.

Thank you for your attention!